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These maps indicate snapshots of the cumulative
change in water level between the initial

time (14:08) and final time (right).
The six flights spanned

about 2.5 hours

Hydrological connectivity (in this context) means 
the physical exchange of water and water-mediated 
substances between different components of the 
landscape (channels and wetlands)1.
In the Wax Lake Delta, channel-island connectivity:
 Is significant (28% - 59% of total flow2,3,4,5)
 Controls hydraulics of entire delta system3,5

 Affects locations of aggradation and erosion5

 Can affect biotic nutrient processing3,5,6

 May play a role in ecological succession5

 Facilitates cross-delta information transfer7

However, it is difficult to measure, and has 
traditionally required detailed field work or 
computationally limited computer modeling.

The NASA airborne Uninhabited Aerial Vehicle SAR (UAVSAR) 
is an L-band (1.2575-GHz) SAR polarimetric instrument with an 
80-MHz bandwidth8,9. Used in repeat-pass interferometric mode, 
the backscatter signals can be used to infer water level changes 
between repeated flights10. The SAR images have a swath of 
~22 km and a spatial resolution of ~7 m, and can be collected 
over several hours8,9.

On October 16th, 2016, UAVSAR was used to monitor water level change in the Wax Lake and 
Atchafalaya Deltas over a course of 2 h 29 min. Six flights (one every half-hour) ran from 
14:08 - 16:37 UTC, yielding five interferometric maps of water level change.
Tide and wind information obtained from NOAA Amerada Pass tide gauge (#8764227). Average
discharge was 1620 m3/s, as measured at the Calumet USGS gauge (#07381590).

Over span of observation, non-channelized
wetlands lost a total of over 22.8 megatons of water! 
Connectivity is not isolated to the deltas, similar 
magnitude of losses observed upstream.
To understand causes and implications of
this data, we developed a hydrodynamic model to
explore influence of tides, wind, and vegetation on 
water levels. We focus the modeling analysis on 
the Wax Lake Delta, which has been the focus 
of many studies(e.g. 2-7,9).

Model built using the modeling software ANUGA11, which is a flexible, fast, open source (Python) model 
which solves the 2D shallow water equations given as:

DEM of Wax Lake Delta 
used for bathymetry12.
Mesh resolution varies by region for efficiency; highest 
resolution (~2500m2) in islands, lowest (1x107 m2 in bay).

To quantify connectivity scales in non-channelized wetlands, variogram and entrogram methods
were used to measure scale of spatial correlation in the final interferogram (14:08 - 16:37; Top). 
The variogram13 quantifies the mean 
correlation between two points (x1,y1)
and (x2,y2) separated by a distance h:
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where i, j = {1, 2} and j is a modified Einstein summation. Values for
constants as used by the model: g = 9.8 m/s, ρ = 1000 kg/m3, ρa =
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Wetlands lost 
8.9 L/hr per m2

The diagonal stripe patterns are 
due to atmospheric disturbances (clouds).
Tides only seen falling within window.

(reproduced from [2])

Can we use UAVSAR to 
measure connectivity rapidly

over large spatial scales?
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The entrogram14 is based on Shannon 
entropy, and compares the mean 
local entropy (measured over a small
window of length h) to the global 
entropy of the field. High values 
correspond to greater uncertainty.

While this analysis is ongoing, preliminary conclusions include:
(1) Hydrological connectivity is not limited to the downstream areas of the delta. The upstream wetlands
 also see substantial water exchange with channels over short time scales.
(2) Understanding the signature of tides, wind, and vegetation in the UAVSAR data requires better
 knowledge of the influence of these processes on coastal systems (which can be aided by SAR).
(3) UAVSAR can become a powerful tool for monitoring coastal systems, but supplemental information 
 on the physical dynamics of the system are essential for intepreting the remotely-sensed data.
Future plans include improving (and expanding) the hydrodynamic model, comparing these results with 
those of other models, investigating the influence of more complex vegetation distributions, and 
computing additional spatial information-theory statistics. 
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p = marginal probability of bin i
i = index of bin (3 bins here)
k = index of “local” window
ns = number of k windows
HR = relative entropy index
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