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Abstract16

The COVID-19 pandemic led to widespread reductions in mobility and induced observ-17

able changes in the atmosphere. Recent studies have employed novel mobility datasets18

and some used their covariations with changes in the atmosphere for source attribution.19

Despite their widespread use, there has been little work evaluating these mobility datasets.20

Here we compare mobility data from Apple and TomTom with local government traf-21

fic data in seven regions. We identify two sources of error: 1) the weekly and annual traf-22

fic cycle may not be properly represented due to the improper choice of baseline and 2)23

the mobility datasets are measuring fundamentally different quantities than traffic flow.24

We could not find a simple functional relationship between mobility data and traffic flow.25

Source attribution based on mobility data could induce errors in excess of 50%. Future26

work should be cautious when using these mobility metrics for source attribution.27

Plain Language Summary28

The government-imposed mobility restrictions due to the COVID-19 global pan-29

demic led to observable changes in our atmosphere. Previous studies investigating these30

observed changes have used new datasets from tech companies that track users mobil-31

ity. However, our work identifies important errors or shortcomings when using these new32

mobility datasets to directly estimate emissions from traffic. We show how there could33

be errors larger than 50%. Further, we could not find a simple functional relationship34

between these new mobility datasets and data from local governments on traffic flow,35

implying caution when using these mobility metrics.36

1 Introduction37

The COVID-19 pandemic induced widespread changes in society, impacted the global38

economy, and has indirectly impacted the environment. Specifically, the emergence of39

COVID-19 led to government restrictions on mobility including shelter-in-place orders40

and bans on social events (World Health Organisation (WHO), 2020). There has been41

much interest in understanding and quantifying how these regulations modulated both42

emissions to the atmosphere and the chemical composition of the atmosphere (e.g., Tanzer-43

Gruener et al., 2020; Turner et al., 2020; Dietrich et al., 2020). Recent studies have tried44

to quantify the impact of the enforced and voluntary restriction of human activities (travel45

and work related) on global greenhouse gas (GHG) emissions (Forster et al., 2020; Le Quéré46

et al., 2020; Liu, Ciais, Deng, Lei, et al., 2020; Liu, Ciais, Deng, Davis, et al., 2020) and47

air pollution (Venter et al., 2020). Many of these studies employed global mobility datasets48

from Apple Inc. (2020), Google LLC (2020), and TomTom International BV (2020) and49

concluded that decrease in mobility was one of the leading reason of decreased global GHG50

emissions and air pollution during COVID-19 lockdown periods.51

These global mobility datasets are highly attractive as they provide a near-real time52

estimate of changes in human activity across nations and over time (Forster et al., 2020).53

However, in many cases, there is a lack of transparency about the methodology and, as54

such, we are left wondering how exactly these datasets relate to emissions (Forster et al.,55

2020). Further understanding of what these datasets can tell us is warranted.56

Here we focus on mobility data provided by Apple and TomTom. We compare these57

datasets to both urban and rural traffic data from local governments. We identify cases58

where these datasets converge and where they diverge at weekly-to-annual timescales.59

Finally, we assess the potential errors of using these mobility datasets, in lieu of local60

data, on estimates of emissions to the atmosphere with a particular focus on CO2.61
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2 Selection of regions for case studies62

We selected seven regions (Oslo, Munich, San Francisco Bay Area, Los Angeles,63

Cape Town, Norway, California; supplement Table S1) as case studies to inter-compare64

the mobility datasets with data from local governments. These seven regions encompass65

both urban and rural regions from four countries on three different continents. They were66

chosen for their latitudinal coverage and availability of data from local governments on67

traffic. The distribution of the regions over the latitudes and the coverage of the north-68

ern and southern hemisphere enable a diverse data analysis. The seasons in the south-69

ern are inverse to the northern hemisphere. Additionally diverse seasonal climate behav-70

iors are covered, for example while the temperature in Oslo shows a rather strong sea-71

sonality with peak to peak average monthly temperature differences of around 30oC, in72

lower latitude regions, like San Francisco Bay Area the temperature fluctuation is only73

10oC in 2019 (supplement Figure S2). While Norway and California are comparable in74

size, the population of California is around 8 times higher than in Norway. From sup-75

plement Table S1 we see that all of these regions first enacted restrictions on the mo-76

bility of their populus between March 13 and March 26 in 2020. Los Angeles shows a77

similar behavior to San Francisco Bay Area. Its detailed analysis can be found in the78

supplement.79

3 Information about investigated datasets80

It is important to note that these various measures of mobility do not report the81

same quantity and what they report differs from the metrics that are traditionally used82

to estimate emissions to the atmosphere. We focus on vehicle traffic and therefore we83

do not investigate Google data which provides information about the stay of people at84

different locations, like transit stations.85

The Apple Inc. (2020) mobility trends report represents the relative request vol-86

ume of Apple Maps in the categories driving, walking, and public transportation glob-87

ally. The baseline is the request volume as of Monday, January 13, 2020, reaching from88

midnight to midnight of the corresponding day in Pacific Time Zone. Apple Inc. (2020)89

themselves state that increases of their index can occur due to usual seasonality. Also90

they do not collect user or demographic information and Apple Maps is only available91

on Apple devices. Therefore it is unknown whether the use is representative for the en-92

tire population.93

TomTom International BV (2020) traffic index provides congestion levels for 41694

cities in 57 countries of the world. Due to the COVID-19 pandemic the average daily con-95

gestion for the year 2020 and also the deviation from the corresponding day in 2019 are96

published. The corresponding day in 2019 is defined as the same weekday of the same97

calender week. The percentage congestion value represents the extra time needed for a98

trip compared to the uncongestioned traffic situation. For example, if an uncongestioned99

trip takes 30 minutes and the congestion index currently is 50%, then the trip takes 15100

minutes longer (50% of 30 minutes) and therefore in total 45 minutes. The traffic index101

is calculated with the data of more than 600 million global users who navigate with Tom-102

Tom technology in navigation devices, smartphones or other technical devices. The un-103

congestioned situation is analyzed by looking at free-flow local traffic situations.104

In contrast to mobile device based data gathering, the local governments in this105

study measure traffic by point counting stations using microwave radar detectors or in-106

duction loops on roads and at traffic lights. For California, we consider the vehicle miles107

traveled (VMT) metric (California State Senate SB 743, 2015). For all other regions we108

use the total average daily traffic volume of all point detectors. Data was downloaded109

directly from the websites or requested from the local governmental departments. For110

Oslo we reduce the data of whole Norway using the longitude borders (10.6678, 10.6678)111

and the latitude borders (59.8214, 60.0015) which represent a distance of approximately112

10 kilometers from the city center. (Statens vegvesen, 2020; Bayerisches Landesamt fuer113
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Umwelt (LfU), 2020; Caltrans, California Department of Transportation, 2020; West-114

ern Cape Government, Road Network Information System, 2020)115

4 Data analysis116

Figure 1a shows the monthly deviation from the annual mean traffic flow for six117

of the seven study regions. We observe little seasonality in California (deviations are less118

than 5%, similar to McDonald et al. (2014)), in contrast to other regions. This lack of119

seasonality is due, in part, to the temperate climate. The European regions Munich, Oslo,120

and Norway show deviation peaks up to 9-12%. In Norway and Oslo a break in the curve121

can be observed in July which coincides with the local school summer break. Further,122

we observe the inverse seasons on the southern to the northern hemisphere in the an-123

nual traffic cycle when we compare Cape Town with the urban study sites Munich and124

Oslo. Generally the traffic is weaker in the local winter months as in the local summer125

months at all investigated regions. The traffic seasonality at higher latitude is larger than126

at lower latitude e.g. in California.127

Figure 1. Annual and weekly cycle of traffic and mobility data a) Annual traffic cycle.

Deviation of the mean monthly local governmental data of the corresponding month in 2019 to

the mean of the year 2019. b) Weekly traffic cycle. Deviation of the daily data of the correspond-

ing weekday to the mean of the corresponding calender week with 2σ error bars for the time span

from 01/14/20 until 07/31/20.

Figure 1b shows the daily deviation in traffic flow relative to the weekly mean traf-128

fic flow for data from the local government, Apple, and TomTom. In all cases we observe129

a decrease in traffic flow (governmental data) and TomTom’s congestion index on the130

weekend. Regional differences can be observed during the week. While at the locations131
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Munich, Oslo, and San Francisco Bay Area the TomTom data shows a bend through-132

out the week, in Cape Town the daily weekday congestion levels do not differ from each133

other. Friday shows generally the highest request volume of Apple Maps. In Munich, Oslo,134

and Cape Town the request volume decreases on the weekend compared to the week. In135

Norway the weekend request volume is similar to that during the week while in Califor-136

nia it decreases on Sundays but is similar to the weekly mean on Saturdays.137

In particular, the low traffic volume on weekends is not as noticeable in Apple’s data.138

For the days Monday to Thursday all study regions show a higher deviation from the139

weekly mean for TomTom and governmental data than Apple. At all regions except for140

Cape Town the TomTom data is always further deviated from the weekly mean than the141

governmental data which indicates a non-linear relationship between the datasets.142

Apple data is pegged to a Apple Maps request volume on Monday January 13, 2020.143

The annual traffic cycle (Fig. 1a) and the weekly traffic cycle (Fig. 1b) reveals the im-144

portance of taking traffic seasonality into account. Even if weekly deviations are minded,145

the annual cycle still needs to be considered. Differences in the weekly cycle could also146

indicate differences in the annual cycle of Apple data compared to governmental data.147

Unfortunately we do not have historical data for the Apple mobility index as this prod-148

uct was only made public in response to the COVID-19 global pandemic.149

Ultimately, we are interested in knowing how these mobility datasets relate to changes150

in traffic and what, if any, errors would be induced by using this data as a proxy for changes151

in traffic. To assess this we compute the relative change since January 13, 2020 for each152

dataset to facilitate comparison to the Apple data. For the local governmental data and153

the TomTom data we also compute the deviation of each day to the same weekday of154

the same calender week in 2019 to investigate the impact of a chosen reference value.155

Figure 2 shows a scatterplot comparison of the mobility and congestion indices against156

the traffic flow reported by the local government. The coloring of the dots represents the157

distance to the first day of governmental COVID-19 restrictions. With increasing bright-158

ness the dots are longer before the first restrictions, while with more darkness they are159

longer after. A few prominent features stand out such as the nonlinear correlation for160

TomTom in Munich, Oslo, and San Francisco Bay Area and for Apple in Munich and161

Norway. The correlation is rather linear for Apple and TomTom in Cape Town and only162

for Apple in Oslo, San Francisco Bay Area, and California. Munich (Fig. 2a) shows a163

complicated behavior. Traffic changes in the range of 0% to -10% can lead to TomTom’s164

congestion and Apple’s mobility value increases of up to 60%. Traffic reductions are over-165

estimated by TomTom and down to -50% the relationship is scattered for Apple. Cape166

Town (Fig. 2b) shows a nearly linear relationship of traffic flow and Apple mobility changes.167

TomTom underestimates the traffic reduction in this case which is not observed in any168

other region. Oslo (Fig. 2c) does not seem to show any relationship between Apple’s data169

and governmental data. It stands out that the TomTom data is not scattered and shows170

a non-linear correlation. For San Francisco Bay Area (Fig. 2d), Apple overestimates the171

traffic flow decline with increasing traffic reduction. The congestion change shows an in-172

teresting behavior as a traffic reduction of 10% leads to congestion reduction of 60%, while173

a traffic reduction of 60% results in 80% less congestion. For the rural areas we chose174

another y-axis limit of 200% which is due to the high increase of the Apple mobility re-175

port for Norway (Fig. 2e). For California (Fig. 2f) the Apple mobility report underes-176

timates small traffic flow reductions down to -25% but overestimates the range of -25%177

to -50%.178

Figure 3 shows a time series of the relative traffic flow for the study regions. Each179

solid line is related to January 13, 2020 and for the dashed lines each day is related to180

the same weekday of the same calender week in 2019. In contrast to the data in Figure 2,181

here a seven days rolling mean is applied to the data. All datasets show an abrupt drop182

in early March 2020. Interestingly, all of the regions show a nearly synchronous decline183

even though the actual government restrictions were implemented over a 3 week period184

(supplement Table S1). Hence, San Francisco Bay Area, Munich, and Cape Town show185

decreases prior to their actual governmental restriction. The trend of traffic flow is nearly186
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Figure 2. Comparison of different measures of traffic flow. The scatter shows the daily

comparison between the governmental data to Apple’s mobility data and TomTom’s congestion

index. All data is referred to January 13, 2020. The coloring of the dots is done by the distance

to the first day of governmental COVID-19 restrictions.
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independent of the reference value for Norway and California. For Munich and Oslo the187

reference value plays a crucial role for traffic flow. For the TomTom congestion index the188

reference value is important for Munich and Oslo, while the data is nearly independent189

from it for Cape Town and San Francisco Bay Area for the time since the first govern-190

mental restrictions.191
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Figure 3. Time series trend comparison. Apple, TomTom, and governmental data.

rel.2019: each day is related to the same weekday of the same calender week in 2019.

rel.01/13/20 each day is related to the value on January 13, 2020. A 7 days rolling mean is

applied to the data.

Interestingly, the annual cycle (Fig. 1a) of Oslo and Norway is similar but the de-192

viation between traffic flow reduction related to January 13, 2020 and to 2019 differs in193

the two regions. The deviation between the two lines is much bigger for Oslo as for Nor-194

way. California in total shows a similar traffic flow reduction as San Francisco Bay Area.195

However, the reduction of Apple mobility index in California is smaller and crosses the196

traffic flow line in mid May. For San Francisco Bay Area the Apple mobility index shows197

a similar timeseries as governmental data from mid June to end of July. For the Euro-198

pean regions Munich, Oslo, and Norway Apple increases over its reference value in mid199

or end of May and rises up 50% to 190% while traffic is only nearly back to its reference200

value or still below in end of July. This behavior indicates a high seasonality for the Ap-201

ple mobility data for these regions that differs from the traffic flow seasonality.202

We observe that some of the scatter in Figure 2 is due to the weekly cycle, shown203

in Figure 1b. Although linking it with the scatter plots for weekly means in supplement204

Figure S4 and the trend timeseries in Figure 3 shows that in the overall trend the dif-205

ferences of the dataset are not just due to the reference value.206
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5 Impact on interpretation of trace gas fluxes207

All of this begs the question, “What do these different measures of traffic and mo-208

bility imply about emission changes?” We assess this by assuming the data from the lo-209

cal government to be most accurate and look at differences relative to these datasets.210

We compute the percentage emission difference of the datasets compared to the local gov-211

ernment data and use San Francisco Bay Area as a case study to introduce an exemplary212

amount of trace gas differences.213

Figure 4 shows the difference in trace gas emissions since January 13, 2020 until214

the corresponding day on the horizontal axes when TomTom’s congestion index or Ap-215

ple’s mobility data is used as a proxy for traffic changes instead of governmental traf-216

fic data. If the deviation is negative the usage of the mobility dataset results in a lower217

estimated emission number as when using the local governmental data. The calculation218

is done by Equation 1219

∆E(d, g, t) =

t∑
i=1

(di − gi)

t∑
i=1

gi

(1)

where ∆E is the difference in trace gas emissions on the vertical axes in percent; t is the220

day on the horizontal date axes; g the local governmental data; and d the datasets of Ap-221

ple or TomTom. We later use Eq. 1 with combinations of different baselines (either Jan-222

uary 13, 2020, or the corresponding weekday of the same calendar week in 2019) for both223

the local government and mobility data. In Figure 4, the data are denoted as d13,Jan,224

g13,Jan, d2019, and g2019, depending on the baselines that are used for the referencing.225

We observe that the difference between emissions estimates based on governmen-226

tal traffic data to estimates based on TomTom congestion index or Apple mobility data227

differ at each study region and depend on the timepoint of investigation (day t after the228

reference day). The datasets can be a good proxy at one location at a specific time but229

deviate at another location at the same time (e.g. San Francisco Bay Area vs. Califor-230

nia in end of March). The resulting emission differences caused by Apple’s data are in231

the range of -7% to 59% and by TomTom’s data in the range of -51% to 25%.232
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Figure 4. Timeseries of the emission difference (∆E, Equation 1) of TomTom’s

and Apple’s data compared to governmental data. The value assigned to one day is the

difference in emission calculation for the time span from January 13, 2020 to the correspond-

ing day t using Apple’s or TomTom’s data (d) instead of governmental traffic data (g) following

Equation 1.

We use Caltrans, California Department of Transportation (2020) VMT measure233

for San Francisco Bay Area as input to the California Air Resources Board’s EMFAC234
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(2014) model to calculate the vehicle trace gas emissions on January 13, 2020. We use235

the default vehicle fleet of the model for the ratio of vehicle classes. We then apply the236

deviations of the three datasets from January 13, 2020 to the previously calculated ve-237

hicle emissions on that day. For the period of 01/13/20 to 31/07/20 the total differences238

in the Bay Area when using Apple instead of VMT are for CO2: 0.43 Mt, NOx: 425 t,239

PM: 64 t which is a relative difference of -7%. Using TomTom instead of VMT results240

in an emission difference for CO2: 3.1 Mt, NOx: 3103 t, PM: 466 t (-51%). The percent-241

age error can also be observed in Figure 4 and compared to other regions.242

For many environmental models inventories of total emissions are of major inter-243

est. The Bay Area Air Quality Management District (BAAQMD) provides annual CO2244

emissions for California’s Bay Area for the year 2011 (Claire et al., 2015). The trans-245

portation sector contributes to these by 39.7% of which 88.7% is caused by road vehi-246

cles. The share of road emissions in total emission is thus 35.2%. We are interested in247

how the mobility datasets impact the total emission estimates with the assumption that248

only the transportation sector is affected during COVID-19. To get an order of magni-249

tude we assume the share of the transportation sector for the year 2011 also accounts250

for the time span from January 13, 2020 to July 31, 2020, knowing we are neglecting an-251

nual emission cycles and year to year emission changes. Using the Apple mobility data252

as a proxy for road transportation, results in an emission difference of -7% in the trans-253

portation sector, which impacts the total emission estimates by -3%. For TomTom, the254

error in the transportation sector is -51% and therefore changes the total emission es-255

timates by -18%. Hence, both mobility datasets, when used as a proxy for traffic, result256

in a noticable - or in case of TomTom even significant - overestimate of traffic and emis-257

sion reduction for the San Francisco Bay Area during the COVID-19 pandemic.258

6 Discussion and conclusions259

In this study, we compared widely used measures of mobility published by Apple260

and TomTom with high quality data from local governments to facilitate their use in COVID-261

19 impact studies. We identify two major error sources in using the TomTom conges-262

tion index or the Apple mobility data as a proxy for vehicle traffic:263

1. Referencing error. The impact of the weekly and annual traffic cycle is non-264

trivial. Use of a fixed (arbitrary) time-point reference value may yield incorrect265

conclusions (see Figs 1, and 3).266

2. Representation error. The datasets investigated here measure different quan-267

tities. Local governments typically measure traffic volume and/or vehicle miles trav-268

eled, Apple’s mobility dataset is a measure of their request volume from naviga-269

tion systems (Apple Maps), and TomTom’s congestion index measures urban con-270

gestion levels. Even when using the same baseline the deviation of the datasets271

is, again, non-trivial (see Figs 2 and 3).272

These error sources do not allow us to develop a generalizable relationship between273

mobility data and traffic flow (see Figs 2, 3, 4). They result in deviations of -7% to +59%274

and -51% to +25% for Apple and TomTom, respectively, in the vehicle trace gas emis-275

sion estimates compared to data from the local government. These percentage values de-276

pend on the region of interest and time of investigation. In the case of the San Francisco277

Bay Area, using the mobility data from Apple and TomTom results in an emissions es-278

timate for transportation that are, respectively, 0.43 Mt CO2 and 3.1 Mt CO2 lower than279

what government traffic data implies, resulting in total emission estimates that differ by280

-3% and -18%.281

Despite their widespread use, there is a lack of understanding about what exactly282

these mobility metrics are telling us about the change in trace gas emissions due to COVID-283

19. Here we quantified the potential errors that might be inferred by using these mobil-284

ity metrics as a proxy for changes in trace gas emissions. The findings presented here285
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should serve to caution others from directly using these mobility measures as a proxy286

without additional investigation or adaptation.287
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