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Key Points:5

• An end-to-end data-driven modeling approach for assimilative mapping of auro-6

ral electron energy flux using SSUSI LBH emissions is developed.7

• A neural network model to predict electron flux from LBH emissions is learned8

using 1 week of DMSP F16, F17, and F18 SSUSI and SSJ data.9

• The study serves as a blueprint for a comprehensive data-driven modeling of au-10

roral energy flux FUV imaging from LEO platforms.11
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Abstract12

Far ultraviolet (FUV) imaging of the aurora from space provides great insight into dy-13

namic coupling of the atmosphere, ionosphere and magnetosphere on global scales. To14

gain quantitative understanding of these coupling processes, the global distribution of15

auroral energy flux is required, but the inversion of FUV emission to derive precipitat-16

ing auroral particles’ energy flux is not straightforward. Furthermore, the spatial cov-17

erage of FUV imaging from Low Earth Orbit (LEO) altitudes is often insufficient to achieve18

global mapping of this important parameter. This study seeks to fill these gaps left by19

the current geospace observing system using a combination of data assimilation and ma-20

chine learning techniques. Specifically, this paper presents a new data-driven modeling21

approach to create instantaneous, global assimilative mappings of auroral electron to-22

tal energy flux from Lyman-Birge-Hopfield (LBH) emission data from the Defense Me-23

teorological System Program (DMSP) Special Sensor Ultraviolet Spectrographic Imager24

(SSUSI). We take a two-step approach; the creation of assimilative maps of LBH emis-25

sion using optimal interpolation, followed by the conversion to energy flux using a neu-26

ral network model trained with conjunction observations of in-situ auroral particles and27

LBH emission from the DMSP SSJ and SUSSI instruments. The paper demonstrates the28

feasibility of this approach with a model prototype built with DMSP data from Febru-29

ary 17-23 2014. This study serves as a blueprint for a future comprehensive data-driven30

modeling of auroral energy flux that is complementary to traditional inversion techniques31

to take advantage of FUV imaging from LEO platforms for global assimilative mapping32

of auroral energy flux.33

Plain Language Summary34

When energetic protons and electrons interact with the nitrogen gas molecules of35

the Earth’s atmosphere at high-latitudes, light emissions including ultraviolet emissions36

in the Lyman-Birge-Hopfield (LBH) band are created. Our goal is to make global maps37

of the energy flux of these particles using images of these LBH emissions observed by the38

DMSP Low Earth Orbiting (LEO) satellites. This is a challenging task because ultra-39

violet imagers onboard LEO satellites can only provide partial coverage of the global high-40

latitude region and emissions are indirect measurements of the energy flux. To address41

these problems, we first determine a small set of global patterns from lots of DMSP data42

that efficiently explain how these LBH emissions vary over time. By using these global43

patterns, we then make global maps of LBH emissions for a particular time from instan-44

taneous LBH emission observations. We finally relate global LBH emission maps to the45

energy flux using a neural network model trained with data from another DMSP instru-46

ment that measures the energy flux of precipitating particles as well as LBH emission47

data. Our study serves as a blueprint for a future comprehensive data-driven modeling48

of auroral energy flux from ultraviolet imagers onboard LEO satellites.49

1 Introduction50

As energetic electrons, protons, and photons are deposited into the high-latitude51

upper atmosphere, their deposited energy begins cascades of energy and interactions that52

excite and ionize atmospheric oxygen and nitrogen species. These molecular and atomic53

ionization and dissociation processes result in emissions in the visible, ultraviolet, and54

extreme-ultraviolet spectra, called the aurora. Being able to understand the Earth’s au-55

rora provides great insight into physical mechanisms behind the coupling among the mag-56

netosphere, ionosphere, and thermosphere (MIT), and the interactions of this coupled57

MIT system with the solar wind. Simultaneous global observations of the aurora over58

the high-latitude region achieved in the past with space-based instruments have proved59

essential to these efforts. Examples of these instruments include far ultraviolet (FUV)60

imagers on board spacecrafts with highly elliptical near-polar orbits such as the NASA61
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IMAGE and POLAR satellites (Burch et al., 2001; Germany et al., 1998). However, since62

the deactivation of POLAR in 2008 and loss of contact with IMAGE in 2005, our global63

observing capabilities of aurora have since been lost. As a result, our space-based cov-64

erage of the polar region is limited to currently active imagers operating from satellites65

in low Earth orbit (LEO). Two of these FUV imagers are the GUVI instrument on the66

TIMED spacecraft (Christensen et al., 2003) and the SSUSI instruments on the DMSP67

satellite constellation (Paxton et al., 2002). Due to the relatively low altitude of the satel-68

lites and improved data link capabilities, these currently operating imagers produce sig-69

nificantly higher spatial resolution than the past imagers but can only provide a partial70

disk coverage. SSUSI’s deployment on multiple DMSP spacecraft allows for greater fre-71

quency of observations across multiple tracks in the polar region. As a result, SSUSI’s72

current catalogue of more than a decade of FUV emission data can play a role in both73

quantitatively and quantitatively describing auroral processes. Scientific pursuits to bet-74

ter understand global auroral dynamics, substorm surges, hemispheric asymmetry and75

dawn-dusk asymmetry of the aurora culminate in ongoing desires to improve usage of76

currently available observations of aurora, which is a driving motivation of this study.77

Understanding the inter-hemispheric symmetry and asymmetry of aurora, for in-78

stance, requires simultaneous multi-scale knowledge of aurora for both hemispheres. While79

the assumption of hemispheric symmetry can allow for greater observational coverage80

over the high-latitude region, recent studies on dayside auroral energy flux using TIMED-81

GUVI data have shown asymmetries of the dayside aurora morphology due to differences82

in solar insulation (Liou & Mitchell, 2020a, 2020b). It is also known that impact of the83

interplanetary magnetic field (IMF) orientation, especially BY component, and dipole84

tilt angle on MIT coupling often results in hemispheric asymmetry of aurora, for exam-85

ple, using ultraviolet images taken from IMAGE and POLAR spacecraft in highly ellip-86

tical orbits (Fillingim et al., 2005; Østgaard et al., 2005). Other studies that have taken87

advantage of the wider spatial coverage provided by space-based ultraviolet imager data88

include investigations of the dynamical evolution of dayside-nightside and dawn-dusk asym-89

metries association with auroral substorms. For example, the expansion phase of auro-90

ral substorms is characterized by increased intensity of the equatorward boundary of the91

auroral oval followed by a rapid breakup and poleward motion of auroral arcs on the night-92

side (Akasofu, 1964). Ultraviolet imager data can provide insight into auroral substorm93

surges in pre-midnight to sub-auroral latitude emissions related the strong thermal emis-94

sion velocity enhancement as shown in Nishimura et al. (2020). Imager data can also help95

us study transient effects such as interplanetary shocks and their impact on auroral mor-96

phology. Features associated with the dayside shock aurora are particularly difficult to97

observe since observations must be made near local noon during the event time inter-98

val of approximately 15 minutes from shock arrival (Zhou et al., 2009). To study these99

phenomena, Liou and Mitchell (2020a) used global space-based POLAR ultraviolet im-100

age data, while Zhou et al. (2009) used ground-based all-sky imager (ASI) data. To bet-101

ter understand the energy spectrum of particle precipitation associated with shock au-102

roras, the use of in-situ measurements from the FAST and DMSP satellites have shown103

to be critical (Zhou et al., 2003).104

Despite the benefits of aurora imaging, in-situ observations of precipitating par-105

ticles from instruments such as the Special Sensor J (SSJ) instrument on the DMSP satel-106

lite constellation (Redmon et al., 2017), MPA instrument on the LANL satellites (Sicard-107

Piet et al., 2008), and MEPED on NOAA POES (Asikainen & Mursula, 2013) are nec-108

essary to understand the magnetospheric processes responsible for aurora and compute109

auroral ionization profiles resulting from incident energetic particles for modeling ther-110

mosphere and ionosphere responses to aurora. In fact, currently existing models of au-111

roral energy flux are primarily reliant on auroral flux measurements by in-situ measure-112

ments (Hardy et al., 1989; Spiro et al., 1982; Newell et al., 2009, 2014). Used by both113

NOAA and the Air Force, the Ovation Prime model (Newell et al., 2009, 2014) has been114

the de facto standard for forecasting of the diffuse, monoenergetic, broadband, and pro-115

–3–



manuscript submitted to JGR: Space Physics

ton auroras. While the model is built from observations from the SSJ version 4 (SSJ/4)116

and version 5 (SSJ/5) instruments on board DMSP satellites, the Ovation Prime model117

is driven by an empirical function proportional to the dayside magnetic merging rate that118

can be computed from solar wind data (Newell et al., 2009). Its newer version extends119

spatial coverage with the inclusion of FUV data from the GUVI instrument by invert-120

ing FUV observations using physics-based flux transport models (Newell et al., 2014).121

Specifically, FUV emissions in the Lyman-Birge-Hopfield (LBH) band are of primary in-122

terest for determining energy flux parameters, such as the mean energy and total energy123

flux. These emissions occur in the 140 to 180 nanometer range after excitation of molec-124

ular nitrogen (N2). Examples of physics-based models used include Global Airglow (GLOW)125

model (Solomon, 2017), Boltzmann 3-Constituent (B3C) (Strickland et al., 1993), and126

Atmospheric Ultraviolet Radiance Integrated Code (AURIC) (Strickland et al., 1999).127

The B3C and AURIC models are used to estimate the auroral energy flux from GUVI128

data in the Ovation Prime model (Newell et al., 2014), and the B3C model is used to129

produce the SSUSI Auroral Environmental Data Records (EDR) products from SSUSI130

data (Johns Hopkins University Applied Physics Laboratory SSUSI Team, 2013). Rig-131

orous inverse modeling involving the GLOW, B3C, and AURIC models is complex and132

computationally costly, so pre-computed look-up tables are used in the retrieval process.133

For example, with the help of lookup tables generated from the B3C electron and ion134

transport model, the operational algorithm used for SSUSI Auroral EDR data products135

relates the ratio of LBHL (165–180 nm) and LBHS (140–150 nm) emissions to the mean136

energy of auroral energy flux and LBHL emission intensity to the total energy. In con-137

trast to the physics-based inversion approach, empirical approaches can be advantageous138

because of lower initial computational costs and elimination of representativeness errors139

introduced by inadequate physical assumptions about the ionosphere and thermosphere140

system. Empirical approaches have often relied on a statistical linear relationship esti-141

mated from coincident data between the SSJ and SSUSI instruments in the past (Sotirelis142

et al., 2013). (The empirical model of Sotirelis et al. (2013) is referred to as S13 later143

in the paper). As discussed in McGranaghan et al. (2020), machine learning techniques144

to represent these types of complex nonlinear processes are expected to yield a consid-145

erable improvement in empirical approaches.146

While the Ovation Prime model provides statistical maps for four different types147

of aurora, it is not designed to ingest instantaneous observations like data assimilative148

procedures such as Assimilative Mapping of Ionospheric Electrodynamics (AMIE) (Richmond149

& Kamide, 1988) and its recent extension Assimilative Mapping of Geospace Observa-150

tions (AMGeO) (Matsuo, 2020). Lu (2017) provides an overview of applications of AMIE151

procedure for global predictions of ionospheric conductance using SSJ in-situ particle and152

inferred auroral mean energy and total flux parameters from the POLAR imager data.153

The use of the Robinson et al. (1987) empirical relationship between auroral flux param-154

eters to conductance is adopted in both AMIE and AMGeO procedures. Assimilative155

mappings of Hall and Pedersen conductance created using pseudo conductance obser-156

vations from the SSJ instruments using GLOW by McGranaghan et al. (2015, 2016) over-157

come the limiting assumption of Maxwellian auroral particle distribution. However, none158

of these assimilative mappings are equipped to use FUV imager data directly. To expand159

upon the previous assimilative mapping approaches, this work takes advantage of recent160

developments in machine learning to incorporate a capability to predict auroral energy161

flux from LBH emission so that FUV imager data can be directly ingested into global162

assimilative mapping procedures.163

With recognition of the limitations of current space-based in-situ and remote sens-164

ing observing systems for auroral energy flux, we present a blueprint for an end-to-end,165

data-driven modeling approach that enables assimilative mapping of auroral energy flux166

from space-based FUV images. Given important roles played by global space-based FUV167

images and global empirical models of auroral energy flux in addressing outstanding sci-168

ence questions in MIT coupling, this work is expected to contribute to extending scien-169
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tific return from space-based observations of aurora by the DMSP constellation. We demon-170

strate the feasibility of this new approach with a prototype developed using the DMSP171

F16, F17, and F18 SSUSI and SSJ data for the period of February 17th through the 23rd172

of 2014. The paper is structured as follows: Section 2 presents the preprocessing of the173

SSJ and SSUSI products used, Section 3 details the methods used for this prototype ap-174

proach, Section 4 presents the results from these methods, Section 5 describes use case175

of this prototype method, and section 6 discusses the limitations of the modeling approach.176

2 Data Selection and Preprocessing177

In this section, we begin with a brief overview of geophysical conditions of the time178

frame selected for prototyping and demonstration of the approach (Section 2.1). We then179

describe several preprocessing steps required for in-situ observations of auroral particle180

precipitation from the SSJ instrument (Section 2.2) and remote-sensing observations of181

far ultraviolet emissions from the SSUSI instrument (Section 2.3) as well as analysis of182

spatial-temporal conjunctions between these two types observations (Section 2.4).183

2.1 Geophysical Conditions for February 17-23 2014184

Figure 1 presents the time series of the Auoral Electrojet (AE), Disturbance Storm185

Time (DST), and NASA OMNIWeb SYM-H indices as well as the Interplanetary Mag-186

netic Field (IMF) components By and Bz for this week-long period of February 17th to187

February 23rd, 2014. This period was selected for its wide range of geophysical condi-188

tions. A series of Earth-directed coronal mass ejections launched starting on February189

16th, creating three interplanetary shocks which resulted in three geomagnetic storms190

suggested in DST and SYM-H indices (Ghamry et al., 2016; Durgonics et al., 2017). The191

three storms are accompanied bu strong auroral electrojet as indicated by AE index and192

auroral emissions as seen in SSUSI LBH emission data. This time period is also one of193

the events selected by the Coupling, Energetics and Dynamics of Atmospheric Regions194

Grand Challenge multi-scale ionosphere-thermosphere system dynamics.195

2.2 SSJ196

The study uses in-situ observations of particle precipitation from the SSJ/5 instru-197

ment on board the DMSP F16, F17, and F18 satellites in magnetic coordinates avail-198

able from the NASA CDAWeb. These instruments are single triquadraspheric electro-199

static analyzers that achieve a total field of view of 4 degrees by 90 degrees (Hardy et200

al., 2008). The SSJ/5 instrument observes electron and ion flux from particle collision201

counts across the instrument’s 20 logarithmically distributed energy channels (energy202

range: 30 eV to 30 keV. These observations occur at a temporal resolution of one per203

second cadence which corresponds to a spatial resolution of approximately 0.1 degrees.204

These 20-channel energy flux measurements are then integrated to yield electron total205

energy flux and ion total energy flux values following the processing detailed in (Redmon206

et al., 2017). Following the notation of Hardy et al. (2008), these electron and ion to-207

tal energy flux observations are denoted as JE and JI , respectively. As our focus is to208

build a global mapping of electron total energy flux in the auroral region, we have used209

observations poleward of |50◦| degrees magnetic latitude. These electron and ion total210

energy flux values (JE and JI) are used to determine a relationship between LBH emis-211

sions and electron total energy flux in Section 3.3.212

2.3 SSUSI213

The SSUSI instrument records FUV radiance images as cross-track swaths occur-214

ring every 22 seconds, with simultaneous sampling in the along-track direction. Under215

normal operation, the SSUSI instrument records FUV emissions in terms of light inten-216

–5–



manuscript submitted to JGR: Space Physics

Figure 1. Geophysical conditions during study period of February 17th to 23rd, 2014. Top:

AE, DST, and SYMH Indices. Middle: Solar wind speed and pressure. Bottom: IMF By and Bz

Components in GSM Coordinates. Three major spikes in the AE index corresponding to three

geomagnetic storms. The triangle mark in the bottom plot denotes an example pass time which

is the center time of the Northern Hemispheric pass by DMSP F17 at February 20th 4:02 UTC.

Results at this example pass time are presented in Figures 2, 6, 8, and 12.
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Figure 2. SSUSI SDR LBHL emissions for the Northern Hemispheric pass by DMSP F17

February 20th 4:02 UTC. For all dial plots, the dynamic range is 0 to 2 kilorayleighs with darker

colors indicating smaller radiance. Left: High-resolution LBHL radiance given by SSUSI SDR

product (ILBHL,total). Center: High-resolution LBHL radiance with solar influence removal

(ILBHL). Right : Binned LBHL radiance with solar influence removal and spatial averaging

(ILBHL,binned).

sities across 5 wavelength bands or ”colors”. The two colors that relate to LBH emis-217

sions, the LBHS band spanning wavelengths of 140-150 nm and LBHL band spanning218

wavelengths of 165-180 nm, are used. Observations of LBH emissions used in the study219

are taken from the version 0116 SSUSI SDR data product from the NASA CDAweb. In220

the SDR product used, these LBH radiance measurements are adjusted to be what would221

be seen if the the same piercepoint locations were observed from directly overhead. This222

process of accommodating for observation look angle is called rectification. LBH emis-223

sion observation locations and times are taken from the auroral piercepoint measurements224

and LBH emissions are taken from the high resolution disk rectified intensity auroral mea-225

surements. The auroral piercepoint measurement locations given in terms of geographic226

latitude and longitude in the SDR product are then converted to magnetic latitude and227

longitude using Apex coordinates (Richmond, 1995) at a reference altitude of 110 kilo-228

meters. As with the SSJ observations, only observations poleward of |50◦| magnetic lat-229

itude are used.230

2.3.1 Removal of Solar Influence231

The FUV radiances contained in the SSUSI SDR data product are high-resolution232

and can be generated by both solar illumination and auroral particle precipitation. The233

total radiance values in the LBHL and LBHS band are denoted as ILBHL,total and ILBHS,total,234

respectively, while the auroral contribution are denoted as ILBHL and ILBHS , respec-235

tively. See an example of the total LBHL emission ILBHL,total from the high-resolution236

SSUSI SDR product, shown in the left plot of Figure 2 in magnetic coordinates, for a237

Northern Hemisphere high-latitude pass by DMSP F17 during the UTC 3:49 to 5:31 on238

February 17th. This subsection describes a preprocessing step applied to ILBHL,total and239

ILBHS,total to isolate LBH emissions ILBHL and ILBHS due to auroral particle precip-240

itation. Note that this SSUSI data preprocessing is done at high resolution, and ILBHL241

and ILBHS are the same resolution as the SSUSI SDR data products.242

To isolate the auroral contribution from the solar contribution in the SSUSI LBH243

emission data, methods from (Robinson et al., 2018) are used. By linearly fitting the to-244

tal LBH radiances to the cosine of the solar zenith angle of the observation locations,245
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an approximate model can be made for the solar influence as follows.246

ILBHL = ILBHL,Total − ILBHL,Solar (1)

ILBHL,Solar = AL cos(Ψ) + bL

where Ψ is the solar zenith angle and ILBHL,Solar is the solar contribution to the total247

LBHL radiance measured by SSUSI, ILBHL,total. AL and bL are constants determined248

through least squares linear fitting on a set of SSUSI LBHL emission data. The solar con-249

tribution to the LBHL data is then subtracted from the total LBHL radiance ILBHL,Total250

to yield the auroral LBHL radiance ILBHL. For each hemispheric pass, the coefficients251

AL and bL are refitted to determine the solar influence on that particular pass. See the252

middle plot of Figure 2 for an example of the ILBHL calculated from ILBHL,Total for a253

DMSP F17 pass during the UTC 3:49 to 5:31 on February 17th. This process is repeated254

for the total LBHS radiance to determine the auroral LBHS emission ILBHS . For the255

remainder of this paper, these preprocessed data ILBHL and ILBHS are referred to as256

LBHL and LBHS emission data. ILBHL and ILBHS data are then used in neural net-257

work analysis described in Section 3.3.258

2.3.2 Spatial Binning and Averaging259

Spatial binning and averaging preprocessing facilitates assimilative mapping and260

principal component analysis of LBH emission data ILBHL and ILBHS , using the polar-261

cap spherical harmonics basis functions developed for the AMIE (Richmond & Kamide,262

1988) and used in the AMGeO (Matsuo, 2020), as described in Sections 3.2 and 3.1. This263

preprocesing also makes overall computational cost manageable. Note that fine-scale fea-264

tures visible in the high-resolution SDR data product, that are averaged out by this spa-265

tial binning process, cannot be captured with the adopted basis functions at the spher-266

ical harmonics degree and order of about 72 and 12, corresponding to the resolution of267

2.5 degrees in latitude and 15 degrees in longitude.268

ILBHL and ILBHS obtained from preprocessing described in Section 2.3.1 are here269

spatially binned using using equal area binning, with a constant bin width of 2 degrees270

in latitude, but variable width in longitude to approximate equal surface area for each271

bin. For each spatial bin of ILBHL data, a mean value is used as the representative ra-272

diance value for that spatial bin ILBHL,binned and a variance value with respect to the273

mean is computed. This was process is repeated for ILBHS to yield ILBHS,binned. The274

effect of spatial binning and averaging can be seen in the middle and right plots of Fig-275

ure 2 where the number of LBHL emission data points are reduced from 14085 to 456.276

These spatially binned LBH data, ILBHL,binned and ILBHS,binned, are then used in as-277

similative mapping and principal component analysis described in Sections 3.1 and 3.2.278

2.4 SSUSI and SSJ Conjunctions279

In order to establish a quantitative relationship between electron total energy flux280

and LBH emissions using neural network analysis described in Section 3.3, a training data281

set is required. SSUSI LBHL and LBHS emission ILBHL and ILBHS data and SSJ elec-282

tron and ion energy flux JE and JI data need to be paired as input and supervisory (out-283

put) data. Due to the spatial-temporal sampling mismatch between the SSUSI LBH im-284

ager and SSJ particle precipitation instrument, several steps are required to determine285

the SSUSI-SSJ conjunction.286

Since the resolution of LBH emission observations or ”pixels” in the SSUSI SDR287

data product is considerably higher than spatial sampling of the SSJ particle precipi-288

tation observations, the first step in determining SSUSI-SSJ conjunctions is finding the289

nearest SSUSI ”pixels” to each SSJ observation point and applying spatial smoothing290

to obtain SSUSI LBH conjunction values. This spatial smoothing is inspired by prac-291

tices in computer vision, and contributes to an enhancement of the image structures through292
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the effective signal-to-noise improvement. With k as a positive integer, the ball-tree data293

structure (Omohundro, 1989) implemented in Sklearn’s nearestneighbors functions, is294

used to computationally efficiently determine the nearest k SSUSI ILBHL ”pixels” to a295

given SSJ observation point. A representative value of ILBHL in conjunction with the296

SSJ observation is then computed as the distance weighted average of these SSUSI near-297

est neighbors. This conjunction value denoted as ILBHL,smoothed is computed as298

ILBHL,smoothed =

k∑
i=1

wiILBHL,i (2)299

where SSUSI LBH emission at a given ”pixel” is denoted by ILBHL,i, the correspond-300

ing weights of each pixel’s contribution, wi, is set to be inversely proportional to the great301

circle (Haversine) distance between the SSJ observation point and SSUSI pixel locations.302

These weight terms are then scaled such that their sum equals 1. For each of the SSJ303

observations, the nearest 10 pixels (k = 10) contributed to the SSUSI conjunction value,304

ILBHL,smoothed.305

This process is repeated to retrieve LBHS conjunction data (ILBHS,smoothed). Among306

these neighboring 10 ILBHL,i and ILBHS,i pixels, the largest distance from the SSJ ob-307

servation is always less than 0.01 degrees. Since the SSUSI instrument records its im-308

ages one cross-track swath at a time, this implies there is a slight temporal difference be-309

tween the 10 pixels across track. However, the effect of this slight temporal lag is neg-310

ligible compared to the 25 km spatial binning adopted in the production the SSUSI SDR311

product data. Overall, this distance weighted averaging is a robust methodology for pro-312

viding spatial conjunction data between SSUSI and SSJ observations.313

Strictly speaking, SSUSI points directly downward of the DMSP spacecraft once314

per sweep while in-situ SSJ sampling occurring every second, which may introduce up315

to about 20 second spatiotemporal mismatch between any pairs of SSUSI and SSJ ob-316

servations. To account for such discrepancy, smoothing is also applied to SSJ electron317

and ion energy flux JE and JI data to yield JE,smoothed and JI,smoothed. Smoothing of318

the SSJ electron and ion total energy flux values are accomplished by taking the run-319

ning mean of 10 consecutive observation points for each hemispheric DMSP pass using320

the uniform filter1d function implemented in SciPy. Smoothing also helps reduce the im-321

pact of single particle events that result from particles with energies greatly exceeding322

the SSJ instrument’s maximum detectable energy of 30 keV . The interaction of this highly323

energized particle with the sensor materials results in strong particle flux across all de-324

tector channels. The use of smoothed SSJ electron and ion energy flux JE,smoothed and325

JI,smoothed in neural network analysis described in Section 3.3 thus allows supervisory326

learning from higher signal-to-noise data sets.327

3 Data-Driven Auroral Modeling Approach328

To develop a new assimilative mapping procedure of global auroral electron energy329

flux for SSUSI LBH emission data, three data-driven approaches need to be combined.330

As shown in the flowchart displayed in Figure 3, this procedure is designed to take SSUSI331

LBH emission data as sole input and transform into global assimilative maps of auro-332

ral electron energy flux through a combination of the following approaches: [1] Empir-333

ical Orthogonal Function (EOF) analysis described in Section 3.1, [2] assimilative map-334

ping analysis using Optimal Interpolation (OI) described in Section 3.2, and [3] neural335

network modeling to predict auroral electron energy flux from LBH emission as described336

in Section 3.3. Specifically, ILBHL,binned and ILBHS,binned from one hemispheric high-337

latitude pass is given as input to [2] the OI or Kalman filter measurement update esti-338

mator to generate assimilative maps of global LBHL and LBHS emission. The pre-computed339

results of ILBHL,binned and ILBHS,binned from [1] EOF analysis are used in [2] the OI340

as the background model error covariance. These assimilative maps of LBHL and LBHS341
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Figure 3. Flowchart describing how SSUSI LBH emission data are transformed to global as-

similative maps of auroral electron energy flux by a combination of three data-driven modeling

approaches. [2] The OI, which incorporates [1] EOF analysis results, generates assimilative maps

of global LBH emission from SSUSI LBH data. Using [3] the pre-trained neural network pre-

dictive model of auoral electron energy flux, global maps of LBH emission are transformed into

global maps of auroral electron energy flux.

emissions are then input to [3] the pre-trained neural network predictive model of au-342

roral electron energy flux from LBH emission. As described in Section 3.3, SSUSI-SSJ343

conjunction data (ILBHL,smoothed, ILBHS,smoothed, JE,smoothed, and JI,smoothed) are used344

in training of this neural network model.345

3.1 Empirical Orthogonal Function (EOF) analysis of LBH Emission346

EOF analysis facilitates modeling the background model error covariance required347

in the OI; a vital step toward the development of assimilative maps of LBH emission.348

EOFs are a set of empirically-determined orthogonal functions that represent dominant349

eigenmodes of variability in LBH emission changes. Due to the spatially sparse and tem-350

porally irregular LBHL and LBHS emission data, we cannot use a conventional eigen-351

value decomposition approach to EOF analysis or principal component analysis that re-352

lies on factorization of a sample covariance obtained from complete data sets. Instead,353

a sequential nonlinear regression analysis is used to determine EOFs from incomplete354

SSUSI data sets following the methods of Matsuo et al. (2002).355

A key part of this alternate EOF approach is to reduce the effect of incomplete data356

by representing the EOFs using the polar-cap spherical harmonics basis functions de-357

veloped for the AMIE (Richmond & Kamide, 1988) and used in the AMGeO (Matsuo,358

2020). In the rest of the paper, we represent the basis functions as X(r), where r rep-359

resents the spatial position in magnetic latitude and magnetic local time. EOFs are then360

expressed as a sum of these basis functions, Xβ, where columns of β are vectors of polar-361

cap spherical harmonic coefficients for the vth EOF β(v). If y′ is the residual SSUSI LBH362

binned observations ILBHL,binned and ILBHS,binned after removal of the mean at the lo-363

cation r and median time t of a given satellite high-latitude overpass, then y′ is decom-364

poses as365

y′(r, t) = α(1)(t)X(r)β(1) + ...+ α(v)(t)X(r)β(v) + e′(r, t) (3)366

where α represents the time-dependent scaling of the vth EOF, and e′ represents the resid-367

ual observations after removing the mean and scaled EOF contributions. Sets of these368

α and β coefficients are determined as in Matsuo et al. (2002) wherein the QR method369

(or Gram-Schmidt method) is used to orthogonalize the vectors of harmonic coefficients370

β(v). Once β(v−1) is estimated, subsequent orthogonal directions β(v) are estimated us-371

ing residual data. This process is then repeated to estimate two sets of eight EOFs from372

ILBHL,binned and ILBHS,binned data. All preprocessible SSUSI data from DMSP F16,373

F17, and F18 across both hemispheres during the week period was used.374

To prevent nonphysical features arising from regression analysis of spatially sparse375

data using the polar-cap spherical harmonics, harmonic coefficients β(v) are regularized376

using the L2 norm (Tikhonov regularization) via Ridge regression as implemented in Scikit-377

Learn (Rifkin & Lippert, 2007). Here the objective function minimized during the se-378
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quential nonlinear regression analysis has an additional penalty term as shown below,379

L(β) =

n∑
i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j (4)380

where λ determines the strength of this penalty term, p is the total number of EOFs,381

and n is the number of observations. The value of λ minimally affects the spatial struc-382

ture of EOFs, and the unit λ value is used in this work.383

3.2 Assimilative Mapping Analysis of LBH Emission Using Optimal In-384

terpolation (OI)385

In this study, the OI technique employed in the AMGeO software package (AMGeO386

Collaboration, 2019) is used. The same approach is used in (McGranaghan et al., 2016;387

Shi et al., 2020; Matsuo et al., 2005; Cousins et al., 2013; Matsuo et al., 2015; Cousins388

et al., 2015), as summarized in Matsuo (2020). The OI technique combines a prior back-389

ground model and observations using uncertainty information given as the background390

model error and observation error covariances to produce a posterior mean of assimila-391

tive maps according to Bayes’ rule. The OI analysis is conducted separately for the SSUSI392

LBHL and LBHS emissions, at the median time of each satellite hemispheric high-latitude393

overpass, using SSUSI LBH binned observations ILBHL,binned and ILBHS,binned from that394

overpass.395

The OI is essentially a non-recursive application of the Kalman filter measurement396

update. Suppose y denotes a vector of SSUSI LBHL binned observations ILBHL,binned397

(or LBHS binned observations ILBHS,binned) at a given OI analysis time, xb and xa are398

vectors of the prior and posterior mean of LBHL emission on the AMGeO grid, defined399

by 24 latitude points and 37 local time points for a total of 888 grid points, and yb is400

the prior prediction of SSUSI LBHL binned observations, the OI analysis xa is given us-401

ing the Kalman measurement update equation as402

xa = xb + K(y − yb) (5)

where K is a Kalman gain matrix which is a function of the background model error co-403

variance Cb and the observation error covariance Cr as given below404

K =
ρx,y ◦CbHT

ρy,y ◦HCbHT + Cr
(6)

where H denotes an interpolation operator that converts the LBHL emission on obser-405

vation locations to the AMGeO grid, ρx,y and ρy,y are the localization correlation ma-406

trices specified using kernels developed in (Gaspari & Cohn, 1999). For this optimal in-407

terpolation, the cut off localization distance of 18 degrees is used following a default set-408

ting adopted in the AMGeO software. Note that H is implemented using polar-cap spher-409

ical harmonics basis functions X evaluated at observation locations as explained in (Matsuo,410

2020).411

For the prior (background model) mean xb, we chose to use the mean of LBH binned412

observations ILBHL,binned and ILBHS,binned computed for each satellite overpass as de-413

scribed in Section 2.3.2. Following the approach adopted in (Matsuo et al., 2015), the414

prior (background model) error covariance Cb is expressed as a low rank covariance us-415

ing a set of leading eigenvectors approximated by EOFs as416

Cb = Γ < α,αT > ΓT (7)417

where Γ is a matrix with 8 columns filled leading EOFs estimated from Section 3.1 and418

α is a vector of the time-dependent scaling coefficients of EOFs. The EOF coefficient419
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covariance < α,αT > is approximated as a diagonal matrix using a sample variance420

computed from a time-series of α̂(t) estimated from the EOF analysis described in Sec-421

tion 3.1. Note Γ = Xgβ̂ where Xg is the polar cap spherical harmonics basis functions422

X(r = rg) evaluated on the AMGeO grid and β̂ is a vector of harmonics coefficients423

estimated in Section 3.1.424

The observation error covariance Cr is represented by a diagonal matrix with the425

assumption that errors of SSUSI LBHL binned observations ILBHL,binned (or LBHS binned426

observations ILBHS,binned) are uncorrelated. Although uncertainties are provided with427

the SSUSI SDR data product for both LBHL and LBHS emissions, it is not clear how428

they can be propagated through the prepossessing steps described in Sections 2.3.1 and429

2.3.2. Instead observational error covariances Cr for ILBHL,binned and ILBHS,binned are430

specified using the variance of the observations in each spatial bin as described in Sec-431

tion 2.3.2.432

3.3 Neural Network Predictive Modeling of Auroral Energy Flux from433

LBH Emission434

We leverage the flexibility of neutral network modeling to learn nonlinear complex435

relationships between electron total energy flux using LBH emissions from SSUSI-SSJ436

conjunction data described in Section 2.4. After applying feature selection and engineer-437

ing steps to ILBHL,smoothed, ILBHS,smoothed, JE,smoothed, and JI,smoothed as described438

in Section 3.3.1, a simple feedforward neural network is used for machine learning of a439

auroral energy flux predictive model described in Section 3.3.2.440

3.3.1 Feature Selection and Engineering441

The neural network model is learned from three input feature data sets consisting442

of ILBHL,smooth, ILBHS,smooth, and ion energy flux activity mask derived from JI,smoothed,443

and the supervisory (output) data set of JE,smoothed. Since LBH radiances produced by444

electron and ion precipitation are additive (Knight & Strickland, 2013), the use of the445

third input feature of ion energy flux activity mask helps account for the ion contribu-446

tions to LBH emission. For example, Sotirelis et al. (2013) excluded SSUSI-SSJ conjunc-447

tion data in fitting of a linear model when the ratio between electron and ion flux ex-448

ceeded a certain threshold. Following a similar vein, this third, binary input based on449

the preprocessed in-situ SSJ measurements of ion energy flux JI,smoothed. This binary450

feature input, MI , takes on a value of one whenever the ion energy flux is sufficiently high451

and otherwise zero as described below.452

MI =

{
1, if JI,smoothed > 0.1 ergs

cm2·s·sr .

0, otherwise.
(8)

To facilitate neural network training, ILBHL,smooth, ILBHS,smooth, and JE,smoothed453

are further scaled and normalized. Scaling and normalizing is often done to speed up the454

gradient descent algorithm employed when estimating weights. Since the distribution of455

ILBHL,smooth, ILBHS,smooth, and JE,smoothed data suggests the presence of fairly high456

positive skewness, standard normalization techniques, which involve removal of the mean457

and scaling to unit variance, are strongly affected by outlier values. Instead, these val-458

ues are normalized with the removal of the median value and scaled using the interquar-459

tile range.460

One week’s worth of SSUSI-SSJ conjuction data result in 698000 conjunction points461

from 580 hemispheric high-latitude satellite passes. Reflecting impact of geophysical con-462

ditions on data sets, the training and test sets are separated by their respective hemi-463

spheric passes instead of the more traditional point-by-point approach. In other words,464

SSUSI-SSJ conjuction data points from one particular hemispheric satellite pass are never465
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separated into both the training and test sets. These hemispheric passes are randomly466

split into train and test sets with 522 passes used in the training set and 58 used in the467

testing set.468

3.3.2 Neural Network Model Design and Training469

Considering there are only three input features with one output, we have opted for470

a shallower, wider neural network model design with three layers consisting of an input471

layer, one hidden layer, and output layer. The input layer takes in scaled ILBHL,smooth472

and ILBHS,smooth as well as MI as input, and has eight output neurons connected to the473

second, hidden layer. The second, hidden layer then outputs 8 neurons to the final layer.474

For this hidden layer, we use the leaky relu activation function which provides many of475

the same benefits as the high-performance, traditional relu activation function while also476

addressing the commonly experienced neuron death issue (Xu et al., 2015). The final layer477

then outputs the model prediction for the scaled electron total energy flux JE,smoothed.478

This neural network design lead to a total of 41 trainable parameters, and the neural net-479

work is implemented using Python Keras 2.4.0.480

The neural network model is trained using the Adam optimizer (Kingma & Ba, 2017)481

which is implemented in Keras 2.4.0 for an epoch limit of 200 epochs using the mean squared482

error (MSE) as the loss function. The Adam optimizer is chosen as the gradient descent483

algorithm due to its overall performance and robustness. Upon learning of each model,484

model parameters such as number of neurons, number of layers, number of training epochs,485

or hyper-parameters, are calibrated iteratively based on model performance evaluated486

using the test data set. To ensure optimal stopping of training, early stopping callback487

conditions are implemented. These callback conditions stipulate that model training should488

stop if the model performance measured through the MSE loss function does not improve489

after a certain number of epochs. A stopping buffer of 40 epochs is used in this work.490

After the last epoch, the model parameters associated with an epoch with the lowest loss491

function value is chosen for the final model. Figure 4 displays how the MSE loss func-492

tion varies across the epochs of the neural network training. After the first 10 epochs,493

the loss function values decrease slowly with increasing epoch with considerable variabil-494

ity. For our final neural network model, the weights associated with the lowest cost epoch495

shown by the vertical red line are selected.496

4 Data Analysis Results497

This section summarizes data analysis results from approaches described in sec-498

tions 3.1, 3.2, and 3.3. Sections 4.1 and 4.2 present the results from EOF analysis and499

assimilative mapping analysis of LBH emission data. Section 3.3 describes the predic-500

tion performance of the neural network model described in section 3.3. For this perfor-501

mance assessment, the auroral electron energy flux is compared to LBH emission on a502

satellite track pass-by-pass basis.503

4.1 Global Modes of LBH Emission Variability504

Because LBHL emission intensity is proportional to the total electron energy flux,505

this section focuses on the global modes of LBHL emission variability derived from pre-506

processed SSUSI LBHL emission data ILBHL,binned. The results from LBHS emission507

data and ILBHS,binned can be found in the supporting information. Figure 5 shows the508

mean and three dominant modes of LBHL emission variability over February 17-23 2014.509

The mean pattern reflects a typical auroral oval with a stronger post-midnight emission,510

which appears similar to the diffuse auroral patterns found in other global auroral mod-511

els such as the Ovation Prime (Newell et al., 2014). This mean pattern is also similar512

to the Hall and Pedersen conductance mean patterns associated with EOF analysis by513
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Figure 4. The MSE loss functions after each training epoch. Note the MSE value shown here

does not correspond to true physical units due to the use of scaled and normalized inputs. The

vertical red line denotes the epoch of minimum loss.

Table 1. The variance in LBHL emission explained by the Leading 8 EOFs

EOF # % variability explained % cumulative variability

EOF 1 21.8 21.8
EOF 2 5.0 26.8
EOF 3 3.0 29.8
EOF 4 1.9 31.7
EOF 5 2.0 33.7
EOF 6 1.5 35.2
EOF 7 1.4 36.6
EOF 8 1.0 37.6

McGranaghan et al. (2015) but shifted counter clockwise by a few hours. Table 1 shows514

the percentage variability explained by each mode along with the cumulative percent-515

age. Overall this set of eight EOFs explains 37.6% of the observed variance from the mean516

of LBH emission with the first three modes being responsible for 29.8%. Most leading517

modes associated with the higher variance contribution exhibit large-scale features, while518

high-order modes are typically composed of much smaller spatial scale features. To fa-519

cilitate geophysical interpretation of EOFs, correlations of the time-dependent scaling520

coefficients of the leading three EOFs α̂(t) with IMF and geomagnetic indices are shown521

in Table 2. To create a one-to-one time series that matches the irregular EOF analysis522

time interval t that is set to be the median time of each satellite high-latitude overpass,523

30-minutes running means of IMF and geomagnetic indices are computed using 5-minute524

NASA/GSFC’s OMNI data centered at EOF analysis time t. Since these EOFs do not525

necessarily correspond to independent physical processes, each EOF correlates with mul-526

tiple geophysical parameters.527
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Figure 5. Global patterns of the mean and three dominant modes for LBHL emission vari-

ability estimated from preprocessed SSUSI LBHL emission data over February 17-23 2014. The

mean pattern (top left) is shown in terms of photon flux in kilorayleigh. The EOF patterns are

unit-less and normalized.

Table 2. Pearson correlations of α̂ with IMF and geomagnetic indices

EOF AE Index AL Index By (GSM) Bz (GSM)

1 0.836 -0.824 0.407 -0.532
2 -0.197 0.181 0.211 0.173
3 -0.014 0.032 0.031 -0.219
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Figure 6. Assimilative mapping of LBHL emissions for the SSUSI pass indicated in Figure 1.

The dynamic range for all subplots is 0 to 2 kilorayleighs. Left: Prior State or sample mean of

LBHL emissions for the week long frame selected. Middle: Assimilation result of LBHL emission

after ingestion of SSUSI LBHL observations shown on the right subplot. Right: The spatially

averaged SSUSI LBHL observations fed into the AMGeO procedure taken from the Northern

Hemispheric pass by DMSP F17 February 20th 4:02 UTC.

EOF 1 accounts for 21.8% of the variability from the mean and represents a strength-528

ening and weakening of the typical auroral oval shape as captured by the mean pattern.529

The amplitude of EOF 1 is strongly correlated with the AE index with a correlation co-530

efficient of 0.84, and EOF 1 is therefore interpreted to represent changes of the overall531

auroral oval associated with geomagnetic activities. Features on the dayside are unphys-532

ical, resulting from the lack of DMSP SSUSI data coverage at the mid latitude noon sec-533

tor. Our finding on the LBHL EOF 1 is generally consistent with to findings of Hall and534

Pedersen EOF 1 reported in McGranaghan et al. (2015), with a slightly higher corre-535

lation of LBHL EOF 1 with the AE index. LBHL EOF 2 accounts for 5% of the vari-536

ability and can be visually interpreted as an equatorward expansion and poleward con-537

traction of the auroral oval that is mostly dawn-dust symmetric. Impact of the lack of538

DMSP SSUSI coverage shows up as unphysical features in the mid latitude night side.539

This LBHL EOF 2 is similar to the appearance of Hall and Pedersen EOF 2 reported540

in McGranaghan et al. (2015) with a stronger feature on the high latitude dusk area. EOF541

3 accounts for only 3% of the variability, but it can be speculatively described as a west-542

ward shifting of the auroral oval associated with substorms, introduce a characteristic543

dawn-dusy asymmetry. This LBHL EOF 3 is also similar to the appearance of Hall and544

Pedersen EOF 3 reported in McGranaghan et al. (2015) with some difference.545

The weak correlation of LBHL EOF 2 and EOF 3 with IMF and geomagnetic in-546

dices may suggest difficulties to identify these modes only from one week of DMSP SSUSI547

data. Because of the need to take 30-minutes running means of IMF and geomagnetic548

indices in these correlation studies to match with the EOF analysis interval, it is chal-549

lenging to establish a correlation during rapidly changes associated with aurora dynam-550

ics.551

4.2 Assimilative Maps of LBH Emission552

Using the OI methodology described in Section 3.2, assimilative maps of both LBHL553

and LBHS emissions are generated for all 58 hemispheric high-latitude satellite passes554

from the test data set. As explained in Section 3.3.1, these 58 passes, out of a total of555

580 hemispheric high-latitude satellite passes, are set aside from neural network train-556

ing for testing. The middle plot of Figure 6 presents an assimilative map of LBHL emis-557
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Figure 7. Assimilative mapping of LBHL emissions for the Northern Hemispheric pass by

DMSP F16 February 22nd 2:37 UTC. Same format and dynamic range as Figure 6

sion for the same satellite pass presented in Figure 2 in the preprocessing Section and558

Figure 8. The prior mean and observations ingested into the OI are shown on the left559

and right plots of Figure 6, respectively. The influence of observational noise is likely man-560

ifesting as some unphysical features in the dawn region of the assimilative map. More561

systematic calibrations of the observational error covariance and the covariance local-562

ization parameter will likely help mitigate these issues. Future work with a larger data563

set is expected to improve the quality of background model error covariance modeled with564

EOFs (see Equation 7) as well as resulting assimilative maps. Figure 7 shows another565

OI result from DMSP F16 overpass over the Northern Hemisphere on February 22nd at566

2:37 UTC, showing a more typical auroral feature with strong features at the dusk sec-567

tor. This example suggests a promising capability of the OI to reproduce both the dis-568

crete and diffuse aurora features.569

4.3 Prediction of Auroral Energy Flux from LBH Emission570

To evaluate the performance of the trained neural network model to predict out-571

of-sample electron total energy flux, we use 58 hemispheric polar passes withheld from572

training. Note that a total of 580 DMSP hemispheric high-latitude satellite passes is ran-573

domly divided into training and test sets of 522 and 58 passes as described in Section574

3.3.2. For comparison, the prediction by using the S13 linear empirical model of Sotirelis575

et al. (2013) is shown.576

Figure 8 shows the model prediction for a DMSP F17 Northern Hemispheric pass577

centered at 4:02 UTC on February 20th. This is the same pass shown in Figure 2. The578

middle plot shows the three inputs (scaled ILBHL,smooth and ILBHS,smooth as well as MI)579

into the neural network model. The top plot shows the auroral energy flux prediction580

output from the neural network model (orange) and the S13 prediction (green) along with581

the auroral electron energy flux from the test set (blue). The bottom plot shows the spec-582

trogram of the electron energy fluxes recorded by the SSJ instrument along this pass.583

For this pass, we see the neural network model and S13 predictions are similar in the sense584

that both underestimate higher values of observed electron energy flux but follow the585

overall trend over time. While the neural network model and S13 performs comparably586

for the hemispheric test pass shown in Figure 8, the hemispheric pass by DMSP 17 Febru-587

ary 19th 2014 at 2:32 UTC on February 19th shown in Figure 9 demonstrates the lim-588

itation of S13. We can see the auroral emission and precipitation signal over this pass589

have three peaks. The last precipitation peak is not well captured in LBHL emission data590

which causes the S13 prediction to fail, while the neural network model prediction closely591

matches the observed auroral electron flux signal. We see here the advantage of the neu-592
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Figure 8. Neural network model prediction of auroral electron energy flux for the same

Northern Hemisphere satellite pass shown in Figure 1 by DMSP F17 at 4:02 UTC on February

20th. Top: Neural network (NN) and S13 predictions along with observed electron total energy

flux by SSJ. Middle: Input data: scaled ILBHL,smoothed, ILBHS,smoothed, and ion flux activity

mask MI . Bottom: Electron energy spectrogram recorded by SSJ shown in log-scale.
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Figure 9. Neural network model prediction of auroral electron energy flux for the Northern

Hemisphere satellite pass by DMSP F17 at 2:32 UTC on February 19th, displayed in the same

format as Figure 8
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Figure 10. Neural network model prediction of auroral electron energy flux for the Northern

Hemisphere satellite pass by DMSP F16 at 8:24 UTC on February 19th, displayed in the same

format as Figure 8
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Table 3. Pearson correlation between prediction and test data

Median AE Index NN S13

AE > 450 0.74 0.59
AE < 450 0.62 0.40
All Conditions 0.71 0.59

Table 4. Auroral energy flux RMSE prediction error [ eV
cm2·sr·s ]

AE Index NN S13

AE > 450 5.6833e11 7.612e11
AE < 450 2.2205e11 6.28e10
All Conditions 3.1828e11 3.84e11

ral network approach to represent a nonlinear complex relationship between input and593

supervisor (output) data. Figure 10 shows the comparison for another test pass over the594

Southern Hemisphere by DMSP F16 on February 19th at 8:24 UTC. Here both the neu-595

ral network and S13 models erroneously predict a high activity region at the beginning596

of the pass that corresponds to the dusk side of this dawn-dusk DMSP F16 pass. This597

duskside high activity region most likely results from the impact of high ion flux on LBH598

emission that is not adequately portrayed by the use of ion flux activity mask.599

Across the test hemispheric high-latitude satellite passes, the neural network model600

performs best during high geomagnetic activity when stronger input signals from LBH601

emission data as indicated by the Pearson correlations between the prediction and test602

data for AE levels higher or lower that 450 nT summarized in Table 3. The median AE603

index over the time interval of each pass computed from 5-minute AE values is used. Dur-604

ing geomagnetically quiet times, it is expected the neural network to have more trou-605

ble with distinguishing meaningful signals from noises in traning data sets of ILBHL,smooth,606

ILBHS,smooth, and JE,smoothed, resulting in poorer performance for test passes with lower607

AE values. From Table 3, we see that for both high and low geomagnetic activity lev-608

els, the neural network model prediction correlates better with observed electron flux than609

the S13 prediction. This performance difference is even more pronounced for higher ac-610

tivity passes. Table 4 shows the RMSE prediction error for AE levels higher or lower that611

450 nT. Under geomagnetically active conditions, the RMSE value for the neural net-612

work prediction is worse in comparison to quiet times, even though the higher signal-613

to-noise data available during active times yields a better performance measured in terms614

of the correlations. These RMSE values is also likely influenced by significant outlier flux615

values detected by the SSJ instrument. When compared to the RMSE of the S13 pre-616

diction error, we note a better overall performance of the neural network model for ac-617

tive passes. For less active passes, the S13 model has a significantly lower RMSE than618

the neural network model prediction. This difference may be attributed to exasperat-619

ing impact of lower signal-to-noise of input signals during geomagnetic quiet times with620

the use of additional input features in training of the neural network model.621

5 Use Case: Assimilative Mapping of Auroral Energy Flux622

This section presents a use case for the assimilative mapping procedure of auro-623

ral energy flux developed using a combination of three data-driven approaches described624
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Figure 11. Left: Map of ion flux from the Ovation Prime model on February 20th, 4:02 UTC.

Right: Map of ion flux activity mask (MI) derived from the Ovation Prime ion flux.

in Section 3 for DMSP F17 Northern Hemisphere high-latitude overpass at 4.02 UTC625

on February 20th. As shown in the workflow of the procedure depicted in Figure 3, the626

procedure first yields assimilative maps of LBHL and LBHS emission which are then trans-627

formed into assimilative maps of auroral electron energy flux using the neural network628

predictive model. This neural network model requires a map of the ion flux activity mask629

in addition to assimilative maps of LBHL and LBHS emission, but the ion energy flux630

information from the SSJ instrument is not available outside of the DMSP spacecraft631

track. The ion flux activity mask is thus built using ion flux from the Ovation Prime model632

(Newell et al., 2009). The left plot of Figure 11 shows the Ovation Prime ion energy flux633

map for February 20th at 4:02 UTC, while the right plot shows a map of the ion flux ac-634

tivity mask with values of 1 where the ion total energy flux is more than 0.1 ergs
s·cm2 and635

0 elsewhere. Note that the small unphysical feature present around noon results from636

a known artifact of the 2010 Ovation Prime model (Newell et al., 2014). Figure 12 presents637

the assmilative mapping result of auroral energy flux using LBHL and LBHS emission638

data from the DMSP F17 pass over the Northern Hemisphere at 4:02 UTC on Febru-639

ary 20th. This is the same pass shown in Figure 1. This use case shows how the proposed640

end-to-end data-driven modeling approach can transform partial images of LBH emis-641

sion from the SSUSI instrument into global assimilative maps of auroral electron energy642

flux, demonstrating a new exciting capability data assimilative mapping capability ex-643

pected to expand the usage of currently available space-based FUV imagers to address644

pressing MIT science questions discussed in the introduction section.645

6 Discussion and Future Work646

In this section, we discuss the future work to required to overcome some limitations647

identified in this study. Although the data preprocessing steps to remove solar influence648

from the SSUSI SDR data product described in Section 2.3.1 has worked effectively for649

most DMSP satellite hemispheric passes, some passes still exhibit significant noise. This650

noise coupled with the relatively high dynamic range of the LBH emission creates a unique651

challenge to data-driven modeling using LBH emission data, impacting the quality of the652

EOF analysis and OI. In the future, it may be helpful to set up a quality flag to auto-653

matically exclude these passes from training. Some of issues may be overcome by increas-654

ing the amount of data to be fed into EOF non-linear regression analysis, which effec-655

tively increases the signal-to-noise ratio. In order to cover a wide range of geophysical656

conditions and improve statistical confidence of analysis results in the future, it is im-657

perative to learn global modes of LBH emission variability and a neural network predic-658
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Figure 12. Assimilative mapping of auroral electron energy flux using SSUSI LBH emission

data from the DMSP F17 pass over the Northern Hemisphere at 4:02 UTC on February 20th.

This is the same pass shown in Figure 1
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Figure 13. Total spatial coverage of LBHL observations from both Northern and Southern

Hemisphere passes.

tive model of auroral energy from a much larger data set of SSUSI and SSJ observations659

than one week used for demonstration of the data-driven modeling approach in this study.660

In this paper, LBH emission data from both hemispheres are used to create a uni-661

versal EOF set to overcome this limitation. Even with the use of data from both hemi-662

spheres, inhomogeneous sampling of LBH emission by DMSP satellites will likely present663

a challenge to EOF analysis. Figure 13 shows the total number of spatially binned LBHL664

observations available at each bin location across the week of data used. The lack of data665

coverage in both the day and nightside mid-latitude regions is evident. Although the EOF666

analysis has attempted to mitigate the data gap issues through usage of the Tikhonov667

regularization, it results in some unphysical features present in EOF patterns as shown668

in Figure 5. To further reduce the effect of the data gap in the future, additional reg-669

ularization techniques can be applied as well as the incorporation of weighted observa-670

tion errors following the methods of Cousins et al. (2013).671

In addition to improvements of neural network predictive modeling of auroral elec-672

tron energy flux from LBH emission with the use of more SSUSI-SSJ conjunction data,673

one future avenue is to automate the optimization of hyper-parameters of the neural net-674

work using techniques such as cross validation and genetic algorithms instead of analyz-675

ing the validation results and tuning the model structure with hopes of finding the op-676

timal structure manually. As mentioned briefly in Section 3.3, considerable difficulties677

arise in distinguishing the contributions from precipitating ions from precipitating elec-678

trons to LBH radiance. Although we present some success with our neural network model679

performance, this model is still limited in its capacity to predict electron total energy680

flux as a result of several geophysical factors. Previous estimates have shown that pre-681

cipitating protons may be approximately 5 times more efficient per unit of energy flux682

than precipitating electrons in their production of LBH radiance (Knight et al., 2012).683
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Different physical processes, such as excitation via direct electron impact and cascad-684

ing induced excitation, are known to contribute to LBH emissions to an uncertain ex-685

tent (Ajello et al., 2020). Such uncertainty, in tandem with the lack of in-situ ion pre-686

cipitation measurements outside the spacecraft track, poses significant challenges. A sep-687

arate model to predict auroral ion energy flux using the SSUSI LBH emission data along-688

side SSUSI H lyman-alpha band emission data, following the works of (Knight et al., 2012),689

could help to reduce the uncertainty introduced by the use of ion flux activity mask built690

using the Ovation Prime model in the assimilative mapping procedure. Lastly, the neu-691

ral network model is predicting electron flux from two FUV integrated radiance bands692

in this study, however, the SSUSI instrument is also capable of recording hyperspectral693

images, where, for each observation pixel, one can observe differential radiances across694

the full FUV spectrum. It may be interesting to explore if a predictive skill of the neu-695

ral network model can be improved from usage of the the full LBH FUV spectrum.696

7 Conclusions697

In this study, we have developed a new data-driven modeling approach that allows698

direct ingestion of satellite LBH emission imager data into global instantaneous assim-699

ilative mappings of electron total energy flux unlike in past assimilative mapping approaches700

wherein retrieved emission products are used (e.g., Lu, 2017, references therein). This701

is achieved through the combination of three techniques described in Section 3: defin-702

ing modes of variability through usage of EOFs, spatial prediction of LBH emission us-703

ing OI, and relating LBH emission to precipitating electron energy flux with neural net-704

work modeling. The dominant modes of auroral emission variability estimated using one705

week of the SSUSI data in this work are found to be generally consistent with the dom-706

inant modes of auroral Pedersen and Hall conductance which were determined from a707

large volume of the SSJ data by McGranaghan et al. (2015). A new nonlinear empiri-708

cal model to predict auroral electron energy flux from LBH emission data trained using709

the neural network outperforms the linear empirical model predicting electron total en-710

ergy flux from LBHL emission outlined in Sotirelis et al. (2013), yielding better out-of-711

sample prediction skills measured in terms of correlation and RMSE especially under higher712

geomagnetic activity conditions. This is achieved by with neutral network’s ability to713

account for nonlinear relationship between LBH emission and auroral enegy flux as well714

as the use of ion flux information as an additional input feature in training. With more715

training data and exploration of the neural network model’s design, feature engineering,716

and hyper-parameter tuning, this approach will likely to achieve an even greater predic-717

tive performance. The approach is complimentary to traditional inversion techniques that718

requires computationally expensive particle transport models and that are known to in-719

troduce errors due to inconsistent assumptions used in the retrieval and data assimila-720

tion procedures (e.g., Daley, 1993). Finally, this paper serves as a blueprint for a future721

comprehensive data-driven approach to auroral energy flux which will allow us to take722

advantage of the wider spatial coverage provided by over 12 years of SSUSI FUV emis-723

sion data and to address science questions regarding global auroral dynamics including724

but not limited to substorm surges, hemispheric asymmetry and dawn-dusk asymme-725

try of the aurora.726
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