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The instabilities produced by a linear model of the tropi-
cal atmosphere coupled to a prognostic equation for wa-
ter vapour are investigated. For parameter regimes rele-
vant to the Indo-Pacific warm pool, the long-time asymp-
totic behaviour of the unstable waves is found to be abso-
lutely unstable, so that the amplitude of disturbances will
grow in time at every point in the domain. Other limits of
the system do not produce this same behaviour at these
length and time scales. It is shown that the resultant long-
time behaviour of the instability is characterized by roughly
equal roles for temperature and moisture fluctuations in
setting the thermodynamic tendency of the waves. Under
the assumption of a zonally varying flow, it is shown ana-
lytically that localized regions of instability may be formed,
again using parameter choices relevant to the warm pool.
The dynamics and thermodynamics of these local instabil-
ities show some correspondence with the observed devel-
opment of the Madden-Julian Oscillation as it propagates
through the warm pool.
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1 | INTRODUCTION

Significant challenges remain in the theory and modelling of tropical waves in the atmosphere (Kiladis et al., 2009;
Jiang et al., 2020). It is now recognized that inclusion of a prognostic equation for atmospheric water vapour in a
linear shallow water model allows for the emergence of modes whose characteristics can resemble those of observed
low-frequency convectively-coupled equatorial waves and theMadden-Julian Oscillation (MJO) (Neelin and Yu, 1994;
Sobel et al., 2001; Adames andMaloney, 2021). Suchmodels rely onmoist convection to reduce the effective static sta-
bility felt by disturbances in the tropics to produce phase speeds much less than the dry gravity wave speed (Emanuel
et al., 1994; Kiladis et al., 2009). Additional modification of the effective stability by diabatic or advective processes
is important for producing instability at planetary scales (Adames and Kim, 2016; Inoue and Back, 2017; Ahmed et al.,
2021). Under such conditions, it is possible for thermodynamics to be controlled primarily by fluctuations of moisture.
This has led to the definition of "moisture modes" as a particular limit of the behavior of tropical waves (Ahmed et al.,
2021). In general, the tropics may support a diverse spectrum of disturbances ranging from gravity waves to moisture
modes (Roundy, 2012; Adames et al., 2019).

These theories provide a relatively simple picture of the fundamental interactions between dynamics and convec-
tion that generate low-frequency tropical waves. However, previous linear stability analysis of these waves has largely
been concerned with the normal modes of the system, and as such little attention has been focused to the spatial
instability of these wave solutions, as opposed to their temporal instability. While some studies have explored the
interaction between simple models of the MJO and a zonally asymmetric basic state (Majda and Stechmann, 2011;
Raymond and Fuchs, 2018), more theoretical work is needed on this topic. Earth’s zonal asymmetry limits the con-
vective signal of the MJO primarily to the Indo-Pacific warm pool (WP), and the characteristics of the MJO change
significantly as it propagates through the WP (Hendon and Salby, 1994). It was shown by Hendon and Salby (1994)
that MJO initiation over the Indian Ocean is associated with planetary-scale temperature and heating anomalies that
are largely in phase, leading to wave growth, while over the Central Pacific the anomalies are more in quadrature.
Furthermore, the thermodynamics of the MJO are more controlled by moisture in the Indian Ocean (Adames and
Kim, 2016), and become more gravity wave-like as the convecting region propagates into the Central Pacific (Sobel
and Kim, 2012; Mayta and Adames, 2023). Model experiments have shown that imposition of zonal asymmetries
mimicking the WP can significantly enhance MJO-like variability (Maloney et al., 2010; MacDonald and Ming, 2022).
The mechanisms for the zonal development of the MJO and its moisture mode-gravity wave transition also demand
more theoretical investigation. From the standpoint of linear models for the MJO, these considerations necessitate a
move beyond analysis of normal modes embedded within uniform basic states.

In the study of unstable flows, an important distinction must be made between waves that are convectively
unstable and those that are absolutely unstable (Briggs, 1964; Huerre and Monkewitz, 1985). As explained by Briggs
(1964), absolute instabilities will grow in amplitude at every point in space, while convective instabilities will grow
in an envelope around the peak of the disturbance, eventually decaying at every point in space after sufficient time
has passed. This concept has been well-studied in simple analogues of mid-latitude flow (Merkine, 1977; Simmons
and Hoskins, 1979; Farrell, 1982; Pierrehumbert, 1986; Lin and Pierrehumbert, 1993). Applying the theory set out by
Briggs (1964), the pioneering study ofMerkine (1977) showed that a two-level model on themidlatitude β -plane could
support absolute instability. However, the ultimate conclusion of Lin and Pierrehumbert (1993) was that the typical
midlatitude flow on Earth is not absolutely unstable in the presence of a westerly surface wind, and hence a localized
storm track cannot sustain wave energy indefinitely, and instead requires disturbances to enter from upstream. The
presence of absolute instability in a zonally varying flow is necessary for the development of localized regions of
instability (Pierrehumbert, 1984; Huerre and Monkewitz, 1990).
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Recently, these concepts have been applied to the study of African easterly waves (Diaz and Aiyyer, 2015) and
monsoonal disturbances (Rupp and Haynes, 2020). Diaz and Aiyyer (2015) showed that African easterly waves can
disperse energy upstream, and are thus able to seed the growth of further wave crests without an external forcing.
Rupp and Haynes (2020) related different regimes of monsoonal anticyclone flows to the underlying absolute or
convective nature of the instability. They further highlighted another important feature of absolutely unstable systems,
namely their insensitivity to the specifics of the imposed forcing, provided the forcing is not growing in time at a rate
faster than the absolute growth rate (Briggs, 1964).

In this study we will investigate the implications of absolute instability on equatorial waves when coupled to an
equation for atmospheric water vapour. It will be shown that in uniform basic states representing the WP that the
emergent low-frequency unstable waves are in fact absolutely unstable. In the next section, we will develop the
linear equations with which we will work, and review the concepts of absolute and convective instability. Section
3 will identify the nature of the instabilities in the system, and show that local instability is supported under certain
parameter regimes. A discussion of results and their connection to the observed characteristics of theMJO is provided
in Section 4. Finally, concluding remarks are given in Section 5.

2 | THEORETICAL BACKGROUND

2.1 | A Linear Model for the Tropical Atmosphere

The primitive equations on the equatorial β -plane linearized about a state of rest are given in pressure coordinates by
(Fulton and Schubert, 1985)

∂v
∂t

+ β yk × v + +φ = 0, (1a)

∂φ

∂p
= − RdT

p
, (1b)

+ · v + ∂ω

∂p
= 0 and, (1c)

Cp
∂T

∂t
+ ω

∂s

∂p
= Q . (1d)

The stratification is set by the vertical gradient of the basic state dry static energy, ∂s/∂p , and all other notation is
standard. In the absence of friction in the momentum equation, the system is closed but for the heating rate Q . The
vertically-integrated version of Equation (1d) is given by

Cp
∂ ⟨T ⟩
∂t

+
〈
ω
∂s

∂p

〉
= ⟨Q ⟩, (2)

where ⟨·⟩ represents a pressure integral from the surface to the tropopause. Rather than express ⟨Q ⟩ in terms of the
primitive variables, we introduce a prognostic equation for the column water vapour ⟨q ⟩ of the atmosphere and write
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the heating rate as a function of ⟨q ⟩ (Neelin and Yu, 1994). The equation for ⟨q ⟩ takes the form

∂ ⟨q ⟩
∂t

= −⟨v · +q ⟩ −
〈
ω
∂q

∂p

〉
+ E − P , (3)

where E is the evaporation from the surface and P is the precipitation from the atmosphere. The latent heat of
vapourization has been absorbed into ⟨q ⟩, E and P so that they have energy units. The system is greatly simplified by
assuming that there is nomeridional wind. While this simplificationmay seem severe (in the dry system it eliminates all
equatorial modes but for the Kelvin wave), past studies have shown that many of the essential features of eastward-
propagating intraseasonal variability can still be captured with such a model (Fuchs and Raymond, 2017; Kim and
Zhang, 2021; Wang and Sobel, 2022a). The pressure velocity ω is then assumed to have separable vertical structure
Λω (p ) of a first baroclinic mode, being zero at the surface and tropopause and attaining a maximum in the mid-
troposphere. The primitive equations can then be used to relate the vertical structures of u , φ and T to Λω . Such
systems have been developed in a number of previous works (Fuchs and Raymond, 2017; Adames et al., 2019; Ahmed
et al., 2021; Wang and Sobel, 2022a). The equations can then be written as

∂u1
∂t

+ ∂φ1

∂x
= 0 (4a)

β yu1 +
∂φ1

∂y
= 0 (4b)

−Ms

c2
∂φ1

∂t
= Ms

∂u1
∂x

+ (1 + r )
τc

⟨q ⟩ (4c)

∂ ⟨q ⟩
∂t

= −Mq
∂u1
∂x

− 1

τc
⟨q ⟩ − Aqu1, (4d)

where ( ·)1 indicates the horizontal structure of a field. Here c = 50 m s−1 is the dry gravity wave speed, Ms =

⟨−Λω∂p s ⟩ is an integrated measure of the dry stability of the atmosphere, Mq = ⟨Λω∂pq ⟩ is a measure of the inte-
grated moisture stratification, and τc is a convective relaxation time introduced by parametrising the precipitation as
P = ⟨q ⟩/τc . The parameter r is a cloud-radiative feedback parameter which relates radiative heating to precipitation,
and Aq represents moistening processes such as wind-evaporation feedback, eddy moisture fluxes and frictional con-
vergence that are associated with the zonal wind (Sobel and Maloney, 2013; Adames and Kim, 2016; Adames et al.,
2019). Essentially, we have collected all the terms on the right-hand side of Equation (3) but for the precipitation and
vertical advection by the first baroclinic mode, and assumed that these remaining terms can be linearly related to the
zonal wind.

We will now present the normal mode solutions of the form u1 ∝ e i (k x−σt ) , with wavenumber k and frequency σ .
For a separable meridional structure, Equations (4a) and (4b) may be combined to show that all the fields in the model
have the shape

P(y ) = exp(−βk y 2/(2σ ) ) . (5)
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It then follows that for real k and Re(σ ) > 0, solutions with k < 0 will not be equatorially trapped and thus do not
hold any physical relevance. Combining Equations (4a), (4c), and (4d) and eliminating φ1 and ⟨q ⟩ gives a governing
equation for the system: (

∂

∂t
+ 1

τc

)
∂2u1

∂t 2
− c2

∂3u1

∂x2∂t
− c2

M̃e

τc

∂2u1

∂x2
+ c2

Ãq

τc

∂u1
∂x

= 0, (6)

where M̃e = (1 + r ) (1 − Mq /Ms ) + r is the effective gross moist stability (GMS), and Ãq = (1 + r )Aq /Ms is a rescaled
moistening parameter with units of inverse length (Adames et al., 2019). The corresponding dispersion relation is
given by

D(k ,σ ) = τcσ
3 + i σ2 − τcc

2k 2σ − i c2k 2 (M̃e + i Ãq k
−1 ) = 0. (7)

The cubic term in σ is small relative to the quadratic term since the convective timescale τc is much faster than the
timescale of thewaves. Wang and Sobel (2022a) showed that for certain parameter choices, neglecting this termfilters
a Kelvin wave damped at the convective timescale. However, Adames et al. (2019) showed that for a much shorter
convective timescale and positive effective GMS, Kelvin waves that are unstable at planetary scales exist under this
approximation. The filteredmode becomes near stationary in this limit, remaining damped at the shortened convective
timescale. It is then understood that this simplification filters out the initial adjustment process to a quasi-equilibrium
(QE) state. These various limits of the system were also isolated by way of an asymptotic expansion by Ahmed et al.
(2021). Since we are primarily concerned with asymptotic behaviour, the strongly damped convective adjustment is
not of particular interest. The resulting dispersion relation is then

D(k ,σ ) = i σ2 − τcc
2k 2σ − i c2k 2 (M̃e + i Ãq k

−1 ) = 0. (8)

The forthcoming analysis will also necessitate solving the dispersion relation for k as a function of given σ . D(k ,σ )
may be written in powers of k as

D(k ,σ ) = −c2 (τcσ + i M̃e )k 2 + c2Ãq k + i σ2 = 0. (9)

Solutions for σ (k ) produce one root that is unstable at planetary scales. The other root produces negative σr for all
real k , and thus does not satisfy boundary conditions at infinity. In general, both roots of k (σ ) hold physical relevance.

Figure 1a shows the frequency of the unstable solution in three separate parameter regimes. For large values
of τc and small or negative values of M̃e the solution takes on the character of a QE mode (Ahmed et al., 2021;
Wang and Sobel, 2022a), while for small values of τc and large M̃e it behaves like a Kelvin wave. Specifically, we set
M̃e = 0 and τc = 12 h to achieve the QE regime, and use M̃e = 0.2 and τc = 2 h for the Kelvin regime. In all cases the
moistening process has been set to Ãq = 2×10−8 m−1 (Adames et al., 2019). In the limit where the gravity wave speed
is made infinite, the solutions become moisture modes, with thermodynamics controlled by moisture perturbations
(Ahmed et al., 2021). The Kelvin wave is essentially non-dispersive, while the frequency of the moisture mode has a
k −1 dependency; the QE mode is in some sense a smooth transition between these two regimes. Interestingly, this
transition causes the QE regime to have a lower frequency at k = 1 than either of its limiting cases. The corresponding
growth rates are shown in Figure 1b. Both the Kelvin wave and QE mode are unstable at planetary scales, while the
growth rate of the moisture modes takes on a constant value of −M̃e/τc . The phase speeds of the waves are shown
in Figure 1c. The horizontal structures of the planetary scale waves in each regime are shown in Figure 1d-f. For
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F IGURE 1 (a) Frequency σr (k ) of the unstable mode in the three different regimes for the system. (b) Growth
rate σi (k ) of the unstable mode. (c) Phase speed σr /k of the unstable mode. (d) spatial structure of the k = 1 Kelvin
mode for a unit perturbation of column water vapour ⟨q ⟩ (shading). The contours show the corresponding column
temperature perturbations −Msφ1/c2. The contours are in powers of 2, with the thinnest contours at ±1/8 and the
thickest at ±8. (e) As in (d) but for the QE regime. (f) As in (d) but for the moisture mode regime, in which
temperature perturbations are negligible.

the Kelvin and QE modes, moisture and temperature are slightly in phase, indicating growth of variance since the
convective heating is proportional to moisture. The column temperature perturbations of the Kelvin wave are roughly
an order of magnitude larger than the moisture perturbations, while for the QE mode the two fields are of the same
order. For the moisture mode the temperature perturbations are negligibly small relative to moisture, and instability
requires a negative effective GMS so that the overturning circulation imports more moist static energy than it exports.

2.2 | Numerical Methods

Some numerical simulations will be performed to motivate the theoretical results derived from the dispersion relation.
In these numerical simulations we allow the parameters of the model M̃e , τc , and Ãq to be spatially varying, so that
the system can be written in matrix form as

∂

∂t

(
u1

¤u1

)
=

(
0 1

c2∂x (M̃e∂x · ) − c2∂x (Ãq · ) c2∂x (τc∂x · )

) (
u1

¤u1

)
. +

(
0

F

)
, (10)

where ¤u1 = ∂tu1 and F is a forcing term which excites the system from an initial state of rest. The zonal coordinate is
non-dimensionalized as x = 2πax̂ , and time as t = (βc )−1/2 t̂ , where a is the radius of Earth. The shape of the forcing
is given by

F (x , t ) =

F0 cos2 (πx̂ )δ ( t̂ ) if | x̂ | < 1/2

0 otherwise,
(11)



MacDonald 7

where F0 is the amplitude of the forcing and δ ( ·) is the Dirac delta function. The spatial coordinate, which ranges
from x̂ = −20 to x̂ = 20, is decomposed into 512 Fourier components. Terms that are the product of two spatially
varying quantities are evaluated using the spectral transform method (Durran, 2013). The system is stepped forward
in time using a 3rd order Adams-Bashforth scheme, with two initial 4th order Runge-Kutta steps to initialize the time-
stepping procedure. An additional ∂4

x diffusion term has been added to the system to remove energy at the smallest
scales, but does not appreciably affect the behaviour at the scales of interest.

2.3 | Absolute and Convective Instability

We now review some essential points about the concepts of absolute and convective instability. It is evident from
the dispersion diagrams shown in Figure 1 that outside the moisture mode limit, there exists some wavenumber at
which dσi /dk = 0, where σi = ℑ(σ ) is the imaginary part of the frequency. That is, the system has a most unstable
wavenumber km . Consider now the evolution of the system in time from an arbitrary initial condition

u1 (x , t ) =
∫ ∞

−∞
U(k )e i (k x−σ (k ) t )dk , (12)

where U(k ) sets the initial shape of the pulse. In the asymptotic limit as t → ∞, the behaviour of the integral in
Equation (12) is dominated by its point of stationary phase, which for a given x and t is the wavenumber ks that
satisfies x/t = dσ/dk |ks . Taking a second-order Taylor expansion of σ (k ) about ks yields the expression

u1 (x , t ) ∼
√
2πe−i π/4U(ks )(

(d 2σ/dk 2 ) |ks t
)1/2 e i (ks x−σ (ks ) t ) (t → ∞) . (13)

Equivalent expressions have been presented in previous work on the asymptotic behaviour of unstable waves (Gaster,
1968; Merkine and Shafranek, 1980; Pierrehumbert, 1984). A similar formulation of the asymptotic solution exists
based on an arbitrary external forcing and the Green’s function of the system (Briggs, 1964; Merkine, 1977). If we
evaluate the above expression at the most unstable wavenumber, we must have dσr /dk |km = x/t , where σr = ℜ(σ ) .
The maximum growth rate is then associated with a characteristic that moves at the group velocity evaluated at
km , i.e. the peak of the wavepacket moves at this group velocity. In general the value of maximum σi for real k
does not provide information about the behavior at a fixed point in space. The wavenumber and frequency which
dominate the asymptotic response at fixed x = 0must be a saddle point of σ (k ) satisfying dσ/dk = 0, or equivalently
a merge between two branches of k (σ ) . Since the peak is advected with the group velocity of the most unstable
wavenumber, the behaviour at a fixed point will be that of a spatially amplifying wave, and ks will in general move out
into the complex plane. If σi (ks ) > 0 at the saddle point, then the disturbance will grow at every point in the domain,
in which case the instability is called absolute. Conversely if σi (ks ) < 0 the instability is convective; the amplitude
will eventually decay to zero for all x after the peak has passed (Briggs, 1964; Huerre and Monkewitz, 1985). Figure
2 shows how these two different kinds of spatial instability would influence the growth of a localized disturbance.

In a zonally varying flow the presence of absolute instability permits, under certain conditions, the development
of local instabilities (Pierrehumbert, 1984). For a uniform domain, the growth rate at the most unstable real wavenum-
ber provides an upper bound for the absolute growth rate (Huerre and Monkewitz, 1990). Simply put, the tail of a
wavepacket naturally cannot have a larger amplitude than the peak. However, if zonal variations exist such that the
peak can travel into a region with sufficiently reduced instability, then the absolute growth rate of the exponential tail
may exceed the now reduced growth rate of the peak, and a localized maximum of the amplitude can occur (Pierre-
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F IGURE 2 (a) Sketch of an absolutely unstable wave packet. Starting from a localized pulse disturbance at t = 0,
the amplitude of the wave packet disperses in both directions. Any fixed point in space will have the amplitude of
the wave packet grow in time. (b) Sketch of a convectively unstable wave packet. There are some set of
characteristics along which the amplitude grows in time, but for any fixed point in space the peak will eventually
pass and the amplitude will decay. Based on a similar figure in Huerre and Monkewitz (1985).

humbert, 1984). Necessary conditions for the existence of a local mode are closely linked to the presence of absolute
instability in a system. In the absence of local instability, a periodic domain is required to create a global instability of
the system (Pierrehumbert, 1984; Huerre and Monkewitz, 1990).

3 | INSTABILITY OF MOISTURE-COUPLED WAVES

3.1 | Presence of Absolute Instability

We will first identify the nature of the instabilities in the moist equatorial wave system by analyzing the dispersion
relation in the complex k -plane (Briggs, 1964; Merkine, 1977; Pierrehumbert, 1986). We evaluate k (σ ) for some set
of fixed values of σr , while decreasing σi from a positive value (which must be greater than the maximum growth rate
for real k ) to zero Briggs (1964). The information provided in the dispersion diagrams shown in Figure 1 is recovered
when the images cross the positive real line. If the images of two branches of k (σ ) meet in the complex k -plane,
with the branches originating separately from the upper and lower half-planes for large σi , then the system supports
absolute instability (Briggs, 1964; Pierrehumbert, 1986). Otherwise, the branches merge for some negative value of
σi , and the instability is convective in nature. Since the dispersion relation for our system is quadratic in k , there can
be only one saddle point.

Figure 3 shows contours of σ and their corresponding images for the three previously presented parameter
regimes. The contours in the complex σ-plane are shown in Figure 3a. The image for the Kelvin wave is shown
in Figure 3b. It is clear that there is an absolute instability present, as the two branches merge close to the imaginary
line. Since this merge happens at far greater length scales than are realizable on Earth, and is only weakly unstable, it
does not appear to have much physical relevance. Figure 3c shows the image for the QE regime; clearly there exists
a more compelling merge of the two branches. The branches of k originate separately from the upper and lower
half-planes for large σi , confirming their physical relevance (Briggs, 1964; Pierrehumbert, 1986). The merge occurs
at real wavenumber akr ≈ 0.75 and linear frequency σr /(2π ) ≈ 0.021 days−1 so the absolute instability is realized at
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F IGURE 3 (a) Contours in the complex σ-plane. The shading indicates the imaginary part and the thickness of
the line scales with the real part of σ . (b) the image k (σ ) in the complex k -plane for the Kelvin parameter regime.
The mapping can be tracked by the colour and thickness of the lines. (c) As in (b) but for the QE regime. A clear
merge between the two branches of k (σ ) is observed in the lower half-plane. (d) As in (b) but for the moisture mode
regime, in which only a single non-trivial branch exists.

planetary scales and intraseasonal frequencies. The image for the moisture mode limit is shown in Figure 3d; since
there is only one non-trivial branch, there is no possibility of a merge. However, it is clear that the lower branch of
the QE regime takes on some characteristics of the moisture mode.

Given that we have separated out the meridional structure of the system, we must be circumspect that these
solutions remain equatorially trapped when k as well as σ is complex. For the case of complex k , the meridional
structure can be expressed in terms of the phase speed cp = σ/k as

P(y ) = exp
(
−

βcp,r y
2

2 |cp |2

)
exp

(
i
βcp,i y

2

2 |cp |2

)
, (14)

where cp,r = ℜ(cp ) and cp,i = ℑ(cp ) . The argument of the first exponential is purely real, while the argument of the
second is purely imaginary. It is clear that the condition for equatorial trapping is cp,r > 0. Figure 4 shows the real
part of the phase speed evaluated on the contours in the k -plane presented above. The absolute instability of the QE
mode is equatorially trapped. In the Kelvin wave regime, the value of cp,r at the absolute instability is close to zero,
calling in to question the relevance of this absolute instability.

Numerical integrations of the responses of theQE andKelvin regimes are shown in Figures 5a and 5b, respectively.
It is clear that the QE wave packet grows in both directions, confirming the presence of absolute instability. The
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F IGURE 4 (a) Image of k (σ ) for the Kelvin regime coloured by real part of σ/k . The σ contours are the same as
those used in Figure 3. Red colours indicate solutions which are not equatorially trapped and diverge as y → ∞,
while green colours correspond to valid equatorially trapped waves. (b) As in (a) but for the QE regime. (c) as in (a)
but for the moisture mode regime.

Kelvin wave packet remains attached to x = 0, but does not show any significant growth there, alluding to its marginal
absolute instability; that the wavelength of the Kelvin wave packet grows towards x = 0 is also consistent with the
theoretical prediction from the analysis of the dispersion relation, where the absolute instability occurs at a much
smaller wavenumber than the most unstable real wavenumber.

Figure 6 shows the amplitude growth over time, for both the translating peak of the disturbance and the stationary
point x = 0. Figure 6a shows these growth rates for the QE regime. It is clear that the theoretical predictions of the
maximum growth rate and the absolute growth rate correctly characterize the amplitude of the peak and x = 0,
respectively. Figure 6b shows the corresponding peak and absolute growth rates for the Kelvin regime of the system.
Here the marginal absolute instability is clear; the amplitude at x = 0 shows a negligible tendency towards growth,
as predicted from analysis of the dispersion relation. Additionally, the peak growth rate for the Kelvin wave is slightly
less than that of the QE mode, as predicted from the dispersion diagrams shown in Figure 1b

3.2 | Thermodynamics of Asymptotic Solutions

We are additionally interested in the degree to which the tendency of column-integrated moist enthalpy is set by
perturbations to either temperature or moisture. In this simple linear system, the column-integrated moist enthalpy
is given by

⟨h⟩ = −Ms

c2
φ1 + ⟨q ⟩. (15)

Following Ahmed et al. (2021), we use the ratio of moisture and temperature perturbations to understand which
component controls the value of the moist enthalpy in each regime. For our linear model the ratio is

γ ≡ − c2 ⟨q ⟩
Msφ1

= −i τcσ (1 + c2k 2/σ2 )
1 + r

. (16)

We know that τcσ ≪ 1, so the wave must be slow relative to the gravity wave frequency ck in order for the moisture
signal to dominate. Since γ will be complex in general, its modulus |γ | will be used to measure the relative magnitude
of moisture and temperature perturbations, while its argument Arg(γ ) describes the degree to which moisture and
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F IGURE 5 (a) Result of a long numerical integration (t̂ = 500) of the system in the QE regime, with M̃e = 0 and
τc = 12 h. The solution is transformed as sgn(u1 ) log(1 + |u1 | ) to better show the behaviour near the tails of the
wave packet, while still retaining the fluctuations in the phase. (b) As in (a) but for the Kelvin wave parameter regime
of the system, with M̃e = 0.2 and τc = 2 h.

temperature perturbations are in phase. As noted previously, this also measures the phase between temperature and
heating anomalies since ⟨Q ⟩ = (1 + r ) ⟨q ⟩/τc .

In Figure 7 we show |γ | and Arg(γ ) evaluated on the images from the previous section. Figures 7a-c show |γ | for
each of the three parameter regimes. In the Kelvin limit temperature anomalies dominate the moist enthalpy; over the
whole range of frequencies we have |γ | ≪ 1. In the QE regime, solutions transition from being more gravity wave-like
at large scales (k ≪ 1) to more moisture dominated at smaller scales (k > 1). At the saddle point itself, temperature
and moisture contribute equally to the moist enthalpy. Finally, in the moisture mode limit of the problem |γ | ≫ 1 and
the thermodynamics are strongly controlled by moisture.

Figures 7d-f show the same images coloured by Arg(γ ) . Along the real line, all three regimes exhibit temperature
and moisture anomalies that are roughly in quadrature, with temperature leading the moisture (and therefore the
heating) as expected for a propagating deep-convective mode (Emanuel et al., 1994). Indeed, Arg(γ ) appears less de-
pendent on the chosen parameter regime and more on the location in the k -plane. Waves that amplify in an eastward
direction (those in the lower half-plane) generally have more in-phase perturbations, while those that are evanescent
eastward have more out of phase relations between moisture and temperature. This is a simple consequence of the
fact that an amplifying wave must have a source of variance generation; in this case the correlation between Q and
T acts as that source. The essential convection-circulation interaction we have modeled puts a constraint on the gov-
erning thermodynamics of the system such that amplifying waves are more controlled by moisture, while evanescent
waves are controlled by temperature.

3.3 | Zonally-Varying Basic States

Having confirmed the existence of absolute instability, we now investigate whether the system can support local
modes of instability in a zonally varying flow. The Wentzel-Kramers-Brillouin (WKB) approximation will be used as a
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F IGURE 6 (a) Time series of amplitude growth in the QE regime. The red crosses show the evolution of the
logarithm of the maximum of |u1 | achieved in the domain. The blue crosses show the value of the logarithm of |u1 |
at x = 0. The black dashed line shows the theoretical prediction of the maximum growth rate, σi (km )/

√
βc, in the

non-dimensional units of the numerical simulation. The black dash-dotted line shows the predicted absolute growth
rate σi (ks )/

√
βc. (b) as in (a) but for the Kelvin wave parameter regime of the system.

theoretical tool to investigate this issue. Direct association with the observed MJO is then challenging, because the
MJO can be broadly thought of as a wavenumber 1 disturbance situated in a basic state that varies most strongly at
similar length scales. Strict application of the following theory is limited to infinite domains with basic state variations
occurring over much longer length scales than the wavelength of the disturbance. Nevertheless, recent work has
shown that local application of linear wave criteria can provide qualitative understanding of the zonal development
and confinement of the MJO and other modes of tropical variability (Inoue et al., 2021; Mayta and Adames, 2023).

The construction of the local mode follows closely that of Pierrehumbert (1984). We allow the parameters M̃e

and τc to vary in the zonal direction at O(1) in a slow coordinate X = ϵx , with ϵ ≪ 1. Note that no specific value
is assigned to ϵ; it is tacitly assumed that there is some slow scale on which the WKB approximation will hold. The
eigenfunctions of the systems are then taken to have the form

u1 = Au (X )e iΘ(X )/ϵe−i σt , (17)
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F IGURE 7 (a) Image of k (σ ) for the Kelvin regime, coloured by |γ |. Note the log scale for the colourbar. The σ

contours are the same as those used in Figure 3. (b) As in (a), but for the QE mode. (c) as in (a), but for the moisture
mode regime. (d) Image for the Kelvin regime coloured by Arg(γ ) . A positive argument represents temperature
anomalies leading moisture anomalies (to the east). (e) As in (d), but for the QE mode. (f) As in (d), but for the
moisture mode limit.

where Θ(X ) set the spatial amplification and phase of the wave. After suitably adjusting Equation (6) to account for
varying M̃e and τc , the dispersion relation for the system becomes, to leading order in the small parameter ϵ,

D(k ,σ ) = i σ2 − c2Θ′2τcσ − i c2Θ′2 (M̃e + i ÃqΘ
′−1 ) = 0, (18)

where Θ′, M̃e and τc are all functions of the slow coordinate X . This is simply the dispersion relation of the uniform
system with the wavenumber k replaced by Θ′ (X ) . An analysis of the meridional structure problem produces an
expression for the slowly varying meridional shape of the solution that bears a similar resemblance to its counterpart
in the uniform system.

We now turn to the creation of a zonally varying domain that will permit a local mode of instability. Values of the
parameters M̃e and τc are selected which produce an absolute instability with frequency σs ; it is assumed that the
system takes on these values at X = 0. We then calculate k (σs ; M̃e (X ), τc (X ) ) , where k has now been conflated
with Θ′ (X ) in Equation (18). The parameters must be chosen to vary in X in such a manner that the absolute growth
rate—which may be calculated locally from the WKB dispersion relation for each X— decreases away from X = 0. In
general, making M̃e more positive and τc smaller will lead to a reduction of the absolute growth rate. Requiring that
the absolute growth rate attains a local maximum where (d M̃e/dX ) = 0 and (dτc/dX ) = 0 is important to prevent
the breakdown of WKB theory (Pierrehumbert, 1984). By construction the value of k (σs ; M̃e (0), τc (0) ) is the same
for the two branches of k , so the solution will switch branches at this point. Should the sign of k i (σs ; M̃e (X ), τc (X ) )
change for one of the branches of k as X is moved away from zero, then the solution switches the direction in which
it grows, and the constructed mode is a seamless continuation of amplifying and evanescent waves. The resulting
instability is then localized in space.

Figure 8 shows how the real and imaginary parts of the wavenumber change as the basic state parameters are
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F IGURE 8 Analysis of the WKB dispersion relation for varying basic state parameters. The parameters M̃e and
τc are moved in proportion from values in the QE regime to the Kelvin regime. The dispersion relation is solved for k
as a function of M̃e and τc , with σ fixed to the absolute frequency calculated for M̃e = −0.1 and τc = 16 h (the values
the system is assumed to take on at x = 0). The resulting curves for the real and imaginary parts of the wavenumber
are shown in solid and dashed curves, respectively. By construction the two branches of k take on the same value
when M̃e = −0.1 and τc = 16 h. Note that there are some points where the two imaginary parts take on different
signs.

moved together from the QE regime to the Kelvin limit. As intended, the two branches of k (σs ) merge at the assumed
values of M̃e and τc which produce the largest absolute growth rate. It is clear that the imaginary parts of the two
branches take on different signs when the system has beenmoved sufficiently far from the point of maximum absolute
growth rate. The solution is able to smoothly switch between amplifying and evanescent waves and hence local
modes of instability can be realized in the system. It is important to note that the system does not need to be moved
far towards the Kelvin regime to produce a local mode. Sensitivity experiments with different choices of M̃e and τc at
x = 0 suggest that the minimum value of M̃e in the domain must be less than zero in order for local instability to exist.

Having confirmed the potential for local instability in the system, we now look at the zonal structure of such a
mode. Figure 9 shows the behaviour for a simple zonally-varying domain in which M̃e and τc both take on Gaussian
profiles in the zonal direction (Figures 9a and 9b). Even though the branch switch itself occurs at x = 0, since the
imaginary part of the wavenumber is positive at the coalescence point, the wave will be evanescent at x = 0, and
will achieve its maximum amplitude at some x < 0. As in Section 3.2 we will use the q-T ration γ to characterize
the thermodynamic structure of the solutions. The response of the modulus and argument of γ as a function of x are
shown in Figures 9c and 9d, respectively. For x < 0 the thermodynamics of the mode are more controlled by moisture,
and the temperature andmoisture anomalies of the mode are close to being in phase. As onemoves eastward through
the domain, temperature and moisture perturbations transition to being more out of phase, and the thermodynamics
become progressively more controlled by temperature. The importance of this asymmetric response should not be
understated; a more naive local analysis of the dispersion relation for real k in a zonally varying domain would not be
able to describe this development. The concepts of absolute instability and branch switching play essential roles in
producing the very different responses on either side of the region of increased absolute growth rate.

The theoretical predictions derived above can be checked via numerical simulation. Using Figure 8 as a guide, we
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F IGURE 9 Development of the local mode for a simple zonally-varying basic state. (a) Zonal structure of the
effective GMS M̃e . The chosen scale for x is arbitrary. The black dashed line denotes the location at which the
branch switch occurs (x = 0). The black dash-dotted line shows the point at which the solution switches from
amplifying to evanescent. (b) As in (a), but for the convective timescale τc . (c) Modulus of the resultant q-T ratio γ as
a function of x as predicted by the local WKB analysis. (d) Argument of γ as a function of x for the local mode.

construct a zonally varying domain where M̃e and τc have the structures

M̃e = −0.07 − 0.03 exp(−x̂2/(2L2
w ) ) and (19a)

τc = 14 + 2 exp(−x̂2/(2L2
w ) ), (19b)

where M̃e is dimensionless and τc is given in units of hours, and Lw is a length scale that controls the width of the
region of increased instability. Thus the profiles of M̃e and τc resemble those shown in Figures 9a and 9b, with Lw

setting the zonal scale. The specific values of the parameters are chosen such that the imaginary parts of the two
branches of k (σs ) take on different signs as x → ∞. Moving the system too far into the Kelvin regime when moving
away from x = 0 can lead to solutions that are not equatorially trapped. Figure 10 shows snapshots of ⟨q ⟩ and ⟨T ⟩
in two different domains: one with Lw large relative to the wavelength of the local mode, and one where Lw is on
the same order as the wavelength. Moving eastward through the domain, temperature becomes progressively larger
in magnitude relative to moisture, and the fields transition from being essentially in phase to in quadrature within
the interval [−5, 5]. Thus the two qualitative predictions of the WKB analysis hold true in the numerical simulations.
Indeed, evenwhen the variation in the basic state is confined to a relatively short region (Figure 10b), these same zonal
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F IGURE 10 (a) Snapshot of the numerical simulation at t̂ = 1000 for a zonally-varying basic state with Lw = 4.
The column-integrated temperature perturbation ⟨T ⟩ = −Msφ1/c2 is shown in red, and the column-integrated water
vapour ⟨q ⟩ in blue. The vertical dashed lines are located at ±2Lw . (b) As in (a) but for a simulation with a much
narrower region of zonal variations, with Lw = 0.25.

variations are observed in the system. The primary alteration when using a narrow region of increased instability is
that the envelope of the wave becomes more asymmetric about x = 0, in particular for the column water vapour ⟨q ⟩
(Figure 10b).

Another important assumption built into the WKB analysis of the local mode is that every point in the domain
grows with the absolute growth rate evaluated at x = 0. Figure 11 shows the evolution of the amplitude at three
different locations in the domain. It is clear that after an initial adjustment period, all three locations take on essentially
the same exponential growth rate, which matches well with the predicted absolute growth rate evaluated at x = 0. It
is important to note that we have not enforced the local mode dynamics in these numerical experiments; in simply
stepping the system forward in time we observe behaviour that greatly resembles the predictions made by the theory
of absolute instability.

4 | DISCUSSION

4.1 | Implications for Intraseasonal Variability

The analysis presented above has shown that the response of a simple model of low-frequency moisture-coupled
waves responds asymmetrically across a symmetric region of increased instability. The observed developmentmatched
the theoretical predictions provided by a WKB analysis of the system, guided by the underlying knowledge that the
relevant solutions are in fact absolutely unstable. In our idealized domain, the asymmetry is such that heating and
temperature perturbations are more in phase for x < 0 and more in quadrature for x > 0. Together with these phase
variations, the column-integrated moist enthalpy transitions from being controlled more by moisture perturbations
for x < 0 to temperature perturbations for x > 0. The resulting zonal structure of the local instability is compelling
because it replicates some of the features of the zonal development of the MJO. In particular, the transition of the
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phase betweenmoisture (and therefore heating) and temperature is reminiscent of the transition seen in the observed
MJO (Hendon and Salby, 1994). The gradual transition of the relative magnitudes of moisture and temperature per-
turbations also mimics the development of the MJO (Mayta and Adames, 2023).

Absolute instability has important implications for the initiation of the MJO, in particular for "successive" MJO
events which are directly preceded by a previous cycle of the oscillation (Matthews, 2008). Powell and Houze Jr
(2015) argued that initiation of successive MJO events is achieved through the circumnavigation of a fast-moving, dry
Kelvin wave from the previous cycle of the MJO. However, numerous modelling results which explicitly removed this
pathway for initiation still saw development of successive MJO events (Ray and Li, 2013; Zhao et al., 2013; Maloney
andWolding, 2015). Circumnavigating disturbances could still interfere constructively with the initiating phase of the
MJO to promote growth (Maloney and Wolding, 2015), but these modelling studies suggest that the excitation of an
MJO event can be caused by the previous event. Heuristically, such an initiation mechanism seems consistent with
the notion of absolute instability; the presence of a pulse at some longitude implies the maintenance of the wave
amplitude at that position for future times.

The presence or absence of absolute instability is also intricately linked to the group velocity of an unstable wave.
Indeed, the presence of absolute instability allows energy to disperse in a direction opposite to the group velocity as
evaluated at the most unstable wavenumber. This point is illustrated by Figure 5a; while the group velocity of the
peak is obviously eastward, the absolute instability causes wave energy to be dispersed westward as well as eastward.
There has been much discussion as to whether the MJO has a westward group velocity, with some observational
studies affirming this viewpoint (Adames and Kim, 2016), and others arguing that the group velocity is approximately
zero (Chen and Wang, 2018). More recent syntheses of observations have pointed to a diverse range of dispersive
behaviours for the MJO (Wei et al., 2023), encompassing both of these previous pictures. Such conclusions are made
by tracking the position of successive maxima and minima in precipitation or outgoing longwave radiation through
individual or composite MJO events (Adames and Kim, 2016). In this sense, these studies measure the group velocity
evaluated at the most unstable wavenumber. From the viewpoint of absolute instability, the more important question
is whether the group velocity changes sign within the envelope of the MJO.
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A final implication for the intraseasonal variability of the tropics comes from the definition of the WKB solution
itself. If we think of the MJO as a local instability of the WP, then its growth rate in time at any point is set not by
the local conditions, but instead by conditions at the point at which the absolute growth rate achieves a maximum
(Pierrehumbert, 1984). Non-local interactions are a key facet of tropical dynamics, as gravity waves can communicate
the effects of convective heating far beyond its actual spatial extent (Gill, 1980; Bretherton and Smolarkiewicz, 1989).
Local instability provides another example of the non-local behaviour of the tropics.

4.2 | Inclusion of Momentum Damping

The model used in this work was free from any damping in the momentum equation, following previous works on the
linear modes of the tropical atmosphere (Adames et al., 2019; Ahmed et al., 2021). However, momentum damping
has elsewhere been argued for as an essential component to the dynamics of the MJO (Kim and Zhang, 2021). Zonal
momentum budgets suggest that advective tendencies can contribute to a strong effective linear damping rate for the
MJO, with a timescale of 3-5 days (Lin et al., 2005). With the inclusion of momentum damping the zonal momentum
equation for our system can be rewritten as

∂u1
∂t

+ ∂φ1

∂x
= −εuu1, (20)

where εu is a linear damping coefficient that takes on the value of (3.5 days)−1 suggested by Kim and Zhang (2021).
The new dispersion relation for the damped system is given by

D(k ,σ ) = i σ2 −
(
c2k 2τc + εu

)
σ − i c2k 2

(
M̃e + i Ãq k

−1
)
= 0. (21)

This system is again quadratic in both σ and k , so the same analysis methods used in the inviscid system can
be applied in a straightforward manner. For real k , this modification of the dispersion relation reduces the maximum
growth rate of the QE regime, and slows the phase speed slightly (not shown). Figure 12 shows contours of σ mapped
into the complex k -plane under the dispersion relation for the damped system, similar to the mappings shown in
Figure 3 for the inviscid system. A merge of the two branches is still evident for the damped system. This merge
again appears at intraseasonal time scales, though the absolute growth rate is reduced significantly relative to the
undamped system. That absolute instability is still supported with this much reduced growth rate lends us confidence
that absolute instability is q quite robust feature of the system when M̃e is sufficiently small and τc sufficiently large.

4.3 | Caveats

There are a number of caveats to the analysis that we have presented here. Foremost among these concerns is our
use of a linear, analytic model to represent the tropical atmosphere and its wave variability. While this choice is made
so that we can appeal to the mathematical results provided by Briggs (1964) and Pierrehumbert (1984), in doing so we
have neglected much of the complexity of the real MJO. Precipitation is by definition a positive semi-definite quantity.
In our linear frameworkwe have implicitly described precipitation as a perturbation upon a precipitatingmean state; in
general the linear solution will eventually reach an amplitude exceeding this mean state value, and the model becomes
physically unreasonable. We have intentionally run our numerical simulations for long times to allow the asymptotic
behaviour to dominate, ignoring this deficiency of the linear framework. In reality, there must exist some non-linear
process that curtails the linear growth of the wave solutions we have modeled here. Without a strong understanding
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F IGURE 12 (a) Contours in the σ-plane which will be mapped into the k -plane using the damped dispersion
relation. (b) Image of k (σ ) in the complex k -plane for the damped system. An merge between the two branches is
located near the real line at kr ≈ 1.2, indicating the presence of absolute instability.

of this occlusion process, the actual relevance of the asymptotic limit of the linear system remains uncertain. Rupp
and Haynes (2020) show promising results that even in a fully non-linear system, the distinction between absolute
and convective instability can influence the dynamics.

Even accepting the necessity of a linear framework to acquire analytical results for unstable waves, our choice
of model is not definitive. Each study of the linear modes of tropical variability has its own interpretation of the
physical processes needed to represent low-frequency variability (Zhang et al., 2020; Jiang et al., 2020; Fuchs-Stone
and Emanuel, 2022). There is considerable uncertainty in the interpretation of the moistening process Ãq . In our
interpretation this parameter is a conglomeration of various terms in the moisture equation, some of which cannot
otherwise be easily fit into the first baroclinic mode paradigmwith which we work (Sobel andMaloney, 2013; Adames
et al., 2019). Analysis of the moisture budget in models or reanalyses can aid in interpretation (Maloney, 2009), but
forming a robust connection between the moisture budget and a single linear feedback on the zonal wind will always
be challenging. Furthermore, we have represented the effective reduction of the GMS through a cloud-radiation
feedback, but modelling results suggest that such a strong feedback may not be necessary to produce MJO variability
in the presence of zonal asymmetry (MacDonald and Ming, 2022). This indicates that the parameter M̃e should also
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be viewed more generally.

Our choice to model intraseasonal variability as a wave with no meridional wind can also be relaxed. The v = 0

approximation provides the simplest model for intraseasonal variability, and obviates the need to solve for a com-
plete set of eigenfunctions for the meridional structure. For the exploratory analysis we have performed here, the
approximation seems appropriate, in the sense that it captures some of the basic dispersive features of the MJO. The
methods used here can be readily applied to systems with more complex meridional structure, either in the long-wave
approximation (Heckley and Gill, 1984) or for the full linearized primitive equations on the equatorial β -plane. Such
extensions to the system we have studied have already been derived elsewhere (Fuchs and Raymond, 2017; Ahmed,
2021;Wang and Sobel, 2022b); it would be a valuable exercise to see whether the asymptotic results found here have
natural extensions in these systems.

5 | CONCLUSIONS

The scale selection and instability of the MJO are often explained via the derivation of linear models that produce
a most unstable (real) wavenumber at planetary scales and intraseasonal frequencies. We have instead investigated
the asymptotic behaviour of localized pulses, effectively moving away from the normal mode picture that has been
focused on in past work. The basis for this analysis is rooted in the theory of absolute and convective instability laid
out by Briggs (1964). Using methods described by Briggs (1964) and Pierrehumbert (1986), it was found that simple
linear models of the MJO have the property of absolute instability, so that wave amplitude will be seen to grow in a
stationary frame of reference. This absolute instability was realized at planetary scales and intraseasonal frequencies,
suggesting a potential connection to the MJO. The degree to which the waves were absolutely unstable was shown
to be sensitive to certain model parameters. Absolute instability was found to be robust for what we referred to as
the quasi-equilibrium (QE) mode, while regimes which produce unstable Kelvin waves were instead only marginally
absolutely unstable. Numerical simulations of the model confirmed the predictions made based on the dispersion
relation of the system.

The absolute instability of the QEmodewas then leveraged to study these linear wavemodels in a zonally varying
flow. Pierrehumbert (1984) stressed that it is in non-uniform systems where the implications of absolute instability
become important. We showed that zonal variations which mimic — in an idealized sense — an isolated warm pool
can support localized modes of instability through the branch switching inherent to absolute instabilities. A WKB
analysis of the system predicted a very asymmetric response across the warm pool. The western flank of the warm
pool (x < 0) was characterized by temperature and moisture perturbations being in phase, with moisture having a
larger magnitude. The eastern part (x > 0), on the other hand, featured a quadrature relation between temperature
and moisture, with temperature now being greater in magnitude. These predictions were borne out in numerical
simulations, which showed strong agreement with the theoretical picture, even when the parameters of the model
varied over relatively short length scales.

The proposed significance of these results is that the zonal development of this simple linear model shows some
similarity to the way that the MJO develops in its passage across the Indo-Pacific warm pool. We can then think
of the essential convection-circulation coupling which gives rise to the temporal instability of the MJO as putting
constraints on the nature of spatial instability in the form of amplifying waves. In this sense, our analysis says that
low-frequency amplifying waves must have their moist enthalpy more controlled by moisture, and evanescent waves
must be controlled by temperature. More work is needed to gain a more physically intuitive picture of why this should
be the case. That even this simple model of the MJO can predict this development lends some additional confidence
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that it captures some of the essential dynamics of the MJO, and furthers its role as a useful theoretical tool.
Further work is needed to fully understand the implications of absolute instability onmoisture-coupled equatorial

waves. In particular, uncertainties related to the occlusion of linear growth by non-linear processes mean that con-
clusions based on the asymptotic behaviour of the system must be viewed with caution. This work joins a selection
of previous works (Diaz and Aiyyer, 2015; Rupp and Haynes, 2020) which suggest that a greater understanding of
atmospheric waves can be attained through the consideration of their spatial instability. Further extension of these
concepts to the off-equatormoisturewaves of Sobel et al. (2001) andAdames andMing (2018)would be an interesting
venture. This initial investigation provides evidence for the relevance of absolute instability to our understanding of
the MJO and convectively-coupled equatorial waves. In doing so, it provides a new perspective on tropical dynamics
and drives home the critical role of zonal asymmetry in setting the behaviour of these waves.
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