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Abstract 46 

Forecast informed reservoir operations holds great promise as a soft pathway to improve water 47 

resources system performance. Methods for generating synthetic forecasts of hydro-48 

meteorological variables are crucial for robust validation of this approach, as numerical weather 49 

prediction hindcasts are only available for a relatively short period (10-40 years) that is 50 

insufficient for assessing risk related to forecast-informed operations during extreme events. We 51 

develop a generalized error model for synthetic forecast generation that is applicable to a range 52 

of forecasted variables used in water resources management. The approach samples from the 53 

distribution of forecast errors over the available hindcast period and adds them to long records of 54 

observed data to generate synthetic forecasts. The approach utilizes the flexible Skew 55 

Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that 56 

can exhibit heteroskedastic, auto-correlated, and non-Gaussian behavior. An empirical copula is 57 

used to capture covariance between variables and forecast lead times and across space. We 58 

demonstrate the method for medium-range forecasts across Northern California in two case 59 

studies for 1) streamflow and 2) temperature and precipitation, which are based on hindcasts 60 

from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R 61 

V2 climate model, respectively. The case studies highlight the flexibility of the model and its 62 

ability to emulate space-time structures in forecasts at scales critical for flood management. The 63 

proposed method is generalizable to other locations and computationally efficient, enabling fast 64 

generation of long synthetic forecast ensembles that are appropriate for water resources risk 65 

analysis. 66 

 67 

 68 
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1. Introduction  69 

Forecast informed reservoir operations have tremendous potential to enhance the efficient use of 70 

water resources, especially where systems are operated near their limits or where inflows are 71 

highly variable across timescales (Faber and Stedinger, 2001; Anghilieri et al., 2016; Turner et 72 

al., 2017; Jasperse et al., 2017; Nayak et al., 2018, Guiliani et al., 2019; Delaney et al., 2020). 73 

Forecast informed policies are often developed using climate and hydrologic hindcasts, or 74 

retrospective forecasts based on models that are initialized using initial conditions that were 75 

present over a historical period. Hindcasts are split into calibration and testing periods, such that 76 

policies are designed and/or optimized for the calibration period and then tested out of sample 77 

using testing period data. A major challenge with this approach is that it is limited to the 78 

available hindcast period, which is often constrained to the era when satellite data can be used 79 

for climate model initialization (i.e., from 1979 onward; Hartmann, 2016). This limitation 80 

requires that a fairly short time period (at most ~40 years) be parsed into even smaller periods to 81 

enable calibration and testing of policies, creating the potential for overfitting and poor out-of-82 

sample performance (Nayak et al. 2018; Brodeur et al. 2020; Herman et al., 2020).  83 

 84 

Synthetic forecasts offer a solution to overcome this challenge. Synthetic forecasts are generated 85 

by adding random error to observational records, such that the resulting series is statistically 86 

indistinguishable to forecasts developed using a physically-based model. Many water resources 87 

projects in the United States have instrumental records of streamflow and climate that extend 88 

back to the early 20th century (Loucks & Van-Beek, 2017). Synthetic forecasts based on these 89 

extended observational records, which often contain multiple floods and droughts, provide a rich 90 

source of information for calibrating and testing forecast informed reservoir operations.  91 
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 92 

Forecast-informed policy design can benefit from synthetic forecasts at all timescales (Denaro et 93 

al., 2017). Seasonal forecasting is often used to inform water supply based decisions (Anghilieri 94 

et al., 2016; Turner et al., 2017; Guiliani et al., 2019; Yuan et al., 2015), whereas shorter range 95 

forecasts are often confined to hazard management (Valeriano et al., 2010; You & Cai, 2008). 96 

However, uncertainty in seasonal forecasts surpasses that of short-to-medium range forecasts 97 

(Giuliani et al., 2019). In addition, regions that receive a significant portion of their annual water 98 

supply from a small number of events (e.g., California; Hanak et al., 2011; Dettinger et al., 2016) 99 

benefit more from short time scale forecasts associated with these events (Jasperse et al., 2017; 100 

Nayak et al., 2018; Raso et al., 2014). Thus, shorter lead forecasts can have more value for 101 

decision-making in many regions and further increase the likelihood that water managers would 102 

incorporate them into operations (Rayner et al., 2005). Accordingly, the present study 103 

concentrates on short to medium range (0-14 days) synthetic forecast generation. 104 

 105 

The two primary methods for synthetic streamflow forecasting are 1) the ‘direct statistical error 106 

model’ approach or 2) a ‘conceptual hydrologic model’ approach (Lamontagne & Stedinger, 107 

2018). The direct approach derives synthetic forecasts of streamflow based on a statistical model 108 

of the errors between streamflow forecasts and observations (Lettenmaier et al., 1984). In 109 

contrast, the conceptual approach uses hindcasts of meteorological variables (generally 110 

temperature and precipitation) to drive hydrologic forecast model outputs (Alemu et al., 2011). 111 

Where long observed streamflow records exist, the direct approach is straightforward to apply 112 

and captures both hydrologic and meteorological sources of forecast uncertainty. In many 113 

regions, extensive streamflow records are not available (Teegavarapu et al., 2019), making the 114 
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conceptual approach an attractive alternative.  Conceptual methods can be constraining if they 115 

are reliant on available meteorological hindcast data (~1979 to present), but synthetic 116 

meteorological forecasts can overcome this issue. Synthetic meteorological forecasts are 117 

common for energy system applications dependent on forecasts of wind and solar power 118 

generation (Sun et al., 2020; Pelland et al., 2013; Olauson et al., 2016; Hodge et al., 2012; 119 

Demello et al., 2011; Barth et al., 2011), but are relatively rare in water resources management 120 

applications (Nayak et al., 2018).  121 

 122 

This study forwards a novel method for synthetic forecast generation that can be applied to either 123 

streamflow or meteorological data, supporting both the direct and conceptual approach to 124 

synthetic streamflow forecasting. The proposed methodology addresses two challenges in 125 

synthetic forecast development that are currently unresolved. First, hydro-meteorological 126 

forecast errors often exhibit highly non-normal distributions that can be challenging to model. 127 

We forward the generalized error distribution (GED) to address this challenge. The GED 128 

distribution has a long history in the statistical literature (Subbotin, 1923) and has been 129 

referenced in alternate forms as the ‘exponential power (EP)’ distribution (Box and Tiao, 1992), 130 

the ‘generalized Laplace’ (Ernst, 1998), and the ‘generalized normal’ distribution (Nadarajah, 131 

2005). A uniting feature of all variants is that they can fit empirical distributions with varying 132 

degrees of kurtosis (Cerqueti et al., 2019). This flexibility allows modeling of fat-tailed 133 

distributions that can assign higher probabilities to large forecast errors. Non-linear responses 134 

such as rain-on-snow events (Guan et al., 2016), localized orographic enhancement of 135 

precipitation (Hecht & Cordeira, 2017; Holton & Hakim, 2013), positive feedback mechanisms 136 

in strong frontal systems (Eiras-Barca et al., 2018), or timing errors (forecast ‘misses’) yield a 137 
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propensity towards this type of error structure in short-range hydro-meteorological forecasts. 138 

Methods to add skew to the distribution (Fernandez & Steel, 1998; Buckle, 1995; Botazzi & 139 

Secchi, 2011) further increase the flexibility of the model to account for asymmetries in 140 

probability mass around the mode. Use of the GED is widespread in the econometrics literature 141 

(e.g. Cerqueti et al., 2019; So et al., 2008, Nelson, 1991), where skewed and fat-tailed errors are 142 

common, but its use in the hydrologic literature is less established (with some exceptions, e.g., 143 

Schoups & Vrugt, 2010).  144 

 145 

Another challenge is that synthetic forecasts of hydro-meteorological variables must preserve 146 

correlations across space and time and realistic uncertainty bounds at various lead times (Wilks, 147 

2011; Demargne et al., 2009). While spatio-temporal consistency is important in synthetic 148 

forecasts at any timescale, it is particularly important in short to medium range forecasts (1-14 149 

days) that must capture transient storms as they move across the landscape (Hartmann, 2016; 150 

Wilks, 2011). In addition, forecasts errors can also be correlated with the observed data, and 151 

these correlations should be replicated in synthetic forecast development (Lamontagne & 152 

Stedinger, 2018). Copulas have emerged in hydrology as an effective tool to capture dependence 153 

across variables and spatio-temporal domains (Chen & Guo, 2019; Teegavarapu et al., 2019 and 154 

references therein). Copulas have been used primarily to model dependencies in observed data 155 

(e.g. multi-site flood frequency, drought analyses, etc.; Chen & Guo, 2019), but they have also 156 

been used for synthetic flood forecasting (e.g., the Martingale Model of Forecast Error; Zhao et 157 

al., 2013; Heath & Jackson, 1994). We were unable to find examples of copula-based synthetic 158 

meteorological forecasts, but they have been used for a variety of climate forecast related 159 
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purposes including bias correction (Piani & Haerter, 2012) and ensemble post-processing (Wilks, 160 

2015).  161 

  162 

This work develops an adaptable synthetic forecast generation methodology that can a) model 163 

both hydrological and meteorological forecast errors exhibiting auto-correlation, 164 

heteroscedasticity, and a variety of distributional forms, b) link those errors across space, time 165 

and/or variables with empirical copulas, and c) preserve critical relationships between the 166 

observed data and forecast errors. This approach mirrors multivariate Generalized 167 

Autoregressive Conditional Heteroskedastic (GARCH) models in the econometrics literature 168 

(Wei, 2019; Rao & Vinod, 2019) and employs the Skew Generalized Error Distribution (SGED) 169 

(Wurtz et al., 2020) as the underlying model for marginal errors. We demonstrate this approach 170 

in two separate applications for hydrological and meteorological synthetic forecast generation. In 171 

the first, we generate synthetic streamflow forecasts for Folsom Reservoir, CA, emulating those 172 

of the Hydrologic Ensemble Forecast System (HEFS) currently in operational use in 173 

NOAA/NWS River Forecast Centers (RFC) (Demargne et al., 2014). Here we focus on model 174 

performance in the temporal domain across 1-10 day forecast lead times. In the second 175 

application, we synthetically generate forecasts of temperature and precipitation based on the 176 

NCEP GEFS/R numerical weather prediction model (Hamill et al., 2013) at 5 lead times and 177 

across 30 grid cells that span Northern California. This case study highlights the ability of the 178 

approach to capture key features of conditional dependence between forecasted variables across 179 

space and time. These two applications demonstrate the ability of the generalized approach to 180 

support the direct statistical model or conceptual hydrologic model approach for synthetic 181 

streamflow generation (Lamontagne & Stedinger, 2018).   182 
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 183 

2. Data 184 

All hydro-meteorological data were collected from a region within northern California (36.5
o
 – 185 

42.5
o
N and 119.5

o
 – 124.5

o
W; Figure 1). Within this region, our first synthetic forecast 186 

application focuses on hydrologic forecasts in the American River watershed (inset of Figure 1). 187 

We obtained hindcast daily streamflow data directly upstream of the Folsom reservoir from the 188 

NOAA/NWS California/Nevada River Forecast Center (CA/NV RFC, 2020) for the period of 189 

January 1 1985 to September 15 2010 and observed streamflow data from the California 190 

Department of Water Resources Data Exchange Center (CDEC) for the period of October 1 1948 191 

to September 15 2010 (CA/DWR, 2020). As observed data, we use full natural flow (FNF) into 192 

Folsom reservoir, which is an estimated time series of natural streamflow that has been adjusted 193 

from the gauged record to remove the impacts of upstream regulation and diversions 194 

(Zimmerman et al., 2018). This process is imperfect and negative flows are produced across 195 

approximately 8.5% of the record, which we corrected to zero flow in this study.  196 

 197 

The hindcasted streamflow data are medium-range ensemble mean output from the HEFS. These 198 

forecasts are driven by 6-hourly meteorological forcing from the NCEP Global Ensemble 199 

Reforecast System (GEFS) version 2 ensemble mean hindcast of precipitation (PRECIP), 200 

maximum temperature (TMAX), and minimum temperature (TMIN). Streamflow hindcasts are 201 

provided at an hourly timescale and initialized at 12:00 GMT daily. The HEFS model includes a 202 

Meteorological Ensemble Forecast Processor (MEFP) that converts the raw meteorological 203 

forecast data into a 61-member bias-corrected ensemble of mean areal temperature/precipitation 204 

(MAT/MAP) that is converted to streamflow through the Hydrologic Processor, incorporating 205 
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observed and forecast information from hydrologic, snowmelt, and reservoir models among 206 

others (Demargne et al., 2014). The hourly HEFS model output is aggregated to a daily scale 207 

between the time period from 08:00 AM – 08:00 PM GMT to match the observed FNF data, 208 

which is recorded at 00:00 local time. There were some missing data in the HEFS output, most 209 

notably in the period from September 16 – 30 for all years. We estimated these missing values 210 

using linear interpolation, since they often occur during times of low flow and little natural 211 

variability or for a small number of individual days scattered throughout the record.  212 

 213 
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 214 

 215 

Our second synthetic forecast application focuses on meteorological forecasts across 30 grid 216 

cells within Northern California (see Figure 1), including four grid cells that overlay the 217 

watersheds for Trinity Reservoir (TRI – 40.5
o
 – 41.5

o
N, 122.5

o
 – 123.5

o
N), Lake Mendocino 218 

(LAM – 38.5
o
 – 39.5

o
N, 122.5

o
 – 123.5

o
N), Oroville Reservoir (ORO – 39.5

o
 – 40.5

o
N, 120.5

o
 – 219 

121.5
o
N), and Folsom Reservoir (FOL – 38.5

o
 – 39.5

o
N, 119.5

o
 – 120.5

o
N). These four locations, 220 

42.5
o
 N 

American River 

1 – TRI (Trinity Reservoir) 

2 – LAM (Lake Mendocino) 

3 – ORO (Oroville Reservoir) 

4 – FOL (Folsom Reservoir) 

Figure 1: Geographical area of study (northern California). White dashed lines indicate the 30 
grid cells used in the meteorological analysis, where the four highlighted grid cells overlay 
substantial portions of the watersheds explored in the meteorological case study (TRI, LAM, ORO, 
and FOL). The region outlined in black delimits the Folsom Reservoir watershed used in the 
streamflow case study, where the pink outline in the inset shows the HUC-8 sub-basin boundaries 
of the north and south forks of the American River (USGS, 2020). 
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which we will focus on in the results, span the eastern and western slopes of the coastal ranges 221 

(TRI and LAM, respectively) and the middle and high elevations of the western slope of the 222 

Sierra Nevada range (ORO and FOL, respectively).  223 

 224 

We obtained observed data for PRECIP, TMAX, and TMIN from the NOAA-CIRES-DOE 20th 225 

Century Version 3 (20CRV3) historical reanalysis dataset between October 1 1948 to December 226 

31 2015 (NOAA PSL, 2020). We use reanalysis meteorology, instead of gauge-based 227 

meteorology, for its parity with the NCEP GEFS/R version 2 reforecast model (described 228 

below). The reanalysis data (hereafter referred to as observational data) are catalogued at the 229 

same spatio-temporal scale as the reforecasts (1
o
 x 1

o
, 6-hourly) and are also produced using the 230 

NCEP GFS as the underlying model, albeit a somewhat newer version (Slivinski et al., 2019). 231 

This ensures that underlying physical processes are emulated consistently between the 232 

observational and reforecast datasets. We also note that the HEFS model applies a bias 233 

correction to forecasted meteorology (via the MEFP), so synthetic forecasts of meteorology 234 

based on reanalysis observations would be bias corrected using gauged-based meteorological 235 

data before being used to develop HEFS streamflow forecasts (Demargne et al., 2014). We 236 

obtained hindcast meteorological data from the NCEP GEFS/R V2 data repository with the same 237 

variables and time-scales as the observational data, but starting at December 1 1984 (first 238 

available hindcast date). These data come from a single ‘frozen’ version of the GEFS reforecast 239 

model across an 11-member ensemble, and we used the ensemble mean values for all variables 240 

(Hamill et al., 2013; NOAA/NCEP, 2013).  241 

 242 

3. Generalized Synthetic Forecast Generator 243 
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The basic structure of the procedure is a linear additive error model where each member of the 244 

multivariate n x K set of observed data (𝑂𝑡,𝑗) is modeled as the sum of the corresponding forecast 245 

value (𝐹𝑡,𝑗) and an error component (𝜀𝑡,𝑗), with the allowance that errors may be auto-correlated, 246 

heteroskedastic, and non-Gaussian: 247 

 248 

𝑂𝑡,𝑗 = 𝐹𝑡,𝑗 +  𝜀𝑡,𝑗  𝑤ℎ𝑒𝑟𝑒 𝑡 ∈ (1,2, … , 𝑛) 𝑎𝑛𝑑 𝑗 ∈ (1,2, … , 𝐾)            (Eq. 1) 249 

 250 

Here, t=1,…,n denotes the date, and j=1,…K can denote different lead times (e.g., 1-day ahead, 251 

2-day ahead, etc.), locations (e.g. grid cells or sites at a single lead), or both (e.g., multiple 252 

forecast leads and locations). 253 

 254 

We model and generate errors in three primary steps (see Figure 2). First, we use a vector auto-255 

regressive (VAR) model to account for temporal auto-correlation within each of the K time-256 

series (Section 3.1). We then fit a generalized likelihood (GL) model (Schoups & Vrugt, 2010) to 257 

each of the K residual series (𝜖𝑡) of the VAR model, accounting for heteroscedasticity and 258 

transforming the result to K series of random deviates (𝑎𝑡) that we model with normalized SGED 259 

distributions (Section 3.2). Finally, we model the correlation of each of the K 𝑎𝑡 series via an 260 

empirical copula and simulate new series of 𝑎𝑡 using a K-nearest neighbor (KNN) and Schaake 261 

Shuffle approach. We generate synthetic forecasts errors using these simulated 𝑎𝑡 series by 262 

inverting the process of Sections 3.1 and 3.2 (Section 3.3). The remainder of the methods 263 

(Section 3.4) describes aspects of the procedure that are specific to given variables analyzed in 264 

this study (streamflow versus meteorology). 265 

 266 
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  267 

 268 

 269 

 270 

3.1. Vector Auto-Regressive (VAR) model 271 

We use a VAR model with K dimensions and lag order p to model auto-correlation in the 272 

forecast errors (Wilks, 2011): 273 

𝜺𝑡 =  ∑ ([ 𝜑𝑖] 𝜺𝑡−𝑖) + 𝝐𝑡    
𝑝
𝑖=1      (Eq. 2) 274 

 275 
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Here, the vector of original forecast errors (𝜺𝑡) at time-step t are equal to a linear function of 276 

lagged errors (𝜺𝑡−𝑖), with K x K matrices of coefficients ([𝜑𝑖]) out to lag order p. Eq. 2 reduces 277 

to a set of K equations that are solved via linear regression, creating both large parameter 278 

dimensions (VAR coefficients 𝜑 scale at (Kp)
2 
) and potential problems arising from high multi-279 

collinearity (Wilks, 2011; Nicholson et al., 2020). A number of methods have been proposed to 280 

account for these issues in VAR models (Wei, 2019 and references therein); we utilize the 281 

approach of Nicholson et al., (2020) employing a group LASSO penalized model to estimate the 282 

regression coefficients while driving redundant parameters to zero. This approach selects the 283 

LASSO penalty parameter (λ) based on a rolling cross-validation and out-of-sample mean 284 

standard forecast error, helping to stabilize estimation and mitigate overfitting. We fit this model 285 

using the R-package ‘BigVAR’ (Nicholson et al., 2019). We used a maximal lag order (p) of 3, 286 

which we found was sufficient to reduce autocorrelation while maintaining model parsimony 287 

(see supporting information, Figure S1). 288 

 289 

The residuals of the VAR model (𝜖𝑡,𝑗) are assumed to be the product of a standard random 290 

deviate (𝑎𝑡,𝑗) and an associated term to capture time-varying standard deviation (𝜎𝑡,𝑗): 291 

𝜖𝑡,𝑗  =  𝜎𝑡,𝑗𝑎𝑡,𝑗       (3) 292 

 293 

 Models for these terms are discussed next in Section 3.2. 294 

 295 

3.2. Generalized Likelihood and Skew Generalized Error Distribution (GL/SGED) model 296 

We use the generalized likelihood (GL) method of Schoups and Vrugt (2010) to fit each of the K 297 

univariate time-series of 𝜖𝑡 to a normalized SGED distribution with corrections for 298 
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heteroscedasticity.  To model heteroscedasticity, the standard deviation at time t (𝜎𝑡,𝑗) is modeled 299 

as a linear function of the observed value (𝑂𝑡,𝑗): 300 

 301 

𝜎𝑡,𝑗 =   𝜎0,𝑗 +  𝜎1,𝑗𝑂𝑡,𝑗                 (Eq. 4) 302 

 303 

The estimated standard deviation 𝜎𝑡,𝑗 is paired with the VAR model residual 𝜖𝑡,𝑗 to estimate a 304 

standardized random deviate 𝑎𝑡,𝑗: 305 

  306 

  𝑎𝑡,𝑗 =  𝜖𝑡,𝑗 𝜎𝑡,𝑗⁄                 (Eq. 5) 307 

 308 

These deviates 𝑎𝑡,𝑗 are assumed to follow a normalized skew generalized error distribution 309 

(SGED) distribution with zero mean, unit variance, and parameterized with skew (𝜉𝑗) and 310 

kurtosis (𝛽𝑗) parameters. This is equivalent to the parameterization of the skew exponential 311 

power (SEP) distribution in Schoups and Vrugt (2010), although other parameterizations of the 312 

SGED are available (e.g., Wurtz et al., 2020). The kurtosis parameter (𝛽𝑗) in this model can vary 313 

continuously between -1 and 1, where values of 1, 0, and approaching (in the limit) -1 314 

correspond to Laplacian, Gaussian, and uniform distributions, respectively. Skewness (𝜉𝑗) can 315 

vary continuously between 0.1 and 10 with 1 being a centered distribution and values less than 1 316 

(greater than 1) corresponding to negative skewed (positive skewed) distributions. We use 317 

maximum likelihood estimation via numerical optimization to estimate the four parameters 318 

(𝜎0,𝑗 , 𝜎1,𝑗 , 𝛽𝑗 , 𝜉𝑗) simultaneously. Note that different parameters are estimated for each of the 319 

j=1,…,K series.  320 

 321 
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3.3. Synthetic Forecast Generation 322 

To generate consistent forecast errors across space and lead time, we must preserve the 323 

correlations among the K series of 𝑎𝑡. These correlations reflect the tendency of meteorological 324 

phenomena (e.g. frontal systems, atmospheric rivers, etc.) and forecasts thereof to organize in 325 

space and time, which in turn forces space-time organization in forecast errors. In addition, it is 326 

also important to preserve the correlation between the observations and each of the 𝑎𝑡,𝑗 series 327 

(Lamontagne & Stedinger, 2018). This is because actual forecasts tend to underestimate the 328 

variance of the observations, particularly if post-processed via model output statistics (MOS). 329 

However, if forecast errors are assumed to be independent of the observations, then synthetic 330 

forecasts generated by adding synthetic forecast errors to observations will have a variance 331 

greater than the actual forecasts.  332 

 333 

The multivariate relationships between the K series of 𝑎𝑡 and the observations may be difficult to 334 

model using a parametric approach (e.g., Gaussian or student-t copulas). Empirical copulas, on 335 

the other hand, preserve the observed correlation structure exactly, but random samples from an 336 

empirical copula will be limited to the range of values observed in the historic record. To address 337 

this limitation, we employ a version of the Schaake Shuffle (Clark et al., 2004), which can be 338 

interpreted as a type of empirical copula method. We use the Schaake Shuffle, coupled with a K-339 

nearest neighbor (KNN) sampling technique, to synthesize series of 𝑎𝑡,𝑗 outside of their historic 340 

range but that exhibit the same rank structure as the original data.  341 

 342 

The steps to generate synthetic forecasts are summarized in Figure 2 and Figure 3, the latter of 343 

which provides an overview of the procedure for sampling synthetic forecast errors. We use the 344 
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terminology ‘fitted period’ to refer to the time period (length n) in which the model parameters 345 

are estimated and ‘synthetic period’ to refer to the time period (length ns) over which synthetic 346 

forecasts are generated. The fitted period aligns with the period containing available hindcast 347 

data, while the synthetic period aligns with the available observational period excluding the fitted 348 

period. We use the notation tilde (~) to refer to data in the synthetic period, an accent to refer to 349 

randomly generated data (e.g., 𝑎́𝑡,𝑗), and the generic variable 𝑍𝑡 to refer to observational data 350 

used for KNN sampling. The steps to generate a synthetic forecast are as follows: 351 

 352 

1) Rank observed 𝑎𝑡,𝑗 values in each of K dimensions for the fitted period (t=1,…, n) 353 

2) Generate a new set of standardized random deviates (𝑎́t,j) for each dimension over the fitted 354 

period using the fitted SGED distributions 355 

3) Rank 𝑎́t,j values and ‘Schaake shuffle’ to match original rank structure from step 1 356 

4) For each time step ts=1,…, ns in the synthetic period: 357 

4a. Sample via KNN an observation 𝑍𝑡 from the fitted period based on the synthetic 358 

period observation 𝑍̃𝑡𝑠  359 

4b. Populate synthetic forecast error matrix with 𝑎́t,j values associated with 𝑍𝑡 360 

Result: An ns x K dimension matrix composed of K series of (rank correlated) synthetic 361 

residuals 𝑎̃𝑡𝑠,𝑗 over the synthetic period 362 

5) Back-transform all 𝑎̃𝑡𝑠,𝑗   to 𝜖𝑡̃𝑠,𝑗  using Eqs. 4 & 5, fitted 𝜎0,𝑗 and 𝜎1,𝑗, and 𝑂𝑡𝑠,𝑗 363 

6) Convert 𝜖𝑡̃𝑠,𝑗  to raw forecast errors 𝜀𝑡̃𝑠,𝑗 using Eq. 2 and fitted VAR coefficients [𝜑𝑖] 364 

7) Convert 𝜀𝑡̃𝑠,𝑗  to synthetic forecasts 𝐹̃𝑡𝑠,𝑗 using Eq. 1 and 𝑂𝑡𝑠,𝑗 365 

8) Repeat steps 2-7 M times to create M separate synthetic forecasts.   366 
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In the procedure above, each synthetic forecast (composed of an ns x K matrix of residuals over 368 

the synthetic period) is populated with randomly generated standardized residuals (𝑎́t,j) that are 369 

‘Schaake shuffled’ to match the original rank structure over the fitted period. A row of these 370 

standardized residuals is then sampled and used for time step ts in the synthetic period. This 371 

sampling is based on a KNN approach, whereby the synthetic period observation (𝑍̃𝑡𝑠
) for time 372 

step ts is used to select a value of 𝑍𝑡 from the fitted period (along with the randomly generated 373 

standardized residuals associated with it). The KNN procedure uses a k value of ~ √𝑛
2

 (Lall and 374 

Sharma, 1996), a discrete kernel function (Steinschneider and Brown, 2013) to weight the k 375 

neighbors for each sample, and a Euclidean distance metric. This approach ensures that the 376 

residual values in the synthetic forecast error matrix (𝑎̃𝑡𝑠,𝑗) retain the correlation structure of the 377 

original empirical copula in the fitted period. The synthetic residuals 𝑎̃𝑡𝑠,𝑗 are then converted 378 

back to raw errors (𝜀𝑡̃𝑠,𝑗) and synthetic forecasts (𝐹̃𝑡𝑠,𝑗) by reversing the procedures in Sections 379 

3.1 and 3.2. 380 

 381 

It is important to note that 𝑍𝑡 may refer to the observations directly, or it may refer to 382 

transformations of the observed data. In particular, 𝑍𝑡 could be a scalar observation (e.g., 383 

observed flow), a transformed scalar observation (e.g., non-exceedance probability of observed 384 

flow), or a vector of transformed observations (e.g., principal components of precipitation 385 

occurrence). This is discussed in Section 3.4. However, when calculating the heteroscedastic 386 

components in Eq. 4 or manipulating Eq. 1, the direct observational data 𝑂𝑡,𝑗 is used.  387 

  388 

3.4. Application to Hydrology and Meteorology  389 
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The general methodology for synthetic forecasts above is applied in two case studies: 1) 390 

synthetic streamflow forecasts for Folsom Reservoir, CA that emulate the RFC HEFS 391 

forecasting system; and 2) synthetic temperature and precipitation forecasts across Northern 392 

California. Certain details of the generalized approach differ across these two applications.  393 

 394 

For streamflow forecasts, we fit all model parameters separately by month to capture seasonal 395 

behavior in forecast residuals. The observed data used in the KNN sampling (𝑍𝑡 and 𝑍̃𝑡𝑠
) is set 396 

equal to empirical non-exceedance probabilities of the observed streamflow (i.e., FNF) and 397 

calculated across the entire observation record (fitted and synthetic periods). In the KNN 398 

resampling, nearest neighbors are ambiguous when observed FNF values are zero, which occurs 399 

often in certain seasons. KNN samples in these instances are chosen randomly from all samples 400 

associated with zero observed flow values.  401 

 402 

In the meteorological case, initial experiments (not shown) suggested that it was sufficient to fit 403 

parameters separately for the cold season (Oct.-Mar.) and warm season (Apr.-Sep.) to account 404 

for seasonality in residual behavior. We use observed precipitation occurrence for the given day 405 

(t) and day prior (t-1) as the basis for selecting nearest neighbors. For this study, we consider 30 406 

grid cells across the Northern California region, and create a sampling matrix of dimension 60 407 

(30 [day t] observations + 30 [day t-1] observations). We reduce this matrix to 10 dimensions 408 

(91.8% proportion of variance explained) using logistic principal component analysis (logistic 409 

PCA; Landgraf & Lee, 2015), which we implement with the ‘logisticPCA’ R-package (Landgraf, 410 

2016). Then, for each precipitation occurrence observation from the synthetic period (i.e., 𝑍̃𝑡𝑠
, a 411 

vector of 10 PC values), the KNN algorithm is used to select a precipitation occurrence 412 
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observation from the fitted period (𝑍𝑡, also a vector of 10 PC values), along with the associated 413 

standardized residuals (𝑎́t,j). As in the streamflow example, precipitation occurrence observations 414 

when there is no precipitation in any grid cell for day t or t-1 are randomly sampled from all days 415 

in the fitted period where the same condition is observed. Also importantly, we impose the 416 

occurrence-based structure from each KNN sample on our synthetic forecast. That is, whatever 417 

grid cells had forecasted non-zero precipitation from the resampled day in the fitted period (𝑍𝑡) 418 

are also assumed to have forecasted non-zero precipitation for the associated synthetic day (𝑍̃𝑡𝑠
). 419 

Then, for those grid cells with forecasted non-zero precipitation, we develop synthetic, non-zero 420 

precipitation forecasts based on synthesized residuals and the procedures in Section 3.3. This 421 

approach enables a straightforward way to capture realistic proportions of true 422 

positives/negatives and false positives/negatives from the associated forecasts. In cases where the 423 

synthetically generated residuals produce a negative precipitation forecast, we resample until a 424 

non-negative result is produced.  425 

 426 

Finally, we note that NCEP GEFS/R V2 temperature forecasts exhibited consistently biased 427 

behavior, particularly TMIN. To improve modeling, we subtract these biases based on a monthly 428 

mean, model the resultant unbiased forecast errors, and then add the biases back in when creating 429 

the synthetic forecasts.  430 

 431 

4. Results 432 

4.1. Synthetic Streamflow Forecasts  433 

We first analyzed model performance against HEFS inflow forecasts across 1-10 day lead times 434 

for Folsom reservoir. Synthetic streamflow forecast models were developed separately by month, 435 
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but in the results below we selectively highlight model behavior in representative months across 436 

the year. Figure 4 shows residual behavior and some component of model fit in January and July 437 

for 1-day and 5-day lead times. Similar results for other months are presented in supporting 438 

information Figures S3-S6. The top two rows of Figure 4 show the distribution and 439 

autocorrelation function of the raw residuals (𝜀𝑡). For both months and lead times, the raw 440 

residuals are skewed and leptokurtic. The residuals in January exhibit a larger range, less 441 

autocorrelation, and a clear left skew, indicating a tendency towards over-prediction. The 442 

residual range is consistent with greater and more frequent precipitation in January that increases 443 

the chances for large streamflow errors, while a lack of snowmelt decreases error persistence. 444 

Conversely, in July, residuals are less skewed and much more persistent, reflecting the snowmelt 445 

dominated hydrology typical of the warm season in mountainous regions.  446 

 447 

The transformed residuals (𝑎𝑡) for both months and lead-times exhibit a similar distribution as 448 

the raw residuals (Figure 4, row 3), with a fat-tailed Laplacian distribution (𝛽 ≈ 1) and some 449 

amount of negative skew (𝜉 < 1). Both the heteroscedastic intercept (𝜎0) and scaling coefficient 450 

(𝜎1) terms are substantially higher in January than July, suggesting greater baseline variability 451 

and conditional heteroscedasticity in that month, respectively. Though not shown, 452 

autocorrelation in the 𝑎𝑡 series has been removed via the VAR model. The most notable 453 

difference between the 𝑎𝑡 distributions across the two months is the more prominent negative 454 

skew in the January residuals, which follows the clear negative skew in the raw residuals. In both 455 

cases, the fitted SGED pdfs appears to fit the data well, but we also confirm goodness-of-fit 456 

(GoF) visually through Q-Q plots (supporting information, Figure S2).  457 

 458 
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The final two rows of Figure 4 illustrate the complicated relationship between the observed 459 

streamflow values and the 𝑎𝑡 series (row 4), as well as the correlation between the 𝑎𝑡 series at 460 

different lead times (row 5). These relationships are shown in terms of the empirical non-461 

exceedance probabilities (NEPs) for all variables. The NEP values for the 𝑎𝑡 series at 1- and 5-462 

day lead times are clearly and strongly correlated for both months, although the dependence is 463 

weaker in January but with more upper and lower tail dependence (row 5). In contrast, the 464 

relationships between the NEPs of observed flow and the 𝑎𝑡 series at different leads times 465 

exhibit clustered and asymmetric behavior (row 4). For example, in January, under-predicted 466 

forecasts are common for moderately sized flow events at both lead times (i.e., 𝑎𝑡 NEPs between 467 

0.8 – 0.9 for observed flow NEPs between 0.4 - 0.5), while over-predicted forecasts (.e.g, 𝑎𝑡 468 

NEPs between 0.0 – 0.4) frequently occur at moderate-to-high flow events (observed flow NEPs 469 

between 0.5 - 0.9). In July, over-predictions for very low flows are very common (i.e., 𝑎𝑡 NEPs 470 

between 0.0-0.5 for observed flow NEPs near zero), while higher flows in July are very 471 

frequently under-estimated. These error clusters are unique to the calibration of the HEFS model 472 

and should be captured in synthetic forecast generation, which motivates our use of an empirical 473 

copula in the generation process (see Section 3.3).  474 

 475 
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476 

  477 

1-Day Lead               5-Day Lead         1-Day Lead                 5-Day Lead  

January                                        July  

Figure 4: Graphical depiction of model fit to Folsom Reservoir hydrologic forecasts for January (July) in 
the left (right) halves of the overall plot. In the top 4 rows, residual fit analysis at 1-day (5-day) forecast 
leads are indicated in the left (right) halves of the monthly sub-sections. Top row is raw forecast 
residuals with the second row showing the autocorrelation function (ACF) plots. Third row shows 
transformed residuals (at) as black histogram bars with the solid red line showing the fitted SGED 
(0,1,β,ξ) pdf and fitted parameters indicated in black text. Fourth row shows density plots of observed 
non-exceedance probabilities (NEP) versus at NEPs, where red (blue) coloration show high (low) 
density. Bottom row is a density plot comparison of at NEPs between 1 and 5-day leads. 
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Figure 5 more clearly shows the seasonality of parameters in the GL/SGED model (and hence 478 

error structure) at lead times of 1, 3, 5, and 10 days. Seasonality in the heteroscedastic intercept 479 

(𝜎0) is consistent across lead times throughout the warm season (AMJJAS), but diverges 480 

substantially in the cold season (ONDJFM), with larger values more common at longer lead 481 

times. In general, there is higher static error variance in the cold season when storms are 482 

frequent. The heteroscedastic scaling term (𝜎1) is very similar across lead times, and generally is 483 

lower during months when flows are higher due to snowmelt.  484 

 485 

The SGED kurtosis parameter (𝛽) remains at or near 1 (Laplacian distribution) for most months 486 

and lead times, with the most noticeable exception being the 1-day lead forecasts that decrease 487 

below 1 (i.e., become more Gaussian) during the cold season. This reflects a higher probability 488 

for small to moderate forecast errors at a 1-day lead, especially during the more variable cold 489 

season months. At 1, 3, and 5 day lead times, the SGED skewness is generally negative (𝜉 < 1). 490 

At a 10-day lead, the skewness disappears or becomes slightly positive (𝜉 ≥ 1). This shift likely 491 

reflects a tendency towards climatology in the ensemble mean forecasts at longer leads and 492 

subsequent under-predictions of large events. Finally, we note that the skewness parameter and 493 

heteroscedastic scaling term (𝜎1) are negatively correlated, which likely explains some of the 494 

aberrant spikes in these parameters during certain months (August, December).  495 

  496 
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 497 

 498 

To assess performance of the model for streamflow forecasts, we create 1000 synthetic forecasts 499 

over the fitted period (when hindcasts are available) and compare them to the actual HEFS 500 

forecasts. Figure 6 shows the distribution of these synthetic forecasts (expressed as 50% and 501 

95% prediction intervals) for four months in 1986, as well as a single synthetic forecast trace. 502 

Similar results for a year in the synthetic period (1955) are shown in supporting information 503 

Generalized Likelihood Best Fit Parameters by Month 

Figure 5: Fitted values (y-axis) by month (x-axis) for the four parameters of the generalized 
likelihood function across 1, 3, 5, and 10-day forecast leads. σ0 

 and σ1 are the intercept and 
slope parameters for heteroscedasticity, respectively, while β and 𝜉 are the kurtosis and 
skewness parameters of the normalized SGED distribution.  
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(Figure S7). Several results emerge from Figure 6. First, we note that across all months and lead 504 

times, the model preserves cross-correlation in forecast error structure. For example, on January 505 

17 1986, a large spike in the observed inflow is systematically under-predicted by the 1, 3, 5, and 506 

10 day actual HEFS forecast (HEFS-sim). This behavior is reflected by the synthetic forecast 507 

trace (HEFS-syn) that also under-predicts across all lead times. In addition, the model captures 508 

important relationships between the observed flow and forecasts, including the general tendency 509 

for forecasts to under-predict large, infrequent events, especially at long lead-times. This is seen 510 

most clearly by the 50th percentile bounds that are depressed below the highest observed flow 511 

values, and is also confirmed through direct comparisons between observed flow and forecast 512 

residuals for both the empirical and synthetically generated data (see supporting information 513 

Figure S8).  514 

 515 

Figure 6 also highlights how the synthetic model preserves auto-correlation in the forecasts. For 516 

instance, at a 5-day lead in April, the actual HEFS forecast (HEFS-sim) shows persistent over-517 

predictions across the April 5-25 interval, while the synthetic forecast trace (HEFS-syn) shows a 518 

similar degree of persistence but for under-predictions. Autocorrelation appears to increase with 519 

lead time, especially in months driven by snowmelt.  520 

 521 

The 10-day lead-time example for January 1986 displays a noteworthy limitation of the 522 

modeling structure. The empirical copula maintains the correlation between observed flows and 523 

forecast residuals, which generally lead to forecast under-predictions for large inflow events. 524 

When coupled with the autocorrelation structure imposed by the VAR model, this tends to drive 525 

even greater under-predictions in the following time steps. For very large inflow events, this can 526 
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cause the synthetic forecasts to be unrealistically low, as shown by the January 10-day lead 527 

synthetic forecast trace (HEFS-syn) reaching zero flow.  528 

 529 

For the remaining two months (July and October, row 3-4), we note many of the same 530 

characteristics as for January and April. However, the actual HEFS forecasts in these months 531 

display smoothed behavior and are increasingly detached from the variability in the observed 532 

inflow. The uncertainty bounds capture the actual forecast traces reasonably well, but the 533 

physical behavior of the synthetic forecast trace, which is tied to the observations, is substantially 534 

different than that of the smooth HEFS forecasts. We note, though, that the flow magnitudes in 535 

these months is rather low, so the practical implications of these differences in forecast behavior 536 

is likely small.  537 
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 538 

 539 

To more systematically validate synthetic forecast performance, Figure 7 shows synthetic 540 

forecast reliability and skill. Reliability refers to the frequency that the HEFS forecasts lie within 541 

the 95% synthetic forecast bounds (which should be 95% if the synthetic forecasts were 542 

generated correctly). We assess reliability for different observed flow ranges, discretized into 543 

percentile bins (0-10
th

 percentile, 10-20
th

 percentile, etc.). Across lead times, January, April, and 544 

October reliability is generally near the 95% target across flow percentiles, albeit at times 545 

Figure 6: Folsom Reservoir (FOL) hydrographs from a selected year (1986) for four different months 
spaced evenly across the year showing synthetic forecast performance at 1, 3, 5, and 10 day 
forecast leads. Observed full natural flow is indicated by the black solid line, the HEFS ensemble 
mean forecast by the green solid line, and a randomly sampled synthetic forecast by the red solid 
line. Light grey (yellow) shading indicate the 95th (50th) percentile bounds from 1000 synthetic 
forecast samples. 
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slightly below. The 1-day lead forecasts are slightly less reliable than the other lead times, 546 

particularly at low to moderate flows, which may be tied to the slightly more Gaussian (i.e. less 547 

fat-tailed) fits noted above for this lead-time that would lead to tighter uncertainty bounds. The 548 

July reliability diverges substantially from the other months and is usually well below 95%. Most 549 

notably, reliability is low at both the lowest and highest flows. The HEFS forecasts exhibit 550 

smoothed and sometimes biased behavior in these low-flow months (see Figure 6). This could 551 

lead to extended periods where observed flows are at or near zero and the actual HEFS forecasts 552 

are biased above the synthetic forecast uncertainty bounds, explaining the low reliability at low 553 

flows. During rare high flows in July the HEFS forecasts often significantly under-predict, and 554 

when coupled with the low error variance for this month, synthetic forecasts tend to be less able 555 

to capture these under-predicted HEFS forecasts.  556 

 557 

Finally, we assess skill in the synthetic forecasts compared to the actual forecasts using a 558 

common mean squared error climatological skill score (𝑆𝑆𝑐𝑙𝑖𝑚 = 1 − 
𝑀𝑆𝐸

𝑀𝑆𝐸𝑐𝑙𝑖𝑚
; Wilks, 2011). 559 

This score captures the ability of the forecasts to outperform a climatological forecast, which in 560 

this case is a 7-day rolling average for each day of the year across the observational record. A 561 

value of 1 is a perfect forecast, a value of 0 is equivalent to climatology, and a negative value is 562 

worse than climatology. Figure 7 compares whether the synthetic forecasts match the skill of the 563 

actual HEFS forecasts for different lead times and months. January skill for the synthetic 564 

forecasts show good correspondence to actual forecasts, with the actual forecast skill remaining 565 

well within the 50th percentile bounds. April and July synthetic forecasts have too much skill 566 

compared to the actual forecasts at shorter lead times, but capture the actual forecast skill more 567 

accurately at longer leads. The overestimation of skill is particularly prevalent in July, when 568 
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synthetic forecast reliability is also lowest. October underestimates skill relative to the actual 569 

forecasts, although the actual forecast skill still lies within the 95% bounds of the synthetic 570 

forecasts. Overall, the skill in the synthetic forecasts generally reflects that in the actual forecasts 571 

across months and lead times, but with some deviations that are specific to different times of 572 

year.  573 

 574 

 575 

 576 

4.2. Synthetic Meteorological Forecasts  577 

The meteorological case study illustrates a much higher dimensional problem, as we model 3 578 

variables (PRECIP, TMAX, TMIN) across 30 grid cells at 5 lead times, resulting in K=450 579 

Figure 7: Top row – 95th percentile reliability plots for 1, 3, 5, and 10-day forecast leads across 
four selected months. The dashed grey line indicates 95% reliability while the x-axis labels show 
the center of each of the 10 percentile bins (i.e. ‘5 percentile’ indicates 0 – 10 percentile values of 
the observed flow). Bottom row – Climatological skill score plots based on mean squared error. 
The black line shows the HEFS ensemble mean forecast skill across the 10 forecast leads while the 
gray (yellow) shading indicate 95th (50th) percentile bounds across 1000 samples. 
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dimensions. We split the meteorological data into cold-season (ONDJFM) and warm-season 580 

subsets (AMJJAS) for model fitting, and focus our results on synthetic forecast performance 581 

during the cold season at four grid cells that overlay key watersheds (TRI, LAM, ORO, and 582 

FOL; see Figure 1). Figure 8 shows residual behavior and some components of model fit in the 583 

cold season for 2 of the 3 variables (PRECIP, TMAX) at Lake Mendocino (LAM), since TMIN 584 

behaves in a qualitatively similar manner to TMAX. Plots for additional variables, sites, and lead 585 

times are shown in supporting information Figures S9-S13. In Figure 8, PRECIP standardized 586 

forecast residuals (𝑎𝑡) for the LAM site show similar distributional qualities to those for 587 

streamflow, while TMAX standardized residuals are more Gaussian (top row). The SGED model 588 

is able to capture this behavior well, and goodness-of-fit is consistent across sites and variables 589 

(see supporting information Figure S14). Both forecasts show some level of conditional 590 

heteroscedasticity (𝜎1 > 0), though TMIN and TMAX are sometimes fit with no conditional 591 

heteroscedasticity at other locations/lead times. Empirical correlations between 𝑎𝑡 NEP values at 592 

LAM and TRI (row 2) show symmetric tail-dependence typical of a t-copula (Chen & Guo, 593 

2019) for TMAX, while PRECIP shows more pronounced lower tail dependence and other 594 

asymmetric behavior. The synthetic forecasts capture this behavior well (row 3). The final two 595 

rows of Figure 8 show raw residuals versus observed precipitation and temperature for the 596 

original hindcasts (row 4) and the synthetic forecasts (row 5). For both variables, the model 597 

accurately preserves much of the relationship between the raw residuals and the observations. 598 

We do note though that the synthetic residuals for PRECIP show slightly less variability at low 599 

observed values than the empirical residuals and vice versa for moderate to high observations.  600 

 601 



33 
 

 602 

 603 

 604 
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Figure 8: Model fit metrics for cold season (ONDJFM) precipitation (PRECIP – left 
column) and maximum temperature (TMAX – right column) at a 5-day forecast 
lead for LAM watershed grid cell. Top row - Fitted residuals (at) as in Figure 3, 
row 3. 2nd and 3rd row – at NEP correlations between LAM and TRI grid cells for 
empirical (synthetic) data in the 2nd (3rd) row where the 3rd row shows the 
density of 100 synthetic samples. 4th and 5th row – Observed values plotted 
against residual errors for empirical (synthetic) in the 4th (5th) row. Synthetic 
residual errors are shown from a single synthetic forecast sample. 
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 605 

Similar to our approach for streamflow, we assess synthetic meteorological forecast performance 606 

using 1000 synthetic forecast traces over the fitted period. Figure 9 shows the distribution of 607 

these synthetic forecasts for PRECIP, TMAX, and TMIN in February 1986. Similar results for 608 

another month and year from the synthetic period (December 1955) are shown in supporting 609 

information (Figure S15). In Figure 9, we note similar cross-correlated behavior in the forecasts 610 

to those of streamflow, except in this instance the correlations are spatial. For example, at all 611 

sites the sampled synthetic PRECIP forecast trace (GEFS-syn) primarily underestimates the 612 

observed event from February 13-17, and then at three sites (LAM, ORO, and FOL) it 613 

overestimates the observations between February 18-19. This shows how the synthetic forecast 614 

trace captures the synchronized error in event timing across locations.  615 

 616 

The TMAX and TMIN GEFS forecasts exhibit less variable behavior that is well captured by the 617 

synthetic forecast model. Cross-correlations still exist (note the over-prediction of TMAX near 618 

February 14 and 22 across sites). There is some moderate negative bias in the TMIN forecasts 619 

that is especially evident at the LAM location, which the synthetic forecasts are able to capture 620 

through a simple bias correction (see Section 3.4).  621 

 622 

 623 
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 624 

 625 

Figure 10 shows forecast validation metrics across sites for PRECIP, where reliability and skill 626 

are calculated only for non-zero precipitation days. Reliability for precipitation (top row) is 627 

generally above the 95% target for all sites, especially for the lower percentile bins, suggesting 628 

the synthetic forecasts are somewhat over-dispersed. Some slight dips in reliability occur across 629 

sites and lead times near the middle percentile bins, but the only noticeable excursions below the 630 

95% line occur at LAM (1 and 5-day lead) and FOL (1-day lead). PRECIP forecast skill (2nd 631 

             TRI                          LAM                   ORO          FOL 

Figure 9: Synthetic forecast performance for February 1986 (extreme precipitation event mid-
month) across 4 selected watersheds at a 5-day lead for variables of precipitation (PRECIP), 
maximum temperature (TMAX), and minimum temperature (TMIN). Observed values are 
indicated by solid black line, the GEFS ensemble mean forecast by solid green line, and the 
synthetic forecast (single random sample) by the solid red line. Grey (yellow) shading show 95th 
95th (50th) percentile bounds across 1000 synthetic samples.   
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row) is summarized using a mean absolute error climatological skill score, which is similar to the 632 

metric used for streamflow but with absolute instead of squared errors (Wilks, 2011). The 633 

synthetic bounds for precipitation skill closely match that of the actual forecast, with only one 634 

exception of slightly over-estimated skill at shorter lead times for the ORO site. Uncertainty 635 

bounds for the skill metric are much tighter than those for the streamflow case study (Figure 7), 636 

largely because the sample size of observations is much larger for the meteorological case study 637 

(all data within the cold season, rather than just one month). Finally, we assess the ability of 638 

synthetic precipitation forecasts to replicate false positive and false negative PRECIP rates in the 639 

last two rows of Figure 10. As noted in section 3.4, these occurrence-based attributes of 640 

precipitation are sampled along with the synthetic 𝑎𝑡 values, so we are primarily validating the 641 

meteorological KNN sampling procedure. Both false positive (row 3) and false negative (row 4) 642 

behavior is maintained accurately. 643 

 644 

Figure 11 shows reliability and skill for TMAX forecasts. Reliability is somewhat higher than 645 

the 95% target at a 5-day lead at all sites (i.e., over-dispersed), but is near or sometimes slightly 646 

below the target at a 1-day lead. This likely results from the more Gaussian behavior of the error 647 

distribution at a 1-day versus a 5-day lead (see supporting information Figure S9). The pattern of 648 

forecast skill across lead times is also closely matched by the synthetic TMAX forecasts, 649 

although with the latter biased slightly positive. Again, the uncertainty bounds are very tight in 650 

these skill figures due to a large sample size.  651 

 652 

Overall, Figures 10 and 11 suggest that the synthetic meteorological forecasts accurately 653 

preserve many of the properties of the empirical hindcasts at multiple sites and lead times. 654 
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 655 

 656 

             TRI                            LAM          ORO               FOL 

Figure 10: Precipitation (PRECIP) forecast metrics across 4 selected watershed grid cells. Top row 
– 95th percentile reliability plots; as in Figure 6, top row, but with 1-day (5-day) lead forecasts 
shown by black (red) solid line. 2nd row – Climatological skill score by mean absolute error 
(SSMAE) across 5 forecast leads with the solid black line showing observed skill and gray (yellow) 
shading indicating 95th (50th) percentile bounds of 1000 synthetic samples. 3rd and 4th row: As 
in row 2, but showing false positive and false negative rates for rows 3 and 4 respectively. 
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 657 

5. Discussion and Conclusion 658 

This study contributes a generalized methodology to create synthetic forecasts from observed 659 

data that preserve empirical space-time and inter-variable relationships in forecast error. The 660 

methodology is adaptable to a wide variety of distributional forms and explicitly accounts for 661 

auto-correlation and heteroscedasticity in the forecast errors. We demonstrated short to medium 662 

range synthetic forecast generation in two case studies that highlighted the ability of the model to 663 

simulate accurately streamflow and meteorological forecasts across multiple lead times and 664 

locations from modern operational forecast systems. The two applications highlighted the 665 

model’s potential for developing long records of streamflow forecasts via either the direct 666 

statistical approach or the conceptual hydrologic approach commonly used in designing, testing, 667 

and validating forecast informed water management policies (Lamontagne & Stedinger, 2018).  668 

 669 

             TRI                            LAM          ORO               FOL 

Figure 11: Cold season (ONDJFM) maximum temperature (TMAX) forecast metrics across 4 
selected watershed grid cells. Top row – TMAX reliability as in Figure 9, top row. Bottom row – 
SSMAE for TMAX as in Figure 9, row 2.   
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For the streamflow case study, we found that synthetic forecasts performed better (i.e., more 670 

accurately captured hindcast behavior) in the cold season months (ONDJFM) when observed 671 

streamflow was greater and more variable. The correspondence between the actual HEFS 672 

forecasts and observations deteriorated in the warm season (AMJJAS), causing a corresponding 673 

decrease in synthetic forecast performance. In general, our empirical copula and KNN sampling 674 

approach preserved key statistical relationships between the observations and the forecasts and 675 

between forecasts at different lead times.  However, some challenges did remain; for instance 676 

when autocorrelation in forecast errors during large, infrequent flow events led to some 677 

unrealistically low synthetic forecasts during those events. 678 

 679 

To support the conceptual hydrologic approach, we produced correlated meteorological forecasts 680 

of PRECIP, TMAX, and TMIN across locations and lead times. We found that our methodology 681 

readily adapted to the different distributional forms found in these variables and that synthetic 682 

output performed well against the actual forecasts. We also found that our sampling procedure, 683 

tailored specifically to capture the occurrence-based statistics of PRECIP, enabled an accurate 684 

representation of false positives and false negatives in the synthetic forecasts.  685 

 686 

While the results of the two case studies were promising, there are avenues for model 687 

improvement that warrant additional discussion. In particular, modifications to the copula and 688 

sampling aspects of the methodology offer the potential for improved performance. We used an 689 

empirical copula, Schaake shuffle, and KNN sampling approach to explicitly preservecomplex 690 

correlation structures in the data. However, depending on the structure of the data, a parametric 691 

copula or multivariate kernel density estimate (Scott, 1992) of the empirical copula could also be 692 
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employed, and this may allow for a richer characterization of forecast uncertainty across space 693 

and lead times. There are also other methods for bias correction, heteroscedastic modeling, and 694 

observational scaling that could be considered in future applications (see Schoups & Vrugt, 695 

2010). 696 

 697 

The flexibility of the modeling framework directly addresses critiques that research efforts in 698 

water resources often suffer from a lack of generalizability across spatio-temporal scales (Brown 699 

et al, 2015; Lall, 2014). While the case studies presented here focused on synthetic streamflow 700 

and meteorological forecasts, the model could be extended to other applications that require 701 

space-time scalability. For instance, recent work has stressed the importance of stochastic 702 

watershed modeling (Steinschneider et al., 2015; Vogel 2017) for long-term hydrologic risk 703 

assessment (rather than short-term forecasting). The model presented in this work could readily 704 

be extended to help develop correlated stochastic watershed models for river basins across a 705 

region, allowing for better characterization of risk in complex, multi-basin water systems. 706 

Furthermore, the adaptability of the methodology makes it well suited to exploratory efforts in 707 

forecast informed design like high-dimensional input/indicator variable selection (IVS) (Herman 708 

et al., 2020; Giuliani et al., 2015; Fernando et al., 2009), in addition to validation and testing of 709 

more established designs associated with FIRO (Jasperse et al., 2017; Delaney et al., 2020).  710 

 711 

Lastly, we note that the proposed approach to synthetic forecast generation is applicable 712 

anywhere there is sufficient overlap in hindcast and observational data to fit the model. This 713 

confers the advantage of forecast record extension in areas with long observational records, but 714 

limited hindcasts. In cases where the observational record is also limited, there is the possibility 715 
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of producing synthetic forecasts from traces of stochastically generated weather (Baxevani & 716 

Lennartsson, 2015; Steinschneider et al., 2019), which could significantly expand the data 717 

available to calibrate and test forecast-informed policies. This effort is left for future work. 718 
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