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Synthetic Tsunami Set-Up and Wave�eld
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Our simulation is based on a synthetic tsunami in the  Cascadia  subduction 
zone, with ocean bathymetry and initial condition on wave height shown on
the left, and the space-time plot of true wave�eld shown on the right. We 
used the linear long-wave model for wave propagation:

How Kalman Filter Works

Background & Objectives

The ensemble Kalman �lter is a Monte Carlo approximation of the Kalman
�lter: it runs an ensemble of N realizations of the prior prediction. The error
covariance matrix P is approximated by the covariance of the ensemble: a 
form of dimensionality reduction, lessening the computational load compared
to the full Kalman �lter. Optimal interpolation keeps both P and K constant - 
an even greater form of simpli�cation.

Results from Ensemble Kalman Filter and 
Optimal Interpolation for Di�erent Station Spacings
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Ensemble Kalman Filter is More Accurate
and Stable than Optimal Interpolation

• At 600 s, ensemble Kalman �lter achieves a forecast that is 
  much closer to the true waveform for both station spacings
• Optimal interpolation’s disadvantage is clearer when the 
  station spacing is increased to 50 km
• For station spacing of 30 km, 30 s forecasts of ensemble 
  Kalman �lter before 600 s are more consistent
• The last two graphs shows how coastal forecasts of ensemble 
  Kalman �lter improves with time due to the continual update
  of the covariance matrix and Kalman gain matrix, butoptimal 
  interpolation shows less improvement
• Ensemble Kalman �lter can resolve the high-frequency
  components of the waveform much better
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Ocean-bottom pressure sensor arrays, such as the S-NET and DONET in
Japan, are revolutionary for local tsunami early warning. Maeda et al. (2015), 
Gusman et al. (2016), Wang et al. (2017, 2018) have used data assimilation 
via optimal interpolation to investigate how well we can use these data to 
perform tsunami forecasts. In this study, we introduce another data 
assimilation approach - the ensemble Kalman �lter, and show that its 
improved performance could make it a viable candidate for real-time 
tsunami early warning.

η is the wave height, q is the volumetric �ux, 
g is gravitational acceleration, and H is the
water depth. 

Kalman �lter �rst produces a prior prediction of the state vector x = [q, η],
based on the physical model (with error covariance P) from time k - 1 to k:
                    ,        
To assimilate observations z at select locations, we update state variable x,
and obtain a posterior prediction, assuming the observations have an 
error covariance matrix R:
               , where
We update the error covariance matrix of the physical model before the
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Figure above shows the forecast results for  two di�erent station spacings: 30 km (left column), and 
50 km (right column). Top row shows forecast at 600 s from ensemble Kalman �lter. Second row shows 
forecast at 600 s from optimal interpolation. The last row shows the coastal forecasts at di�erent times 
for both methods, compared to the true solution. 
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Real-Time Coastal Forecasts for
 Sparse Station Spacing

Conclusion & Future Prospects
Improved stability and accuracy of the ensemble Kalman �lter
make it attractive, especially as most o�shore networks su�er 
from sparse station spacing. Although optimal interpolation is 
much more computationally e�cient, developments in high-
performance computing and parallel implementation of 
ensemble Kalman �lter make it a promising candidate for real-
time local tsunami early warning.
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