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Abstract  36 

Models are increasingly used to inform the transformation of human-natural systems towards a 37 

sustainable future, aligned with the United Nations Sustainable Development Goals (SDGs). However, 38 

the future uncertainty and complexity of alternative socioeconomic and climatic scenarios challenge 39 

the model-based analysis of sustainable development. Obtaining robust insights, which can remain 40 

valid under a larger diversity of plausible futures, requires a systematic processing of uncertainty and 41 

complexity not only in input assumptions, but also in the diversity of model structures that simulates 42 

the multisectoral dynamics of Earth and human interactions. Here, we quantify and explore the impacts 43 

of model uncertainty and structural complexity on the projection of global change scenarios for 44 

sustainable development. We implement the Shared Socioeconomic Pathways and the Representative 45 

Concentration Pathways in a feedback-rich, integrated assessment model of system dynamics. With 46 

our model’s broad scope for SDG analysis, we evaluate the impacts of these scenarios on the global 47 

trajectories of 16 sustainable development indicators related to food and agriculture, well-being, 48 

education, energy, economy, sustainable consumption, climate, and biodiversity conservation under 49 

uncertainty. The results show internally consistent (across sectors), yet quantitatively different 50 

(compared to other models) realisations of reference scenarios. They also demonstrate the sensitivity 51 

of sustainability indicators to reference global scenarios, driven by the complex and uncertain 52 

multisectoral dynamics that underlay the SDGs. These results highlight the importance of enumerating 53 

global scenarios and their uncertainty exploration with a diversity of models of different input 54 

assumptions and structures to capture a wider variety of future possibilities in planning for 55 

sustainability. 56 

 57 

1 Introduction 58 

The 17 Sustainable Development Goals (SDGs) under the United Nations 2030 Agenda for 59 

Sustainable Development represent global ambitions for achieving economic development, social 60 

inclusion, and environmental stability (UN, 2015). Progressing towards the diverse and ambitious 61 

SDGs requires compromising between competing sustainability priorities and harnessing synergies 62 

over deeply uncertain, long-term futures (Pradhan et al., 2017). To assist in reasoning and planning, 63 

computer models and simulations, referred to as integrated assessment models (IAMs) (van Beek et 64 

al., 2020), models of multisector dynamics (MSD) (Jafino et al., 2021; Quinn et al., 2020), or 65 

transitions models (Köhler et al., 2018), have been effectively used to systematically analyse the 66 

interactions of conflicting, inter-connected sustainability priorities in complex human-natural systems 67 

(Quinn et al., 2017; Trindade et al., 2017) and to navigate actionable compromises between competing 68 

agendas (Gold et al., 2019; Hadjimichael et al., 2020). These modelling efforts aim to advance the 69 

understanding and analysis of human-natural system co-evolution over time by bridging sectors, and 70 

support societal transformation planning through computational analysis. 71 

A diverse set of models has been used to inform sustainable development (Verburg et al., 72 

2016), including input-output models (Wiedmann, 2009), macro-economic and optimisation models 73 

(DeCarolis et al., 2017), computational general equilibrium models (Babatunde et al., 2017), system 74 

dynamics models (Sterman et al., 2012), and bottom-up agent-based models (Moallemi & Köhler, 75 

2019). Modelling applications have also spanned different aspects of the SDGs such as food and diet 76 

(Bijl et al., 2017; Eker et al., 2019; Malek et al., 2020), climate adaptation (JGCRI, 2017; Mayer et 77 

al., 2017; Small & Xian, 2018), land-use (Doelman et al., 2018; Gao & Bryan, 2017), energy (Rogelj 78 

et al., 2018a; Walsh et al., 2017), and biodiversity conservation (Mace et al., 2018). Models have also 79 

assessed the nexus of (often limited) interacting SDGs such as food-energy-water (Van Vuuren et al., 80 

2019), land-food (Gao & Bryan, 2017; Obersteiner et al., 2016), and land-food-biodiversity (Leclère 81 

et al., 2020), amongst others (Randers et al., 2019). Model-based analysis of sustainable development 82 
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over long timescales is, however, challenged by the conjunction of deep uncertainty around future 83 

global socioeconomic and climatic conditions and the complexity of coupled human-natural systems 84 

where subsystems experience non-linear interactions, irreversible changes, and tipping points in their 85 

evolution (Lempert et al., 2003).  86 

To address these challenges, past studies have often used scenarios, quantified by a set of 87 

integrated assessment models (Riahi et al., 2017), to explore the plausible trajectories of system 88 

behaviour according to different sets of assumptions about the future (Guivarch et al., 2017; 89 

Lamontagne et al., 2018; Trutnevyte et al., 2016). Within the context of climate change and 90 

sustainability science, the Shared Socioeconomic Pathways (SSPs) (O’Neill et al., 2017; Riahi et al., 91 

2017) and the Representative Concentration Pathways (RCPs) (Meinshausen et al., 2020; van Vuuren 92 

et al., 2011), have dominated scenario studies over the past decade (O’Neill et al., 2020). They project 93 

futures with different challenges to mitigation and adaptation through five possible socioeconomic 94 

pathways (SSPs 1 to 5) and five different greenhouse gas emissions trajectories (RCPs 1.9, 2.6, 4.5, 95 

6.0, 7.0, 8.5) (see Section 2.3). The future developments of energy, land-use, and emissions sectors 96 

according to the SSPs and RCPs have been extensively characterised and expanded, using a set of five 97 

marker integrated assessment models including IMAGE (Bouwman et al., 2006; van Vuuren et al., 98 

2017), MESSAGE-GLOBIOM (Fricko et al., 2017), AIM (Fujimori et al., 2017), GCAM (Calvin et 99 

al., 2017), and REMIND-MAGPIE (Kriegler et al., 2017). The research community has frequently 100 

used the global SSP and RCP scenarios with these marker models in climate impact assessments 101 

(Lamontagne et al., 2019; Rogelj et al., 2018a) and for analysing other Earth system processes (e.g., 102 

biodiversity (Leclère et al., 2020); see O’Neill et al. (2020) for a review).  103 

Despite past successful efforts, there are still important limitations to address for increasing the 104 

impact and usefulness of these scenario frameworks. One major gap is that the application of the SSPs 105 

and RCPs to areas beyond climate change, such as sustainable development, has been so far limited. 106 

For example, there are only few studies that have extended these scenario frameworks to the evaluation 107 

of the SDGs (van Soest et al., 2019). Among these, The World in 2050 (TWI2050, 2018) is perhaps 108 

the most prominent example which evaluated a selected number of SDGs under two SSP scenarios as 109 

well as under previously developed global change scenarios (Parkinson et al., 2019; van Vuuren et al., 110 

2015) using two marker models of IMAGE (van Vuuren et al., 2017) and MESSAGE-GLOBIOM 111 

(Fricko et al., 2017). The broader use of SSPs and RCPs framework in other research domains such as 112 

sustainable development is crucial for developing a more comprehensive and consistent account of 113 

possible integrated futures and response options across connected global challenges (O’Neill et al., 114 

2020).  115 

Another noticeable gap is that most of the past SSP-RCP projections were based on the 116 

assumptions of five original marker models, and the use of new, non-marker integrated assessment 117 

models with different sets of input and structural assumptions has been rare. Among the few 118 

applications of non-marker models is Allen et al. (2019) who used four SSPs as benchmarks to guide 119 

the development of national-scale scenarios, based on inequality and resource-use intensity, to assess 120 

scenarios of progress towards the SDGs for Australia. The adoption of non-marker, emerging models, 121 

with different sectoral boundaries (e.g., water (Graham et al., 2018), diet change (Eker et al., 2019)) 122 

and levels of structural complexity (e.g., feedback-rich, system dynamics models (Walsh et al., 2017)), 123 

is important to expand the scenario space around SSPs and RCPs and to capture a wider set of futures 124 

in the global scenario framework, driven by different perspectives and model uncertainties (O’Neill et 125 

al., 2020). 126 

These current limitations signify the need for a more diverse quantification of global reference 127 

scenarios (e.g., SSPs, RCPs) with new integrated assessment models (Jaxa-Rozen & Trutnevyte, 2021) 128 

and in new domains such as sustainable development. Addressing this need has become more 129 

important in recent years especially given the increasing demand for model-based SDG analysis and 130 
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the emergence of new, open-source integrated assessment models (e.g., FeliX (Walsh et al., 2017), 131 

Earth3 (Randers et al., 2019), see the review in Duan et al. (2019)) that are simpler yet have a broader 132 

scope compared to the marker models (Riahi et al., 2017), sufficient to address several SDGs. Here, 133 

we develop a methodology, supported by computational techniques from exploratory modelling, that 134 

allows the implementation of global scenario frameworks and their uncertainty exploration with new 135 

integrated assessment models for sustainable development.  136 

Exploratory modelling, originally pioneered at the RAND Corporation (Bankes, 1993; Hodges, 137 

1991; Hodges & Dewar, 1992; Lempert et al., 2003), is specifically concerned with dealing with 138 

uncertainty and complexity in models. The central idea of exploratory modelling is to move from the 139 

notion of a good model with an accurate prediction of the most likely futures to an ensemble of models 140 

as a thinking aid for enumerating and testing a range of possible assumptions via computational 141 

experiments (Moallemi et al., 2020a). Exploratory modelling can be adopted for sustainability analysis 142 

with contributions to answer decision support questions, illuminating robust policy choices and 143 

supporting adaptation plans under deep uncertainty (Gold et al., 2019; Trindade et al., 2019; Wise et 144 

al., 2014). There are several examples of exploratory modelling for decision support and in relation to 145 

various SDGs, from water (Trindade et al., 2020), to energy (Moallemi et al., 2017), to critical 146 

infrastructure (Hall et al., 2019), to food (Eker et al., 2019), and to climate mitigation (Lamontagne et 147 

al., 2019), as recently reviewed by Moallemi et al. (2020a) and Herman et al. (2020). Exploratory 148 

modelling can be also used to inform theory testing and model development, aiming to explore less 149 

explicit forms of uncertainty in model structures (e.g., relationships, equations) and uncertainty in their 150 

underpinning theories and conceptual foundations. This also corresponds to Bankes (1993) model-151 

driven analysis that aims to reveal irregularities of behaviour and output patterns of several models of 152 

the same phenomenon, without reference to a policy question (de Haan et al., 2016). This application 153 

of exploratory modelling is, however, a less discussed area which we leverage in this article. A model-154 

driven exploratory analysis allows us to investigate the impacts of a new model’s structural complexity 155 

and its uncertainty space on global change scenario projections and to assess how and whether new 156 

models might be useful in better understanding the future. This will advance previous scenario 157 

modelling efforts by generating new realisations of global reference scenarios, resulted from non-158 

marker models of new feedback structures and complexity, for sustainable development.  159 

To demonstrate our methodology, we implement the SSP and RCP scenarios in the Functional 160 

Enviro-economic Linkages Integrated neXus (FeliX) (Eker et al., 2019; Walsh et al., 2017) model, a 161 

globally aggregate and feedback-rich integrated assessment model of Earth and human interactions 162 

based on the system dynamics approach (Sterman, 2000) (Sections 2.1 and 2.2). We analyse global 163 

trajectories of 50,000 different realisations under five plausible combinations of SSPs and RCPs (i.e., 164 

10,000 each) (Sections 2.3 to 2.6). We evaluate how socioeconomic and climate drivers could unfold 165 

in the future through the multi-sectoral dynamics of demography, economy, energy, land, food, 166 

biodiversity, and climate systems (Section 3.1) and analyse in what areas and to what extents they 167 

diverge from previous projections to highlight the value added of exploring the implications of new 168 

models for global scenarios (Section 3.2). We also assess the impacts across 16 sustainability 169 

indicators representing eight SDGs related to agriculture and food security (SDG2), health and well-170 

being (SDG3), quality education (SDG4), clean energy (SDG7), sustainable economic growth 171 

(SDG8), sustainable consumption and production (SDG12), climate action (SDG13), and biodiversity 172 

conservation (SDG15) (Section 3.3). This application provides in-depth insights into the achievement 173 

of the global SDGs under a larger scenario space.  174 

2 Methods 175 

We selected a non-marker integrated assessment model of sustainable development (Step 1). 176 

We identified the model’s influential parameters for the generation of global scenarios (Step 2). We 177 

elaborated our scenario assumptions and set up the model under these assumptions (Steps 3 and 4). 178 
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We then explored the uncertainty space of implemented scenarios in the model using exploratory 179 

modelling (Step 5). We let the model generate the diversity of output behaviours in response to the 180 

model’s structural complexity, explored various quantifications of global reference scenarios outside 181 

their standard projections, and analysed diversions from other models and implications for the SDG 182 

analysis (Step 6). Each step is explained in detail as follows (Figure 1).  183 

 184 

Figure 1. Overview of methodological steps for implementing global scenario frameworks in a 185 

new integrated assessment model for sustainable development. 186 

2.1 Model multisectoral dynamics underlaying SDGs 187 

In the first step, we modelled anthropogenic processes of the multisectoral dynamics that drive 188 
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documentation in Rydzak et al. (2013) as well as in Walsh et al. (2017) and Eker et al. (2019). Using 198 

FeliX, we modelled 16 indicators across eight societal and environmental SDGs (Table 1). The 199 

selection of SDGs and their indicators was guided by the model scope with the aim of covering a wider 200 

diversity of sustainable development dimensions compared to previous studies (Gao & Bryan, 2017; 201 

Obersteiner et al., 2016; Randers et al., 2019; van Vuuren et al., 2015). SDGs and their indicators were 202 

implemented across the 11 FeliX’s sub-models of population, education, economy, energy, water, food 203 

and land, fertiliser use, diet change, carbon cycle, climate, and biodiversity. Each sub-model includes 204 

feedback interactions between several model components necessary to generate complex interactions 205 

underlaying the SDGs.  206 

 207 

Figure 2. The overview of the FeliX model. Adapted from and updated based on Rydzak et al. (2013).  208 

 209 
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higher number of graduates at all levels, and; SDG8 via providing the labour force necessary 217 

to power the economy.  218 

• Economy computes economic outputs through a Cobb-Douglas production function where 219 

economic output is computed based on labour input, capital input from energy and non-220 

energy sectors, new technology productivity factor, and ecosystems and climate change 221 

impacts. Economy interacts with all SDGs except for SDG4 (as educational attainment is not 222 

modelled in FeliX as a function of economic outputs).  223 

• Energy computes (a total end-use) energy demand as a function of GDP per capita and 224 

population, the energy consumption and market share of three fossil (i.e., coal, oil, gas) and 225 

three renewable (i.e., solar, wind, biomass) sources, and the production of different (six) 226 

energy sources based on a detailed modelling of installed capability and their ageing process, 227 

energy technology advancement (e.g., learning curves), investments, and availability of 228 

resources (e.g., average sun radiation, exploration and discovery of new fossil resources). 229 

Energy interacts with most of the SDGs such as SDG7 through renewable energy production, 230 

SDG13 through reducing emissions from fossil fuels, and SDG15 by decreasing the demand 231 

for land-use change for deforestation for biomass generation.  232 

• Water simulates water supply and demand across agriculture, industrial, and domestic sectors 233 

as a function of available water resources, drought out rate, the impact of climate change, 234 

water withdrawal, and the recovery of used water. Water interacts mostly with SDG2 through 235 

supplying water for agricultural activities and SDG3 by providing quality water for domestic 236 

use.  237 

• Land, Food, Fertiliser, Diet Change, and Biodiversity are extensively described in the FeliX 238 

model documentation (Eker et al., 2019; Walsh et al., 2017). They simulate the change of 239 

four different land-uses, the demand and production of food (i.e., crop-based meat, pasture-240 

based meat, dairy and eggs, plant-based products), feed, and energy crops, diet shift 241 

reflecting the proportion and type of meat consumption in the human food (five diet 242 

compositions), (nitrogen and prosperous) fertiliser uses and their footprints, and the 243 

restoration and extinction of species. The food consumption is primarily determined through 244 

the impacts of diet change (towards less meat diets) across different population segments 245 

(e.g., male and female, level of education), modelled based on two feedback mechanisms 246 

from psychological theories: diet change due to social norms and diet change due to a threat 247 

and coping appraisal (e.g., in response to climate change) (Eker et al., 2019). The demand 248 

for agricultural land is balanced by increasing crop yields with fertilisation. The impacts of 249 

these sub-models are diverse across most of the SDGs. For example, the limitation of 250 

agricultural activities through diet change in SDG2 can substantially reduce pressure on 251 

deforestation in SDG15, and the impact of biodiversity conservation can subsequently 252 

impact general public health in SDG3.  253 

• Carbon Cycle and Climate compute CO2 emissions from the land and energy sectors, as well 254 

as the atmospheric radiative forcing and temperature change of the emitted CO2 and their 255 

cycle and absorption through terrestrial reservoirs and oceans based on the C-ROADS model 256 

(Sterman et al., 2012). They also model the effect of improvement in carbon capture and 257 

storage on controlling emissions. The radiative forcing of other gases (CH4, N2O, HFC) are 258 

read externally in the model via links to the RCP scenario database (van Vuuren et al., 2011). 259 

See Walsh et al.(Walsh et al., 2017) for the detailed equations of carbon cycle and climate 260 

modelling. These sub-models interact with most of the SDGs, and primarily with SDG13 261 

through climate change impacts. 262 

 263 
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Table 1. The list of modelled SDG indicators. There are two modelled indicators under each SDG 264 

for consistency. Each indicator trajectory is simulated in the model based on the interaction of multiple 265 

sectors. This underlying sectoral dynamic for each indicator is specified in the last column.   266 

Indicator Description Desired progress Underlying sectoral 

dynamics  

 
SDG 2. End hunger, achieve food security, and promote sustainable agriculture 

Cereal Yield (tons year-1 

ha-1) 

The annual production rate per hectare of harvested 

croplands dedicated to grains production. 

Improve the productivity of the 

croplands for cereal yield production. 

Land, food/diet, water, 

climate, economy 

Animal Calories (kcal 

capita-1 day-1) 

The total annual production of pasture-based meat 
and crop-based meat - excluding seafoods - per 

person per day. 

Meet the increasing global demand for 

food with less meat consumption. 

Land, food/diet, water, 
population, education, 

economy, climate 

 
SDG 3. Ensure healthy lives and promote well-being for all at all ages 

Human Development 

Index (-) 

The UNDP average of three indices of income, 
health, and education that affect human capabilities 

to sustain well-being. 

Advance human wellbeing and 

richness of life. 

Education, economy, 
population, food/diet, 

climate, biodiversity 

Adolescent Fertility Rate 

(person year-1 

1000women-1) 

The number of births per 1,000 by women between 

the age of 15-19. This is a negative indicator, i.e., 

the lower, the better. 

Reduce childbirth by adolescent girls 

with improved sexual and 

reproductive healthcare. 

Education, economy, 

population 

 
SDG 4. Ensure inclusive and equitable quality education and promote lifelong learning opportunities 

Mean Years of 
Schooling (number of 

years) 

Average number of completed years of primary, 
secondary, and tertiary education (combined) of 

population. 

Increase educational attainments 

across population and in all levels. 

Education, population 

Population Age 25 to 34 
with Tertiary Education 

(%) 

The percentage of the population, aged between 25-
34 years old, who have completed tertiary 

education. 

Improve tertiary education coverage. Education, population 

 
SDG 7. Ensure access to affordable, reliable, sustainable and modern energy 

Share of Renewable 

Energy Supply (%) 

Percentage of renewable (solar, wind, biomass) 

energy supply share in total energy production. 

Increase the average global share of 

renewable energies in the final basket 

of total energy production. 

Energy, economy, 

population 

Energy Intensity of 

GWP (MJ $-1) 

An indication of how much energy is used to 

produce one unit of economic output. 

Reduce the energy intensity of 

services and industries per GDP. 

Energy, economy, 

population 

 
SDG 8. Promote sustained, inclusive and sustainable economic growth for all 

GWP per Capita ($1000 

person-1 year-1) 

Gross World Product, i.e., the global total GDP, 

divided by the global population. 

Improve economic prosperity of all 
countries in an inclusive and 

sustainable way. 

Economy, population, 
education, energy, 

climate, biodiversity 

CO2 Emissions per GWP 

(kg CO2 $
-1) 

Human-originated CO2 emissions stemming from 
the burning of fossil fuels divided by the unit of 

GDP. 

Reduce carbon footprint of the 

growing economy. 

Economy, population, 
climate, biodiversity, 

carbon cycle energy 

 
SDG 12. Ensure sustainable consumption and production patterns 

Nitrogen Fertiliser Use 

in Agriculture (million 

tons N year-1) 

Commercial nitrogen fertiliser application in 

agriculture affected by land availability, income, 

and technology impact on fertiliser use. 

Manage a fertiliser application to 

balance between declining soil 
fertility and the risk of polluting 

nutrient surplus. 

Land, food/diet, 

economy, population 

Agri-Food Nitrogen 

Footprint (kg year-1 

person-1) 

Nitrogen (N) emissions to the atmosphere and 

leaching/runoff from commercial application in 

agriculture and with manure. 

Land, food/diet, 

economy, population 

 
SDG 13. Take urgent action to combat climate change and its impacts 

Atmospheric 

Concentration CO2 

(ppm) 

Atmospheric CO2 concentration per parts per 

million. 

Significantly reduce global CO2 

emissions across sectors. 

Population, economy, 

land, food/diet, energy, 

carbon cycle 

Temperature Change 

from Preindustrial 

(degree °C) 

Global annual mean temperature change from the 

pre-industrial time calculated as atmosphere and 

upper ocean heat divided by their heat capacity. 

Limit global temperature change from 

preindustrial level. 

Population, economy, 

land, food/diet, energy, 

carbon cycle 

 
SDG 15. Protect, restore and promote sustainable use of terrestrial ecosystems and forests 
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Forest to Total Land 

Area (%) 

Percentage of forest to total (agricultural, urban and 

industrial, others) land areas. 

Significantly reduce the current 

deforestation rates and restore 

degraded forest lands. 

Land, population, 

economy, energy, 

food/diet 

Mean Species 

Abundance (%) 

The compositional intactness of local communities 
across all species relative to their abundance in 

undisturbed ecosystems. 

Limit significantly the current rate of 
biodiversity extinction from 

anthropogenic activities. 

Energy, climate, 

food/diet, land 

2.2 Identify influential model parameters for scenario modelling 267 

In the second step, we identified influential model parameters for FeliX to be used in the 268 

scenario modelling process. Integrated assessment models often have many demographic, macro-269 

economic, techno-economic, and environmental parameters. However, among these parameters, some 270 

are more influential than others and some may have only trivial impacts on model behaviour. 271 

Exploratory modelling can reappropriate methods from sensitivity analysis (Jaxa-Rozen & Kwakkel, 272 

2018; Lamontagne et al., 2018) to prioritise influential parameters contributing to model uncertainties 273 

(i.e., factor prioritisation (Gao et al., 2016)) and to identify those parameters with the least impacts in 274 

scenario modelling (i.e., factor fixing (Saltelli et al., 2008)), among other reasons (e.g., factor mapping 275 

or scenario discovery (Guivarch et al., 2016)). This adoption of sensitivity analysis in exploratory 276 

modelling differs from the traditional purposes of improving model structure (Iman et al., 2005) or 277 

specifying the change direction in model behaviour (Anderson et al., 2014). Rather, it aims to generate 278 

only important and consequential scenarios driven by the variation of influential parameters and the 279 

exclusion of trivial parameters (which could lead to the poor identifiability of generated scenarios in 280 

relation to input parameters). This shares the core idea of exploratory modelling in systematically 281 

analysing the implications of various input uncertainties in the outcome space before deciding about 282 

their inclusion or exclusion in scenario modelling. 283 

We identified influential parameters for scenario modelling from an initial list of 114 model 284 

parameters (Supplementary Table 2) and ranked them based on their impact (with non-linear 285 

interactions) on 20 model outputs using Morris elementary effects (Campolongo et al., 2007; Morris, 286 

1991) (Figure 3). Morris elementary effects is a suitable global sensitivity analysis method for 287 

integrated assessment models with a large number of input parameters and a complex structure of 288 

nonlinear feedbacks where computational costs are very high. The method has proved to generate 289 

reliable sensitivity indices with a better computational efficiency compared to other techniques 290 

(Campolongo et al., 2007; Gao & Bryan, 2016; Herman et al., 2013). With Morris elementary effects, 291 

we computed the sensitivity index, μ*, from a total evaluation of 𝑟 × (𝑝 + 1) experiments, where 𝑟 is 292 

the number of sampling trajectories over the number of parameters 𝑝 + 1 points. The μ*, which shows 293 

the overall effect of a parameter on an output, can be sufficient on its own in providing reliable ranking 294 

of model parameters (Campolongo et al., 2007). We generated experiments by systematically 295 

sampling random values (Morris sampling) using the Exploratory Modelling Workbench (Kwakkel, 296 

2017) across 114 model parameters and computed μ* using the SALib Library (Herman & Usher, 297 

2017) implementation of this technique, both in the Python environment. To ensure that the ranking 298 

obtained from the μ* elementary effects converges, we computed the sensitivity index of different 299 

samples of increasing size from 250 to 5,000 samples (equivalent to 28,750 - 575,000 experiments) 300 

and used the μ* of the sample size of 2,000 (230,000 experiments), where the parameter ranking was 301 

stabilised (Supplementary Figure 1), as the reference. We also computed μ* over time (i.e., 2030, 2050, 302 

2100) to understand how the sensitivity of parameters can change in response to non-linear model 303 

behaviour throughout time (Figure 3).  304 
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 305 

Figure 3. The ranking of influential model parameters. Sensitivity is the normalised values of 306 

Morris index μ* between 0 and 1. For each output variable (y axis), the most influential input 307 

parameters (x axis) are annotated with their rank. Information on the unit and definition of each 308 

parameter is available in Supplementary Table 2. 309 

While this can help in ranking model parameters, it does not still specify how many of the 310 

ranked parameters should be included in the modelling of scenarios. We systematically explored the 311 

impact of inclusion or exclusion across top-ranked parameters (see Supplementary Methods for 312 

details). This was a more reliable approach compared to setting a priori, subjective cut-off value for 313 

μ* where a high cut-off value can lead to the inclusion of many parameters (some of which with 314 

negligible effects) and a low cut-off value can cause the exclusion of some important parameters that 315 
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could potentially have significant effects, both of which with biased impacts on the identification of 316 

key model parameters (Hadjimichael, 2020). 317 

Figure 3 shows the ranking and selection of influential model parameters to be used for scenario 318 

modelling of different sectors (e.g., population, GDP, energy demand, forest land cover) by 2030, 319 

2050, and 2100. The identified model parameters were diverse enough to capture influential global 320 

change in relation to demographic (e.g., fertility rate, life expectancy), education (e.g., enrolment and 321 

graduation rates), economic (e.g., capital elasticity of the economy), and lifestyle (i.e., energy demand 322 

and diet change). A substantial variation was observed in the influence of various parameters. The top 323 

influential parameters were related to socioeconomic factors (demography, education, economy) and 324 

diet change, indicating them as key parameters underpinning scenario modelling. We also observed 325 

that the influential parameters did not change significantly over time (Figure 3). Therefore, we used 326 

the influential parameters based on their long-term sensitivity (by 2100) as our reference set of model 327 

parameters to work with for scenario modelling.  328 

2.3 Specify scenario assumptions 329 

In the third step, we identified and described a priori the main driving forces of global change, 330 

with different degrees of challenges to mitigation and adaptation, based on existing scenario 331 

frameworks. We explored future socioeconomic and climate driving forces framed by two reference 332 

global change scenario frameworks (Moss et al., 2010), called the Shared Socioeconomic Pathways 333 

(SSPs) (O’Neill et al., 2017; Riahi et al., 2017) and the Representative Concentration Pathways (RCPs) 334 

(van Vuuren et al., 2011), respectively. The SSPs chart future underlying socioeconomic development, 335 

including five pathways to 2100: SSP1 (sustainability), SSP2 (business-as-usual), SSP3 (regional 336 

rivalry), SSP4 (inequality), and SSP5 (fossil-fuelled development) (O’Neill et al., 2017). The RCPs 337 

represent the climate forcing levels of different possible futures with long-term pathways to certain 338 

concentration levels of CO2 by 2100 and beyond (Meinshausen et al., 2020; van Vuuren et al., 2011), 339 

including (originally) four emissions trajectories to 2100 (and beyond) with different levels of global 340 

radiative forcing from 2.6, to 4.5, to 6.0, to 8.5 W m-2 (van Vuuren et al., 2011). The emissions 341 

trajectory of 1.9 W m-2 was added later as a pathway to 1.5 °C to the end of the century (Rogelj et al., 342 

2019).  343 

Although different forcing levels could be achieved under different socioeconomic scenarios, 344 

a specific RCP is often associated with each SSP (as also used in the sixth Climate Model 345 

Intercomparison Project (CMIP6)) considering consistency between their narratives and their 346 

plausibility (O'Neill et al., 2016). We selected our benchmark SSP-RCP scenarios for implementation 347 

in the same way. We considered the plausibility of selected combinations as well as their application 348 

frequency across 715 studies (published between 2014 and 2019) that used integrated scenarios, based 349 

on a recent review by O’Neill et al. (2020). For example, we assumed that a high and a low radiative 350 

forcing of 8.5 and 2.6 can most likely occur under the societal development of SSP5 and SSP1 which 351 

focus on highly polluting and sustainable futures (respectively). The radiative forcing of 8.5 and 2.6 352 

are also the most frequent levels applied in previous studies to these two SSPs. In the same way, we 353 

associated the radiative forcing levels of 4.5, 7.0, and 6.0 to SSPs 2, 3, and 4 (respectively). We 354 

excluded RCP 1.9 from our analysis given the highly ambitious carbon dioxide removal (CDR) 355 

deployment assumptions in this scenario (Rogelj et al., 2019) that is not explicitly represented in all 356 

integrated assessment models. Such high CDR deployment for achieving 1.9 W m-2 emissions 357 

trajectory also has an increased complexity of side effects on other sectors that are beyond the scope 358 

of this paper (see discussion in Section 4). In relation to each scenario combination, we also assumed 359 

climate mitigation policy assumptions, such as adoption of carbon capture and storage and carbon 360 

price, as indication of the efforts to reach the specified forcing levels (see description in Supplementary 361 

Table 1). 362 
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We elaborated how the future could unfold under each selected SSP-RCP combination in a set 363 

of coherent and internally consistent qualitative assumptions over the 21st century. The scenario 364 

assumptions represented the determinants of potential futures, both in socioeconomic (i.e., population, 365 

education, economy) and sectoral domains (i.e., energy, climate, land, food and diet change). We 366 

adopted those scenario assumptions (related to socioeconomic conditions, energy, climate, land, and 367 

food and diet change) from the original SSPs (O’Neill et al., 2017). We only selected those original 368 

assumptions that could be characterised in the FeliX model too. For example, we did not include the 369 

SSPs’ original assumption about ‘technology transfer’ given that technology collaborations between 370 

countries were not taken into account in our model. We also used assumptions about ‘improvement in 371 

investment in technology advancement’ and the ‘enhancement of energy technology efficiency’ as two 372 

proxies consistent with our model’s scope and structure to represent the SSPs’ original assumption on 373 

‘energy technology change’.  374 

We described the evolution of scenario assumptions qualitatively by 2100 under five SSP-RCP 375 

combinations (Supplementary Table 1). The qualitative descriptions were informed by the SSP 376 

storylines (O’Neill et al., 2017) (which provided a descriptive account of different scenarios) and their 377 

sectoral extensions (which interpreted the storylines and provided a detailed account of energy (Bauer 378 

et al., 2017), emissions (Meinshausen et al., 2020), and land sectors (Popp et al., 2017)). The internal 379 

consistency of our input assumptions across sectors (e.g., low population, high economic growth, high 380 

sustainability in SSP1) was similar to the SSP narratives. This internal consistenmcy was important to 381 

relate the resulted scenario realisations to the exploration of a new model structure and its 382 

parametrisation rather than to having a totally differnet set of global change scenarios. The qualitative 383 

scenario assumptions informed the implementation of scenarios in the next step by guiding in what 384 

range the model inputs should be and by providing a context to better understand and interpret model 385 

projections. Similar to the original idea of the SSPs, our scenario assumptions represented different 386 

degrees of challenges to mitigation (of the emissions from energy and land-use) and adaptation and 387 

their impacts on the society (O’Neill et al., 2014; van Vuuren et al., 2014). Four of the scenarios (i.e., 388 

SSP1-2.6, SSP3-7.0, SSP4-6.0, SSP5-8.5) indicated a combination of high and low challenges to 389 

adaptation and mitigation while the fifth scenario (SSP2-4.5) was representative of moderate 390 

mitigation and adaptation challenges.  391 

2.4 Implement scenario assumptions in the model 392 

In the fourth step, we translated our scenario assumptions (Section 2.3) into influential model 393 

parameters (Section 2.2) for FeliX. Different model structures and simulation period do not allow for 394 

a harmonisation of scenario assumptions across various models, and several equally valid 395 

quantifications of the scenario assumptions can be implemented in models (as was the case for the five 396 

marker models of the SSPs (Riahi et al., 2017)). The previously projected SSP scenarios (Riahi et al., 397 

2017) are also argued to be not exhaustive, and many plausible and important scenarios may be outside 398 

those standard ranges (Guivarch et al., 2016; Lamontagne et al., 2018; Rozenberg et al., 2014), 399 

indicating the need for a more diverse translation of scenario assumptions. Accordingly, we 400 

implemented an internally consistent (across sectors) version of scenarios in the FeliX model, but with 401 

different values for model input parameters and uncertainty ranges that suited our model to enable the 402 

exploration of the implications of varying assumptions and hypotheses (Bankes, 1993). 403 

Among various influential parameters, those related to the demographic and macro-economic 404 

input assumptions were the only ones harmonised with other integrated assessment models as they 405 

form the fundamental underlying logic for each SSP, and their harmonisation is important for 406 

generating internally consistent scenarios. The original quantifications of these socioeconomic 407 

assumptions are also based on country-level, multi-dimensional (e.g., age, gender, level of education) 408 

mathematical modelling of demography and economy growth (Dellink et al., 2017; Samir & Lutz, 409 

2017), and therefore their estimates were considered as reference for FeliX (as well as across all other 410 
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marker integrated assessment models). We used Vensim’s built-in optimisation algorithm (i.e., 411 

Powell) to find the value of FeliX’s (socioeconomic) parameters (Section 2.2) aligned with the 412 

reference demographic and economic model (Dellink et al., 2017; Samir & Lutz, 2017). The objective 413 

function (also called payoff function) was defined as the weighted difference between FeliX’s 414 

socioeconomic output variables and the quantification of the same outputs by formal demographic and 415 

economic models at each time step under each SSP-RCP scenario. The optimisation search under each 416 

scenario involved 1000 iterations from 5 different starting point (i.e., 5000 evaluation per scenarios) 417 

for different initialisation to avoid local minimum. 418 

The quantification of non-socioeconomic parameters (related to energy demand, food 419 

consumption, etc.) was not harmonised with other integrated assessment models to allow the 420 

generation of other plausible futures. Their quantification was based on FeliX’s initial parameterisation 421 

(previously calibrated by Eker et al. (2019), Walsh et al. (2017), and Rydzak et al. (2013)) and its 422 

variation across scenarios aligned with the scenario assumptions (Section 2.3). To illustrate, the 423 

influential FeliX’s parameter related the diet composition was calibrated based on five groups of diet 424 

(Eker et al., 2019). Diet composition 1 (sustainable) was when meat-eaters become flexitarian (limited 425 

animal-based foods) and vegetarians eat vegan (high plant-based foods). Diet composition 2 (relatively 426 

sustainable) was when meat-eaters adopt a healthy diet (moderate animal-based foods and high plant-427 

based foods) and vegetarians eat reference vegetarian diet. Diet composition 3 (relatively sustainable) 428 

was when meat-eaters eat healthy diet and vegetarians eat a vegan diet. Diet composition 4 (slightly 429 

better than status quo) was when everyone (meat-eaters and vegetarians) is flexitarian (a mix of animal-430 

based and plant-based foods), and therefore there is only a slight improvement from the current 431 

situation, but still on the same trends. Diet composition 5 (status quo) was when everyone follows the 432 

current reference meat and vegetarian diets (high meat and moderate vegetable consumption). Each of 433 

these diet compositions was assigned to a scenario consistent with our qualitative assumptions (Section 434 

2.3) about environmental impacts of food consumptions. Other influential parameters were calibrated 435 

in the same way. Supplementary Table 3 includes the detailed quantified assumptions for uncertain 436 

model parameters under each scenario as well as information on the unit of each parameter. 437 

2.5 Project scenario realisations with the model 438 

In the fifth step, we explored the uncertainty space of implemented scenario assumptions in the 439 

FeliX model and built a large number of model runs. Given the uncertainty in projection of model 440 

behaviour, we used the design of experiments exploratory modelling (Herman et al., 2020) to sample 441 

deeply uncertain scenario assumptions that strongly influence the future. Design of experiments 442 

simulates and evaluates scenarios against a diverse suite of socioeconomic and environmental outputs 443 

over time under a large ensemble of samples from the uncertainty space to understand the full scale of 444 

variation in scenario performance. Each sample from the uncertainty space is an internally consistent 445 

set of assumptions representing a possible scenario realisation, known as a state of the world (SOW).  446 

We considered three aspects in designing the computational experiments. The first two aspects 447 

were sampling method and sample size, that together specified how to randomly collect assumptions 448 

from the uncertainty space of scenarios (e.g., population growth, GDP, technology advancement) to 449 

create an ensemble of SOWs. Complex, highly dynamic models such as FeliX can create non-linear 450 

and unpredictable model behaviour, and sampling uniformly may not be able to explore a sufficient 451 

range of model behaviour. We used Latin Hypercube Sampling (McKay et al., 2000) to generate 452 

SOWs with the highest possible coverage of the uncertainty space and level of randomness, generating 453 

50,000 SOWs across five scenarios (10,000 SOWs per each). We chose Latin Hypercube Sampling as 454 

it creates evenly spaced and distributed grid boxes in the uncertainty space and (quasi) randomly 455 

selects a sample from each grid box. This results in a sampling strategy that is more evenly distributed 456 

across the space compared to, e.g., uniform random sampling (Saltelli et al., 2000). Latin Hypercube 457 

Sampling has been also suggested as suitable technique for the design of experiments in previous 458 
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exploratory modelling studies (Bryant & Lempert, 2010; Kasprzyk et al., 2013). Sample size (i.e., the 459 

number of experiments to run) was selected based on the stability of performance indicators with 460 

increasing number of experiments.  461 

The third aspect in the design of experiments was the delineation of the uncertainty range to 462 

sample from. Previous studies suggested alternative ways to delineate a multi-dimensional uncertainty 463 

space based on learning and feedback from the influence of uncertainties on model behaviour (Islam 464 

& Pruyt, 2016; Moallemi et al., 2018). We specified the uncertainty range of 10-30% around the 465 

calibrated value of parameters, with the range’s length varying between parameters depending on the 466 

meaningfulness of range’s bounds for the model parameter and the interpretability of model response. 467 

For example, a highly sensitive parameter such as fertility rate, whose variation could impact various 468 

parts of the model, had a narrow uncertainty range for having reasonable projection of population size. 469 

Supplementary Table 3 includes the quantified uncertainty range of key scenario parameters under 470 

five selected scenarios (SSP1-2.6 to SSP5-8.5).  471 

In projecting scenarios with the design of experiments, we assumed that there is an uncertainty 472 

inherent in the calibration of influential model parameters. We also assumed that there could be an 473 

uncertainty in the timing of change in the value of model parameters, i.e., from their BAU to calibrated 474 

values, to account for the delay in the emergence of scenario assumptions (e.g., diet change may not 475 

happen till 2025, and it may only gradually emerge from then). This delayed, gradual emergence of 476 

scenario assumptions through the model parameters was consistent with the implementations of the 477 

shared socioeconomic pathways in marker models (van Vuuren et al., 2017). Using the parameter 478 

setting of each scenario (Section 2.4) and their uncertainty space, we simulated the global trajectories 479 

of socioeconomic, energy, climate, and land and food sectors in 23 control variables from 2020 to 480 

2100 with the FeliX model. We assessed whether our projections provide an internally consistent story 481 

across different sectors within each scenario, aligned with original SSP narratives (O’Neill et al., 482 

2017). 483 

2.6 Compare the new projections with those of other models 484 

In the last step, we analysed the resulting database of model runs (Section 2.5) and compared 485 

our projections across socioeconomic, energy, climate, and land and food sectors with the projections 486 

of marker integrated assessment models, including IMAGE (Bouwman et al., 2006; van Vuuren et al., 487 

2017), MESSAGE-GLOBIOM (Fricko et al., 2017; Riahi et al., 2007), AIM (Fujimori et al., 2017), 488 

GCAM (Calvin et al., 2017), and REMIND-MAGPIE (Kriegler et al., 2017), for the same SSP-RCP 489 

combination. This comparison did not aim for agreement with other models, and was rather focused 490 

on differences (due to the new model structural complexity) and the new insights we arrived at that 491 

would not have been possible without exploratory modelling with a greater diversity of models.   492 

3 Results and discussion 493 

3.1 New scenario realisations  494 

The quantification of scenarios across sectors with the FeliX model provided internally 495 

consistent outcomes across sectors (Figure 4). First, FeliX’s projected SOWs under SSP1-2.6 496 

represented an inclusive and environment-friendly future for sustainable development. The results 497 

showed a consistently high socioeconomic prosperity across education, population, and economy. 498 

Access to all levels of education (as a proportion of population size), especially higher education, 499 

increased (Figure 4d) with improvement in gender inequality. Global population peaked around mid-500 

century and came under control (i.e., declined) significantly by 2100 due to a declining fertility rate 501 

(Figure 4a). Economic growth boomed due to fast technological progress (Figure 4e). The 502 

socioeconomic prosperity paved the way for sustainability transitions across different sectors. This 503 

involved major transformations in the energy sector. While rapid economic growth would normally 504 
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increase overall energy use, the input assumption of widespread energy-efficient technologies and a 505 

transition to low energy intensity services in this scenario (Supplementary Table 1) attenuated the 506 

increase in energy demand (Figure 4h). The input assumptions of high investment and technological 507 

progress, high environmental consciousness, increasing production costs (e.g., carbon price costs) of 508 

using fossil energy, and the steep cost reduction of renewable technologies also made the model meet 509 

most of the energy demand through adoption of renewable (especially solar) energy (Figures 4l to 4n). 510 

Similar sustainability transitions were observed in the food and land sector. Environmental 511 

consciousness from high educational attainment (especially at tertiary levels) along with low 512 

population growth promoted healthy diets with low animal-calorie shares (Figure 4q). This also 513 

coincided with land productivity growth and high crop and livestock yield (because of input 514 

assumptions on improvement in land managerial practices) resulting in less need for the expansion of 515 

cropland and pasture (Figures 4r, 4s, and 4u) and a sharp decline in deforestation (Figure 4t). Transition 516 

to renewable energies, sustainable land-use change, and lower meat consumption, together with a 517 

strong climate policy regime (e.g., carbon price, carbon capture and storage for fossil fuels) created a 518 

high potential for mitigation with low-range emissions (Figure 4w) and low radiative forcing levels 519 

(Figure 4v) by 2100. 520 

 521 

 522 
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Figure 4. Scenario projections with the FeliX model (envelopes) and their comparison with the 523 

projections of major demographic and economic models (Dellink et al., 2017; Samir & Lutz, 524 

2017) and integrated assessment models (Bauer et al., 2017; Calvin et al., 2017; Fujimori et al., 525 

2017; Kriegler et al., 2017; Popp et al., 2017; Riahi et al., 2017; van Vuuren et al., 2017) (thin 526 

lines). Projections cover the period 2020-2100 with an annual time step. See Supplementary Figure 2 527 

for the detailed specification of projections with other IAMs. 528 

The SSP2-4.5 projections followed the continuation of past and current (business-as-usual) 529 

trajectories across all sectors. The results showed a moderate growth in all socioeconomic sectors 530 

(population, education, economy) (Figures 4a to 4e), a higher energy demand, and a slower transition 531 

to renewable energy compared to SSP1-2.6 (Figures 4f to 4n). There was also a moderate rate of 532 

agricultural land expansion and deforestation and a relatively higher animal caloric supply (Figures 4o 533 

to 4u) due to input assumptions on the continuation of current (high meat) diet regimes. Together, 534 

these trajectories resulted in a higher level of emissions and radiative forcing compared to SSP1-2.6, 535 

but still lower than other scenarios due to moderate climate change mitigation policies (Figures 4v and 536 

4w). 537 

The SSP3-7.0 projections represented a high population, consumption, and environmental 538 

footprints scenario. The results showed the low-achieving socioeconomic projections among all 539 

scenarios (Figures 4a to 4e). A very slow economic growth led to an underdeveloped education system, 540 

especially at the tertiary level, which limited the training of a skilled labour force and created further 541 

challenges for economic development. Slow economic progress along with limited educational 542 

opportunities induced rapid population growth and declining wellbeing and life expectancy across the 543 

population. A relatively weak economy normally has a reduced demand for energy. However, input 544 

assumptions around low environmental standards and poorly performing public infrastructure in this 545 

scenario (Supplementary Table 1) increased energy demand compared to the business-as-usual 546 

trajectories (Figure 4h). Transition to renewable (i.e., wind and solar) energy was slower than the 547 

business-as-usual (Figures 4l to 4n) due to input assumptions around low energy technology 548 

improvement (i.e., efficiency), limited investment in expanding installed renewable energy capacity, 549 

and lower production cost of fossil energy (i.e., no limit on emissions and carbon price for fossil fuels). 550 

In the land and food sector, low crop and livestock yield (due to poor land management practices) and 551 

increasing demand for animal calories from the increasing population necessitated the rapid expansion 552 

of cropland and pasture to address food insecurity (Figures 4o to 4u). A combination of booming 553 

population with declining trends of other socioeconomic systems, high fossil energy dependency, high 554 

meat consumption with rapid agricultural land expansion, and a lack of strong global climate change 555 

mitigation policies for the energy and land sectors resulted in high emissions and high radiative forcing 556 

levels (Figures 4v and 4w), posing significant challenges to mitigation in this scenario. 557 

The SSP4-6.0 projections showed moderate trajectories in socioeconomic systems (i.e., 558 

population, education, economy) with trends better than business-as-usual and SSP3-7.0, but not at the 559 

same level of prosperity as in SSP1-2.6 and SSP5-8.5 (Figures 4a to 4e). Transition in the energy sector 560 

(from fossil to renewable sources) (Figures 4f to 4n) and food production and the expansion of 561 

agricultural lands (Figures 4o to 4u) also had relatively similar low and high trends (respectively) 562 

compared to business-as-usual. These socioeconomic, energy, and food and land trajectories together 563 

resulted in a moderate (compared to business-as-usual) emissions and radiative forcing (Figures 4v 564 

and 4w), leading to relatively low challenges to mitigation.  565 

The SSP5-8.5 was a promising socioeconomic future at the cost of an unsustainable 566 

environmental outlook driven by a highly polluting and high-consumption lifestyle. The projections 567 

showed a similar level of socioeconomic prosperity to SSP1-2.6, with equally low population and high 568 

educational attainment, and even higher economic growth (Figures 4a to 4e). However, socioeconomic 569 

development in this scenario resulted in high, resource-intensive consumption, with severe impacts for 570 
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energy and climate. Rapid economic growth promoted a lifestyle with the highest energy demand 571 

among all scenarios (Figure 4h). However, contrary to SSP1-2.6, this high energy demand was not 572 

offset by a transition to low energy intensity, efficient renewable energy technologies, nor an 573 

environmental consciousness around consumption impacts (Supplementary Table 1). Despite rapid 574 

economic development and technological advances, the reliance on fossil fuels as a cheap source of 575 

energy remained much higher than other scenarios to meet the increasing energy demand (Figures 4i 576 

to 4k). In the food and land sector (Figures 4o to 4u), a small yet high animal-calorie-consuming 577 

population resulted in crop and livestock production lower than the business-as-usual but still higher 578 

than the SSP1-2.6 scenario. The effects of all sectors together, mostly driven by a fossil-fuel-dependent 579 

energy system in the absence of universal climate polices, resulted in the highest emissions and 580 

radiative forcing among all scenarios, creating significant challenges to mitigation (Figures 4v and 581 

4w).       582 

3.2 Divergence from standard projections 583 

The exploratory modelling of our scenario assumptions resulted in internally consistent 584 

storylines similar to the SSPs (O’Neill et al., 2017), but not necessarily with the same quantitative 585 

projections to those of other integrated assessment models (Riahi et al., 2017), due to the new model 586 

structural complexity (Section 2.1) and different parametrisation (Section 2.4). This highlighted the 587 

new insights that would not have been possible without exploring the projections of our non-marker 588 

model. While the scenario projection of marker IAMs (Figure 4) can be interpreted as being 589 

representative of a specific SSP-RCP development, they are not to be considered as central, median, 590 

or most-likely future developments. This means that for each SSP-RCP combination, numerous 591 

alternative projections are possible—and they are equally valid—as long as they are internally 592 

harmonious. The projection of scenarios with the FeliX model presented some of these equally valid, 593 

yet divergent futures to standard projections. Among the FeliX’s divergences from the projections of 594 

other IAMs, three are more prominent.  595 

First, the FeliX’s projections of coal production in SSP5-8.5 were lower than projections from 596 

other marker IAMs from 2070 onwards (Figure 4i), showing more promising futures for renewable 597 

energies and a faster decline in fossil energies, even in the fossil-fuelled development pathway. This 598 

can be explained by the energy market share structure in FeliX where reduction in energy production 599 

from one source is compensated by energy from other (more price-competitive) sources. This model 600 

structure, along with assumptions about the declining cost of production from other energy sources 601 

over time, made coal less cost competitive compared to other fossil (i.e., gas, oil) as well as renewable 602 

(i.e., solar, wind) sources. This propagated a more rapid decline in coal production consistently across 603 

all scenarios (more noticeably in SSP5-8.5) in the FeliX model. The issue of conservative assumptions 604 

on renewable costs in the global climate (IPCC) scenarios (and hence less competition that can reduce 605 

fossil energy production) has been discussed in the literature (Eker, 2021; Jaxa-Rozen & Trutnevyte, 606 

2021). Similar variations, resulting from differing model structural complexity and parameterisation, 607 

were also observed among other integrated assessment models where some attributed greater priority 608 

to some energy technologies over others. For example, REMIND-MAGPIE and MESSAGE-609 

GOLOBIOM had the highest solar and MESSAGE-GOLOBIOM had the lowest share of oil across all 610 

scenarios compared to other models. Despite this lower coal production compared to other models, 611 

coal production in SSP5-8.5 projected by FeliX still remained much higher than renewable energy 612 

production in the same scenario and was also higher than coal production in other FeliX’s SSP-RCP 613 

projections. This maintained an internal consistency with the ‘fossil-fuelled development’ storyline 614 

narratives (O’Neill et al., 2017).  615 

Second, FeliX’s projections varied from those of other IAMs in food and land sector (most 616 

notably in SSP1-2.6 and SSP3-7.0), bringing new insights about the impacts of sustainable diet shift 617 

(from meat to vegetable) on food demand, food production, and land-use change. The observed 618 
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variations in food and land are primarily linked to FeliX’s diet change structure, an additional model 619 

module compared to other marker models. In FeliX, demand for agricultural land is driven by the size 620 

of food production, which itself is designed to meet food demand. This means that an increase or 621 

decrease in food consumption can directly impact food production and agricultural land expansion. 622 

The food demand and consumption of vegetables and meat in FeliX was modelled mainly through the 623 

diet change sub-model which formalised sustainable diet shift (i.e., reduction in meat consumption) in 624 

food systems based on behavioural factors (e.g., social norms and value driven actions) and 625 

educational attainments of the population per gender (Eker et al., 2019). This links to the food demand 626 

from various food categories (animal-based and plant-based foods), and subsequently to food 627 

(livestock) production, to demand for arable land (pasture and cropland), and to land-use change (i.e., 628 

deforestation). Diet (as a lifestyle driver) was mentioned in the original storylines of shared 629 

socioeconomic pathways (O’Neill et al., 2017), but it was not explicitly modelled with its feedback 630 

interactions in most of the major integrated assessment models. However, modelling of diet change, 631 

as shifting social norms and changing patterns of human behaviour in food consumption, has become 632 

increasingly important (Willett et al., 2019), with impacts on multiple SDGs (food, health, responsible 633 

consumption, biodiversity conservation) (Herrero et al., 2021). Given assumptions on low caloric food 634 

consumption per person per year and low animal calories diet share in SSP1-2.6 (and the opposite in 635 

SSP3-7.0), the FeliX projections resulted in low livestock production (Figure 4q), low pastures and 636 

croplands (Figures 4s and 4u), and more forest land (Figure 4t) in SSP1-2.6 (and vice versa in SSP3-637 

7.0).  638 

Third, the combination of a sharper decline in coal production as well as varied food 639 

consumption patterns in FeliX (as explained above) resulted in lower projections of CO2 emissions, 640 

most notably in SSP5-8.5, compared to the other models. This brings a new insight that the 641 

consideration of diet change impacts and more aggressive assumptions on fossil fuel reduction can 642 

make CO2 emissions less likely follow the projection of current high-emission scenarios (i.e., SSP5-643 

8.5). Such lower emission projections are aligned with the tracked emission developments over the 644 

past three decades which followed the middle of projected emission scenarios (Pedersen et al., 2020). 645 

It also echoes the recent critiques about the relevance of high-emission RCPs (Hausfather & Peters, 646 

2020), signifying the importance of considering a broader range of emission projections in 647 

sustainability analysis. 648 

3.3 Scenario implications for sustainable development  649 

The complex and deeply uncertain multisector dynamics that underlay the SDGs resulted in 650 

substantially varied outcomes for sustainable development across different scenarios and indicators 651 

(Figure 5). Among the generated SOWs, the accumulation of changes in SSP1-2.6 between 2050 and 652 

2100 created a promising long-term trajectory for sustainable development. However, this was not the 653 

case in generated SOWs under other scenarios, driven by counteracting interactions between future 654 

socioeconomic and environmental drivers. The trends in some of the major indicators are described 655 

here for illustration while the detailed projections of all indicators are available in Figure 5 and the 656 

online dataset.  657 

Among the socioeconomic indicators for sustainable development, Gross World Product 658 

(GWP) per capita (Figure 5e-i), adolescent fertility rate (Figure 5b-ii), and mean years of schooling 659 

(Figure 5c-i) were the three with the fastest improvement over the century in SSP5-8.5 and SSP1-2.6 660 

(across SOWs) by 2030 and beyond. This was due to input assumptions on investment in high-quality 661 

and well-functioning education (Figure 4d) and declining population growth (Figure 4a) under these 662 

two scenarios. Despite similar performance in socioeconomic indicators, the human prosperity and 663 

economic growth created two different pathways for environmental impacts and for achieving 664 

sustainable development under SSP1-2.6 and SSP5-8.5.  665 
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In SSP1-2.6, the high level of socioeconomic prosperity led to improving trajectories in major 666 

energy and climate indicators by 2030. In a longer timeframe and by 2100, the increasing scale of 667 

positive socioeconomic change in this scenario achieved more than 85% (global average) share of 668 

renewable energy supply (Figure 5d-i), close to 430 ppm CO2 concentration (Figure 5g-i), and < 2 669 

degree °C global temperature change (Figure 5g-ii). The SSP1-2.6 scenario also resulted in a 670 

significant drop in total agricultural activities (Figures 4r), positively impacting several SDG indicators 671 

related to food and land-use change. Among these positive impacts was SSP1-2.6’s declining trend in 672 

(land-based) animal calorie supply (Figure 5a-ii) due to a decreasing population after 2050 (Figure 4a) 673 

and lower meat consumption. Reducing demand for food through responsible consumption and 674 

collective global action on food choices under this scenario could help to alleviate the pressure from 675 

the COVID-19 pandemic on the food system, helping those worst-affected by the distributional 676 

impacts on food supply chains. The SSP1-2.6 scenario also outperformed other scenarios in some of 677 

the major responsible production and biodiversity conservation indicators, such as yield improvement 678 

(Figure 5a-i), reduced pressure from agricultural land expansion and fertiliser use (Figures 5f-i, 5f-ii), 679 

and less deforestation and biodiversity loss (Figures 5h-i, 5h-ii).  680 

 681 

Figure 5. The implications of modelled scenarios for sustainable development across 50,000 682 

SOWs and in 16 indicators. In each subplot, the envelope plots show each indicator’s trajectory 683 

across five scenarios with descriptive statistics (mean and standard deviation) to represent the average 684 

projected value and the uncertainty range of each indicator’s projection. The box plots show the 685 
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comparative of performance of each scenario compared to the business-as-usual’s trajectories (i.e., 686 

baseline SSP2-4.5). This shows what would happen (i.e., the scale of improvement or deterioration in 687 

each indicator) if we deviate (positively or negatively) from current trajectories (i.e., business-as-688 

usual). 689 

By contrast, socioeconomic prosperity in SSP5-8.5 resulted in the fastest growth in the share 690 

of fossil fuels in energy supply (Figure 5d-i) driven by increasing demand from high energy intensity 691 

of industry and services (Figure 4h). Reliance on fossil fuels in this scenario translated into severe 692 

climate impacts from (energy-related) high CO2 concentration (Figure 5g-i) with global temperature 693 

continuing to rise to almost 4.5 degree °C by 2100 in all simulated SOWs (Figure 5g-ii). This imposed 694 

a severe risk for achieving the IPCC climate targets (Rogelj et al., 2019). The SSP5-8.5 scenario also 695 

resulted in a high land-based animal calorie supply up to 50% (across all SOWs) higher than the 696 

business-as-usual trajectories driven by the economic welfare combined with high meat-based diets 697 

(Figure 5a-ii). This led to the higher production of crops in this scenario as livestock feed (Figure 4q). 698 

However, high crop and livestock yields and effective land management practices fuelled by high 699 

GWP and rapid technology advances as described in this scenario’s assumptions (Supplementary 700 

Table 1), enabled the achievement of high food demand and production with less agricultural land 701 

(Figure 4r). This resulted in improving trajectories in indicators related to forest land (Figure 5h-i) 702 

throughout the 21st century. 703 

Far less improvement occurred in SSP3-7.0 and SSP4-6.0 across all indicators and SOWs. The 704 

global trajectories under these two scenarios deteriorated in most of socioeconomic, energy, climate, 705 

and biodiversity indicators. This resulted from the combined effects of the medium to high population 706 

(Figure 4a), slow economic growth (Figure 4e), low investment in higher education (Figure 4d), high 707 

energy demand from inefficient and high energy intensity infrastructure (Figure 4h), low diffusion of 708 

renewable energy (Figure 4f), and extreme pressure on lands from agricultural activities and high 709 

animal calorie consumption (Figures 4r and 4q), as discussed in Sections 3.1 and 3.2. For instance, 710 

trends over the century reached around 3-4 degree °C warming (compared to the pre-industrial level), 711 

significantly exceeding the 1.5-2 degree °C target from the Paris Agreement (Figure 5g-ii). Similar 712 

negative drivers across these two scenarios also resulted in extreme-range trajectories in indicators 713 

related to food production (Figure 5a-ii), fertiliser use (Figure 5f-i, 5f-ii), and biodiversity across all 714 

SOWs by 2030 and beyond (Figure 5h-i, 5h-ii). For example, high rates of fertiliser application in 715 

agriculture (up to 40% higher than business-as-usual; Figure 5f-i) and the steep decline in forest land 716 

and species abundance (up to 30% and 50% decline compared to business-as-usual respectively; 717 

Figure 5h-I, 5h-ii) under SSP3-7.0 were attributed in the model to the complex underlying dynamics 718 

of high population growth along with unhealthy diets with a high animal calorie diet that increases the 719 

demand for feed crops. As a result of this high feed demand, the pressure on natural and agricultural 720 

lands increased strongly (Figure 4r), resulting in further demand for fertiliser application and greater 721 

deforestation and biodiversity loss.   722 

4 Conclusions and future work  723 

Interacting systems, with multisectoral dynamics that occur at an unprecedented pace, can 724 

create complexity and uncertainty in understanding the impacts of future socioeconomic and 725 

environmental change on sustainable development. Despite the popularity of standard (marker) 726 

integrated assessment models as widely used tools to understand environmental and societal risks of 727 

climate change, the knowledge that is put into these models (e.g., conceptual framing, boundary 728 

conditions, model structure, parametrisation) is imperfect, limited, and uncertain. This uncertainty 729 

challenges the ideal of the marker models as the projection tools, which turn best available knowledge 730 

into best estimates.  One way of dealing with this combination of uncertainty and complexity is through 731 

scenario exploration with a greater diversity of models that have new modelling paradigms (e.g., 732 
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system dynamics), different structural complexity (e.g., feedback-rich), and alternative assumptions, 733 

and can better simulate the underlying multisectoral dynamics for the assessment of sustainable 734 

development. 735 

We used a methodology, inspired by model-driven exploratory analysis, to implement global 736 

scenarios in a non-marker integrated assessment model and to investigate the new uncertainty of future 737 

projections. The methodology was the key and a generalisable contribution, enabling a greater 738 

diversity of models to be adopted for SDG analysis. It helped expand the limits of benchmark scenarios 739 

through the exploration of a larger uncertainty space driven by models. We projected new realisations 740 

of future scenarios with the non-maker model across population, economy, energy, land, food, and 741 

climate systems from 2020 to 2100, and highlighted the new insights (e.g., diet change impacts). Our 742 

study also contributed to sustainability science by enabling a wider adoption of global scenarios to 743 

explore their broader implications beyond the original foci of climate change and in sustainable 744 

development across 16 indicators by 2030 and beyond. 745 

While our proposed methodology enabled the parameterisation of an integrated assessment 746 

model to evaluate SDG trajectories under global scenarios, it did not measure the actual progress 747 

towards explicit targets nor discover the individual contribution of socioeconomic (SSP) versus 748 

climatic (RCP) drivers in achieving these targets. An important next step in the further development 749 

of our methodology for SDG analysis is to adopt post-processing techniques (e.g., scenario discovery 750 

cluster analysis (Guivarch et al., 2016; Rozenberg et al., 2014)) to identify a posteriori the main 751 

socioeconomic and climate driving forces of each SDG indicator and to quantify the extent of their 752 

(positive or negative) contributions to the SDG progress.  753 

While we also explored the prevalent uncertainty of several indicated model parameters in this 754 

paper, we acknowledge that we did not include all forms of uncertainties, and not specifically those 755 

severe forms of uncertainty (i.e., unknown unknown circumstances or state of total ignorance), which 756 

cannot be fully represented in models (Stirling, 2010). Future work is needed to incorporate other 757 

techniques and approaches, such as scenario discovery (Hadjimichael et al., 2020), robustness analysis 758 

(Gold et al., 2019; Herman et al., 2020), and adaptive policy-making (Trindade et al., 2020), to identify 759 

tipping points as warning signs, employ monitoring processes, and execute multiple pathways to be 760 

prepared for future contingencies. These can enable proactive and anticipatory responses to external 761 

shocks and help decision-makers in keeping human and environmental systems on-track towards 762 

sustainability targets in the face of severe uncertainties.  763 

Further enhancing the robustness of insights obtained about the SDGs requires the expansion 764 

of scenario space and its uncertainty exploration to include similar sustainability analyses over many 765 

other possible combinations of SSPs and RCPs (O’Neill et al., 2020). However, this comes at the 766 

expense of increasing the computational costs of simulations. Our model-based assessment of the 767 

SDGs was no exception. Our results and their interpretations in this article were based on the 768 

assumptions of only five specific SSP-RCP combinations, and there were other potential combinations 769 

that we did not investigate. For example, our most sustainable scenario was developed based on SSP1-770 

2.6. While SSP1-2.6 can substantially control environmental damages from energy and climate 771 

impacts relative to our other scenarios, the SSP1-2.6 scenario is not still aligned with IPCC mitigation 772 

pathways which limit global warming to 1.5 degree °C (Rogelj et al., 2018b). Future research can 773 

construct SSP1 in the FeliX model in line with the pathways of more aggressive actions (i.e., more 774 

ambitious Nationally Determined Contributions under the Paris Agreement) and more extreme 775 

mitigation pathways (e.g., aligned with 1.9 W m-2 radiative forcing level or with pathways proposed 776 

by the IPCC 1.5 (IPCC, 2018)). This could potentially improve the performance of the SSP1 scenario 777 

across energy and climate indicators (e.g., faster emissions reduction) compared to our results, driven 778 

by for example a greater reliance on atmospheric CO2 removal technologies and practices (Smith et 779 

al., 2016). However, it should be noted that more aggressive assumptions such as a very high level of 780 
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CO2 removal has not been demonstrated in practice and may cause other sustainability issues such as 781 

competition with food and agricultural sectors for land and water (Rogelj et al., 2018b). Hence, policy 782 

cost and feasibility assessment become an important research direction in future studies with scenarios 783 

of more aggressive emissions reduction and with potential spillover effects on other sectors. 784 

The discussion of scale and interactions between global, national, and local efforts in modelling 785 

the SDGs under uncertainty can also play a crucial role in future scenario modelling for the SDGs 786 

(Verburg et al., 2016). In this article, we characterised the future development of socioeconomic, food 787 

and land, energy, and climate systems at a global scale. Other studies have also mostly analysed these 788 

scenarios either at global, regional, or national scales (Szetey et al., 2021). However, large scale and 789 

global scenarios, in reality, translate into local changes in human interactions with the environment. 790 

Grassroots solutions led by local communities, cities, and businesses can also make synergies with the 791 

aspirations of the higher scales and significantly impact the unfolding of higher-level sustainability 792 

scenarios (Bennett et al., 2021; Moallemi et al., 2020b). This brings new challenges for modelling the 793 

cross-scale dynamics of scenarios that can account for both higher spatial and temporal resolutions 794 

where policy-making (e.g., carbon pricing) and biophysical processes (e.g., greenhouse gas emissions) 795 

operate, as well as for locally-specific and place-based dynamics, such as gender inequality 796 

(Emmerling & Tavoni, 2021) and the representation of heterogeneous actors (Ilkka et al., 2021). Future 797 

work on integrated assessment modelling, therefore, requires capturing the societal dynamics of lower 798 

scales beyond the currently global, regional, or national assumptions to better incorporate them in 799 

scenario exploration (Liu et al., 2013). This can lead to more reliable insights that can account for the 800 

diversity of local priorities and the heterogeneities in the availability of skills and resources across 801 

regions, enabling a more just and inclusive sustainable development by tailoring the plans to the unique 802 

socio-ecological characteristics of each context. 803 
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