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Key Points:11

• Anomalous meltwater from ice sheets and shelves is sufficiently large to be included12

as a forcing in historical climate model simulations.13

• When the GISS model includes these drivers, Southern Ocean SST and sea ice trends14

better match observations.15

• Steric and dynamic impacts on regional sea level in the western North Atlantic16

and coastal Antarctica are significant.17
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Abstract18

Recent mass loss from ice sheets and ice shelves is now persistent and prolonged enough19

that it impacts downstream oceanographic conditions. To demonstrate this, we use an20

ensemble of coupled GISS-E2.1-G simulations forced with historical estimates of anoma-21

lous freshwater, in addition to other climate forcings, from 1990 through 2019. In this22

ensemble there are detectable differences in zonal-mean sea surface temperatures (SST)23

and sea ice in the Southern Ocean, and in regional sea level around Antarctica and in24

the western North Atlantic. These impacts mostly improve the model’s representation25

of historical changes, including reversing the forced trends in Southern Ocean surface tem-26

perature and Antarctic sea ice. The changes in SST may have implications for estimates27

of the SST pattern effect on climate sensitivity and for cloud feedbacks. We conclude28

that the changes are sufficiently large that these drivers should be included in all-forcing29

historical simulations in coupled model intercomparisons.30

Plain Language Summary31

Simulations of recent historical periods are a key test of climate model reliability32

and skill. These model simulations require an accounting of all the drivers of climate change.33

We show that the impact of historical changes in freshwater fluxes from ice sheets and34

ice shelves on the ocean (through changes in salinity and stratification) are detectable35

in sea surface temperature and sea ice trends, and help improve the match between the36

modeled climate changes and observations. We recommend that these drivers be included37

in all climate simulations that do not explicitly model ice sheets and ice shelves.38

1 Introduction39

While coupled climate models have skillfully predicted global mean sea surface tem-40

perature (SST) trends since the 1970s (Hausfather et al., 2020), and successfully repre-41

sented them in hindcasts over the historical period (e.g. Miller et al., 2021), there are42

nonetheless persistent regional biases. Notably, cooling trends since the 1980s in the East-43

ern Tropical Pacific and in the Southern Oceans are significantly different from the ex-44

pectations drawn from the Coupled Model Intercomparion Project, Phase 6 (CMIP6)45

multi-model ensemble (Eyring et al., 2021) (Fig. 1) even when the models are screened46

for the likely range of Transient Climate Response (TCR) (Hausfather et al., 2022). Whether47

these departures from the expected forced pattern derived from a multi-model mean are48

due to internal variability, unrepresented or poorly represented climate feedbacks, or mis-49

specifications or incompleteness of the forcings, is a subject of much current research (Dong50

et al., 2022; Wills et al., 2022; Kang et al., 2023).51

Additionally, trends in Antarctic sea ice have been anomalous with respect to the52

multi-model ensembles (Roach et al., 2020). From 1979 to 2014, Antarctic trends were53

in fact slightly positive, in contrast to the situation in the Arctic and to the expectations54

of the CMIP5/CMIP6 models (Rye et al., 2020; Roach et al., 2020). Internal variabil-55

ity in the region is however high, and in recent years (2015 onward), Antarctic sea ice56

anomalies have been significantly negative, with 2022/2023 being the lowest austral sum-57

mer sea ice amounts on record (Gautier, 2023).58

Many explanations have been proposed for the departures in the Southern Ocean59

- such as impacts of changes in the Southern Annular Mode (driven by ozone depletion60

and rising greenhouse gases (Miller et al., 2006; Kostov et al., 2017, 2018; Hartmann, 2022)),61

problems associated with coarse resolution in ocean models that don’t permit or resolve62

eddies (Rackow et al., 2022; Yeager et al., 2023), and/or Southern Ocean cloud feedbacks63

(Kim et al., 2022; Dong et al., 2022). One specific forcing that was not included in the64

CMIP5/6 models is the freshwater from historical changes in the mass balance of the Antarc-65

tic ice sheet and surrounding ice shelves (Bintanja et al., 2013). Note that for models66
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Figure 1. Annual mean sea surface temperature trends (1990–2019) from a) ERSSTv5 obser-

vations (Huang et al., 2017) and b) a screened multi-model ensemble mean from CMIP6 using

historical simulations to 2014 and SSP245 scenarios from 2015 to 2019 (see Table S1 for details).
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without a representation of the dynamics of ice sheets and ice shelves, which includes67

all of the models in the standard CMIP6 historical ensemble, anomalous freshwater or68

ice inputs from the ice sheets should be regarded as a forcing, even if in the fully cou-69

pled ice-sheet climate system those fluxes might arise as a response to ongoing climate70

changes. Hereafter, we therefore refer to the freshwater as a forcing in this context.71

Multiple lines of observational evidence have demonstrated net mass loss from ice72

sheets and ice shelves in both hemispheres over the last few decades (Watkins et al., 2015;73

Velicogna et al., 2020; Slater et al., 2021; Mankoff, Fettweis, Langen, et al., 2021). The74

mass loss from grounded ice sheets has been a critical component of the closure of the75

sea level budget from 1993 onward (Dieng et al., 2017; Bartholet et al., 2021) contribut-76

ing 1.2 mm yr−1 on average over that time (around 22 mm since 2003). The additional77

freshwater from the loss of ice shelves is quite variable from year to year, but has roughly78

doubled the cumulative amount of freshwater additions into this region over the last 3079

years (Slater et al., 2021; Andreasen et al., 2023). Even though the loss of floating ice80

does not have a large direct effect on sea level (only due to halosteric effects (Jenkins &81

Holland, 2007; Noerdlinger & Brower, 2007)), it may have a large effect on oceanographic82

processes, such as stratification and sea ice formation/melt, and can indirectly affect sea83

level through increasing discharge from upstream grounded ice (Scambos et al., 2004;84

Rignot et al., 2004).85

There have been a number of idealized Southern Ocean freshwater hosing simula-86

tions published (Pauling et al., 2016; Hansen et al., 2016; Rye et al., 2020; Li, Marshall,87

et al., 2023; Dong et al., 2022) and efforts are underway to build an understanding of88

the robustness of these results (Swart et al., 2023). However, due to an understandable89

desire to find a strong signal, the amounts of freshwater added in these simulations have90

often been much larger than the estimated observed cumulative anomalous mass flux from91

the 1990s to the present. For instance, 2000 Gt yr−1 was required to see a signal in a92

single run with CESM1 (Pauling et al., 2016), roughly six times larger than the estimated93

real world flux (Slater et al., 2021). These amounts may be more relevant for simulations94

focused on the future implications of potentially greater amounts of anomalous fresh-95

water in the 21st Century (Gomez et al., 2015; Golledge et al., 2019; Sadai et al., 2020;96

Gorte et al., 2023; Li, England, et al., 2023; Purich & England, 2023).97

Similarly, the majority of hosing experiments focused on the North Atlantic have98

used hosing rates one or two orders of magnitude greater than recent observed fluxes (e.g.99

Manabe & Stouffer, 1995; Rind et al., 2001; LeGrande et al., 2006; Orihuela-Pinto et al.,100

2022). However, it is unclear whether these fluxes may be contributing to the inferred101

decreases in the overturning circulation (Frajka-Williams, 2015; Caesar et al., 2021).102

In this paper we explore whether, in the GISS-E2.1-G model ensemble, the histor-103

ical transients of anomalous ice sheets and ice shelf meltwater are sufficiently large to104

warrant inclusion in standard CMIP hindcasts, and what, if any, are the signatures of105

this flux on key observables. The GISS-E2.1-G model is particularly suitable for this ex-106

ploration because it has a relatively skillful climatology of Southern Hemisphere ocean107

and ice distribution (Kelley et al., 2020). We describe the model experimental design in108

Section 2, the basic results in Section 3, and discuss the implications for understanding109

real world changes and model intercomparisons in Section 4.110

2 Experimental design111

We use the GISS-E2.1-G coupled climate model with the same configuration as the112

CMIP6 DECK experiments (Kelley et al., 2020). Historical forcings (from 1850 CE to113

2014) in the original experiments included greenhouse gases, aerosols and ozone (by con-114

centration), parameterized aerosol indirect effects, volcanic, solar, orbital and land use/land115

change (including irrigation) (Miller et al., 2021). We extended these simulations to 2019116
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using observed greenhouse gases and solar forcing, while keeping composition and land117

use/land change at 2014 levels. Updates to these last fields to more recent years are still118

pending.119

Climatological ice sheet discharge in GISS-E2.1-G is derived assuming hemispheric120

ice sheet mass and energy balance. Greenland and Antarctic net accumulations over 1990–121

2019 are 504 and 2780 Gt yr−1, respectively, close to that inferred from regional mod-122

els, 338 Gt yr−1 and 2690 Gt yr−1 (Fettweis et al., 2017; Kittel et al., 2021), though there123

are larger differences in individual terms (Alexander et al., 2019). Decadal imbalances124

are distributed uniformly across a spatial mask that delineates coastal areas of major125

iceberg melt in the modern ocean (Fig. S1). Note that the ocean model uses natural bound-126

ary conditions (mass, energy and salt are fluxed at the ocean/ atmosphere /sea ice bound-127

aries) and is fully mass and energy conserving, and so the climatological glacial melt acts128

to balance evaporative mass loss (and hence sea level). The ice discharge is distributed129

uniformly in the vertical from 0 to 200 m with the energy consistent with the accumu-130

lation over the ice sheet (Schmidt et al., 2014). Since the mass and energy accumula-131

tion effectively occur through net snow accumulation, the discharge has an enthalpy con-132

sistent with ice. The mass and enthalpy of this discharge is added to the mass and en-133

thalpy of the ocean water, leading to direct increases in ocean mass, and a slight cool-134

ing to provide sufficient energy to melt the ice. If at any time the resulting enthalpy of135

the ocean would be below that needed for liquid water at the freezing point, marine ice136

is formed and added to the sea ice.137

In these experiments we input additional, anomalous, freshwater in an analogous138

fashion, based on estimates of the post-1990 ‘ice imbalance’ from melting ice shelves and139

ice sheets (Slater et al., 2021; Mankoff, Fettweis, Langen, et al., 2021), but applied over140

an expanded spatial area roughly 500 km wide around Antarctica and 100 km wide around141

Greenland (Fig. S1). Thus the glacial freshwater input to the ocean in these experiments142

comes from two sources: excess mass from each ice sheet from the surface mass balance143

(SMB) such that the ice sheet masses remain constant, and additionally the net mass144

loss from each ice sheet based on observed mass changes. Note that we are not account-145

ing here for net mass losses from mountain glaciers which is also relevant for sea level146

rise, but is spread more diffusely through many continental river systems.147

In total, from 1990 to 2019 we add 4890 Gt and 10414 Gt of water in from Green-148

land and Antarctica respectively as ice. The sea level rise in the model will not be ex-149

actly equal to this number because of modulation by regional steric effects and feedbacks150

to the hydrologic cycle from any forced change in climate. Additionally, in comparing151

absolute sea level rise to observations, we would need to remove the amount of seawa-152

ter that was no longer being displaced by the (unresolved) floating ice (7251 Gt of the153

10414 Gt Antarctic mass change, equivalent to roughly 19.6 mm). The average fresh-154

water fluxes over the 30 years of the experiments are 0.005 and 0.011 Sv, in the North-155

ern and Southern hemispheres respectively. Note that the contribution from Antarctic156

ice shelves is roughly half the total freshwater added, and 70% of the amount around Antarc-157

tica, and so cannot be neglected.158

We performed two 10-member ensembles using the same initial conditions in 1850159

as the original CMIP6 historical runs and continued to 2019 using observed greenhouse160

gas and solar inputs, but keeping atmospheric composition and land surface properties161

constant at 2014 levels. One ensemble additionally included the anomalous freshwater162

added around Greenland and Antarctic from 1990 onward. Results shown below are based163

on the difference between these two ensembles.164
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Figure 2. Impact of anomalous freshwater additions on regional sea level rise (1990–2019)

(after adjusting for the global mean change in sea level). Only trends outside the 95% confidence

interval on the linear trend are plotted.

3 Results165

Globally, the ensemble mean sea level increases by 41.4 ±2.1 mm from 1990 through166

2019 (95% confidence on the mean value) because of the anomalous freshwater flux (which167

includes barystatic and steric effects, climate feedbacks and residual internal variabil-168

ity), compared to 42.9 mm from just assuming that additional freshwater adds to sea169

level without climate feedbacks. The spread across the ensemble is [37.7, 46.9] mm, sug-170

gesting that internal variability can make a roughly 10 % difference in global impacts171

over this 30 year period. We define regional sea level rise anomalies as the difference in172

any particular area from the global mean sea level rise. There are local rises in regional173

sea level around coastal Antarctica and most notably along the Adelie coast (Rye et al.,174

2020; Li, Marshall, et al., 2023), but also in the North Atlantic, where the additional fresh-175

water from Greenland results in almost 1 mm yr−1 higher sea level trends near the US176

East Coast (as also suggested by Stammer (2008)) and Gulf of Mexico (Fig. 2).177

The zonal average differences in the ensembles show clear and significant forced cool-178

ing in Southern Ocean sea surface temperatures and increases in sea ice concentrations179

(Fig. 3) and in the ocean subsurface (Fig. 4). Notably, the sign of the forced trends in180

temperature and sea ice concentration have changed and are better aligned with obser-181

vations in the Southern hemisphere. Subsurface temperatures around Antarctica also182

increase as the surface freshwater inhibits mixing though there is no detectable differ-183

ence in net Antarctic Bottom Water production (Fig. 4 c and e). Simulated subsurface184

salinity trends show a freshening signal in the southern mid-latitudes (Fig. 4 d) along185

the subduction pathways of Subantarctic Mode Water and Antarctic Intermediate Wa-186

ter, which is not seen in the CORA5 dataset (Fig. 4 b) (Szekely et al., 2019). In the North-187

ern Hemisphere, neither of the two ensembles have as much Arctic warming or decrease188

in sea ice as observed (Fig. 3), and the subsurface trends in temperature and salinity pen-189
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Figure 3. The 1990–2019 trends in zonal annual mean sea surface temperature and sea ice

concentration in the two ensembles, together with the 95% confidence intervals on the trends in

the ensemble mean. Observations in the SST plot are from HadSST4 (Kennedy et al., 2019) and

ERSSTv5 (Huang et al., 2017) (emphasized where the trend exceeds the 95% confidence interval

on the trend), and we use NSIDC CDRv4 for the sea ice concentration trend (Meier et al., 2014),

with 95% confidence on the estimated trend.
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a) b)

c) d)

e) f)

Figure 4. Trends (1990–2019) of zonally averaged potential temperature (left column) and

salinity (right column) over 0–2000m depth: a) and b) in the Coriolis Ocean Dataset for Reanaly-

sis v.5.2 (CORA5.2) (Szekely et al., 2019); c) and d) in the ensemble with anomalous freshwater;

e) and f) the difference in the trends between the ensemble with anomalous freshwater and the

ensemble without. In panels c–f, trends that are not significant at the 95% confidence level are

masked out.
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etrate deeper into the ocean than seen in the observations (Fig. 4). Tropical sea surface190

and subsurface temperature trends are too large in both model ensembles.191

The differences between the ensembles in the Northern Hemisphere are mostly con-192

fined to around 45◦N, where the additional freshwater causes a dipole pattern of warm-193

ing to the south and cooling to the north (Fig. 3b). The impact in the NH is less than194

in the SH, and does not show any notable improvement when compared to observations,195

except perhaps in the regional sea level pattern.196
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Elsewhere regional impacts are less clear, though there are robust signals of cool-197

ing and freshening in SST and SSS around Antarctica, and in the northern North At-198

lantic, somewhat balanced by opposing temperature trends in the northern Pacific sec-199

tor (Fig. 5). Mixed layer depths shoal in the Labrador and Irminger Seas, and increase200

in the Norwegian Sea (not shown), but there is no detectable change in the overall At-201

lantic Meridional Overturning Circulation (AMOC), possibly because the salinity and202

temperature trends roughly cancel in terms of density and there is no strong freshening203

trend in the subsurface. There are large salinity anomalies in the Ross and Weddell Seas204

near the Antarctic coast, which is consistent with sea ice changes there, that probably205

lead to reduced convection and warming of the subsurface Southern Ocean. Large warm-206

ing in the Indian Ocean section of the Southern Ocean is mostly confined in the belt 60–207

65°S. There is a curious response in salinity in the tropics, with a decrease in the trop-208

ical Atlantic and Indian Oceans to the north of the equator, and an increase in the west-209

ern Pacific, consistent with a shift northwards in the Intertropical Convergence Zone (ITCZ)210

in the Atlantic and Indian Oceans. In the subsurface, the main difference is an increase211

in warming in Antarctic Circumpolar Deep Water.212

Altogether, we see a consistent set of responses in Southern Ocean salinity, surface213

and sub-surface temperatures, and sea ice area. This is in line with other estimates of214

the effects of anomalous freshwater in the Southern Oceans although the magnitude of215

response varies among studies. Note that with the level of forcings used here, and with216

the sensitivity to that forcing in this model, we see no detectable far field impacts on the217

tropical Pacific temperatures. There is a very slight decrease in net snow accumulation218

in Antarctica in the ensemble means (by about 30 Gt yr−1), but it is not significant with219

respect to the internal variability.220

4 Discussion221

While the impacts of additional freshwater to climate models has been a topic of222

study for many decades (e.g. Manabe & Stouffer, 1993), the focus has often been to as-223

sess the existence of tipping points in the AMOC, and the magnitudes of fresh water in-224

puts needed for that were orders of magnitude larger than current melt rates from Green-225

land (0.1 to 1.0 Sv). Similarly, efforts to explore the response of the Southern Ocean to226

increased meltwater since work by (Seidov et al., 2001; Stouffer et al., 2007), have gen-227

erally used freshwater input rates that are much larger than current anomalous fluxes228

from Antarctica (Swart et al., 2023). This has been useful for seeing a signal emerge from229

the noise, particularly in single coupled model simulations, however, in the context of230

historical hindcasts, we need to assess the likely forced signal with realistic inputs. Our231

results suggest that the observed rates - especially once the impacts of ice shelf changes232

are included - are indeed sufficiently large to matter. The significance levels shown here233

are determined by the difference between two ten-member ensembles. If the number of234

ensemble members was larger, we would increase the significance of the changes. These235

significance levels are therefore useful for the attribution of the changes, but not neces-236

sarily the detection of the changes, which instead uses the ensemble spread to assess whether237

the observed changes are consistent with the unperturbed ensemble (or not) (Schmidt238

et al., 2023; Santer et al., 2008).239

In other studies that have used qualitatively realistic Southern Ocean inputs (i.e.240

Golledge et al., 2019; Rye et al., 2020; Li, Marshall, et al., 2023; Bintanja et al., 2013;241

Beadling et al., 2022), the magnitude of the climate impacts have varied significantly.242

This is likely because of the different biases in Southern Ocean climate in different mod-243

els, different processes at play (such whether the impacts of eddies are resolved or pa-244

rameterized), and/or different implementations of the freshwater flux (horizontally, ver-245

tically, and phase) (L. Zhang et al., 2018; Singh et al., 2019; Thomas et al., 2023). The246

proposed SOFIA project may be able to unravel those issues (Swart et al., 2023), but247

an improved spatial distribution of the anomalous melt is an obvious target. However,248
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a) b)

c) d)

e)

Figure 5. Ensemble mean trends 1990–2019 in a) the control historical ensemble, and b) the

ensemble including anomalous freshwater (to be compared to Fig. 1a). The impact from the

anomalous freshwater on 1990–2019 trends of: c) sea surface temperature; d) sea surface salinity;

and e) sea ice concentration differences. The fields in the difference plots have been masked for

95% confidence intervals in the trend of the difference between the two ensembles.
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given the importance of the CMIP historical simulations in constraining projections (Tokarska249

et al., 2020; Ribes et al., 2021), and estimating ocean thermal expansion (Kopp et al.,250

2023) etc., we think it will be necessary to have the impacts of freshwater fully integrated251

into the next round of CMIP simulations even with these structural uncertainties.252

Notably, constraints on climate sensitivity based on historical changes rely on these253

model simulations for estimates of the SST pattern effect (Sherwood et al., 2020; Dong254

et al., 2022). Since the Southern Ocean SST anomaly is one of the clearest departures255

from the multi-model historical trend (Fig. 1) (the others being the Eastern Tropical Pa-256

cific cooling, and northern North Atlantic warming), model developments that bring the257

hindcasts into better agreement with the observations, will likely reduce the magnitude258

of the estimated pattern effect, and may lead to slightly lower constrained climate sen-259

sitivity estimates using this methodology (Andrews et al., 2018).260

One key question is the extent to which the SST trends in the Southern Ocean and261

Eastern Tropical Pacific are connected (Kang et al., 2023; Kim et al., 2022; Kang et al.,262

2020; Meehl et al., 2016; X. Zhang et al., 2021; Chung et al., 2022). The magnitude of263

these effects may be dependent on the cloud feedbacks in the Southern Oceans or ma-264

rine stratus decks, both of which have a large spread in climate models, but there is no265

indication that of a significant impact in our simulations.266

Eventually, climate models will include a fuller representation of the atmosphere267

and ocean coupling to the ice sheets and ice shelves, though that is proving to be more268

of a technical challenge than was estimated a decade ago (Little et al., 2007). It is, how-269

ever, only with this future functionality that we will be able to quantify the attribution270

of the ongoing mass loss to anthropogenic forcings, internal variability, or long-term ice271

sheet responses to the deglaciation or Holocene. Until then, there is an ambiguity, par-272

ticularly for the Antarctic, as to whether (and with what precision) we can assign these273

inputs to anthropogenic or natural processes. This is not the only historical forcing so274

affected, for instance emissions from biomass burning have a similar ambiguity, but de-275

ciding what to do about the anomalous meltwater in DAMIP-type experiments requires276

further discussion and analysis. In the meantime, the use of observationally-constrained277

freshwater fluxes has the potential to at least partially represent the oceanographic im-278

pacts of these historical changes, and in future work we will similarly incorporate results279

from projections (e.g., Seroussi et al., 2020).280

Finally, it is important to note that while this study covers the period through to281

the end of 2019 (including some extrapolation from 2016), Antarctic sea ice concentra-282

tions since 2015, and especially in 2022/2023, have plunged to record low levels for the283

satellite era, and since 2019, Antarctic grounded ice mass has increased slightly. It is as284

yet unclear what the proximate causes of these changes are and whether they are con-285

nected. It will be crucial to get better, and spatially resolved, estimates of the Antarc-286

tic freshwater fluxes past 2016 to test these hypotheses.287

5 Open Research288

GISS Model results (Table S1) are available from the NCCS portal and through289

ESGF. Ocean surface temperature observations are from ERSSTv5 (Huang et al., 2023)290

and HadSST4 (Kennedy et al., 2023), sea ice concentrations are from NSIDC (Meier et291

al., 2021), and the ocean reanalysis fields from CORA5 (Szekely et al., 2023). The multi-292

model CMIP6 ensemble SST trend was produced on the LEAP-Pangeo portal using code293

archived at Busecke (2023) and (Busecke et al., 2023), using the model simulations de-294

noted in Table S2. Greenland and Antarctic mass balance data were sourced from Mankoff,295

Fettweis, Stendel, et al. (2021); Slater et al. (2023) and available directly from the NCCS296

portal (Mankoff, 2023).297
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