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Abstract
Multiscale heterogeneity and insufficient characterization data for the specific subsurface for-
mation of interest render predictions of multi-phase fluid flow in geologic formations highly
uncertain. Quantification of the propagation uncertainty from the geomodel to the fluid-flow
response is typically done within a probabilistic framework. This task is computationally
demanding due to, e.g., the slow convergence of Monte Carlo simulations (MCS), espe-
cially when computing the tails of a distribution that will be used for risk assessment and
decision-making under uncertainty. The frozen streamlines method (FROST) accelerates
probabilistic predictions of immiscible two-phase fluid flow problems; however, FROST still
relies on MCS to compute the travel-time distribution, which is then used to perform the
transport (phase saturation) computations. To alleviate this computational bottleneck, we
replace MCS with a deterministic equation for the cumulative distribution function (CDF)
of the travel time. The resulting CDF-FROST approach yields the CDF of the saturation
field without resorting to sampling-based strategies. Our numerical experiments demon-
strate the high accuracy of CDF-FROST in computing the CDFs of both saturation and
travel time. For the same accuracy, it is about 5 and 10 times faster than FROST and MCS,
respectively.

1 Introduction

Quantitative predictions of fluid flow and transport in the subsurface are a key com-
ponent of proper risk assessment and decision-making in many applications including water
resources management, extraction of fossil fuels, geologic carbon sequestration, and contam-
inant management. Such predictions typically rely on partial differential equations (PDEs)
that represent fundamental conservation laws. Parameters in these PDEs reflect relevant
properties of the subsurface formation, which is often heterogeneous and the available mea-
surements (e.g., permeability from cores) are a very sparse sampling of the formation. In the
case of multi-phase flow, reactive transport, and other nonlinear phenomena, these PDEs
also involve additional constitutive relations that describe the rock-fluid interactions (e.g.,
the relative permeability relations. Consequently, model predictions must be accompanied
by robust quantification of the predictive uncertainty (Tartakovsky & Winter, 2008).

Within the probabilistic framework, uncertain model inputs and solutions of the corre-
sponding PDEs are treated as random fields/processes. In other words, rather than having
a single deterministic solution, one ends up with a large number of predictions where each
prediction is consistent with the equations, but some predictions are more likely than others.
The probability of a given prediction to be correct is described by the cumulative distribu-
tion function (CDF), or its derivative, the probability density function (PDF). Because of
their high computational cost, these distributions are often replaced with a few statistical
moments, such as the mean and variance of the corresponding PDF/CDF. The mean (first
moment) serves as the “average” prediction, while the variance (second-moment) provides a
measure of the predictive reliability of the computed quantity. We focus on the computation
of the PDF/CDF, rather than its first two moments. This is necessary in order to quantify
the likelihood of rare events and for risk assessment.

Monte Carlo simulations (MCS) are often used to propagate parametric uncertainty
through the modeling process. They are robust, easy to implement, and perfectly paral-
lelizable. They are also computationally expensive, especially when used to estimate full
PDFs/CDFs due to the typically slow convergence rate of the computed PDFs/CDFs. For
MCS to be accurate, the number of realizations can be extremely large, and each realization
required high-resolution discretization to deal with the wide variations in the coefficients
(e.g., permeability). Accelerated versions of MCS, such as multi-level Monte Carlo, provide
significant speed-up in computing the statistical moments of system states and associated
quantities of interest (QoIs) (Müller et al., 2012), but might become slower than standard
MCS when used to estimate full PDFs/CDFs (Taverniers & Tartakovsky, 2020; Taverniers
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et al., 2020, and references therein). Other direct uncertainty quantification techniques,
such as polynomial chaos expansions and stochastic collocation on sparse grids, are also
not guaranteed to outperform MCS when the number of input parameters (the so-called
stochastic dimension) is large, or the governing PDEs are highly nonlinear (Barajas-Solano
& Tartakovsky, 2016). Models of multiphase flow in heterogeneous porous media, which are
the focus of our study, fall under this category.

We posit that the method of distributions (Tartakovsky & Gremaud, 2016) has the
potential to provide a computationally efficient alternative to MCS in this setting. By
providing a deterministic equation for the spatiotemporal evolution of the PDF or CDF of a
state variable, it has proved to be up to an order of magnitude faster than MCS when used
to compute the PDF/CDF of hydraulic head in confined heterogeneous aquifers (Yang et
al., 2019, 2020), and to yield accurate approximations of the PDF/CDF of the concentration
of solutes undergoing geochemical transformations during their migration in the subsurface
(Tartakovsky & Broyda, 2011; Boso et al., 2014, 2018a). While the former class of problems
is linear—see, also, Dentz & Tartakovsky (2010) and Boso & Tartakovsky (2016) for the PDF
solutions of an advection-dispersion equation with uncertain parameters—and the latter
nonlinear, the state variable (hydraulic head or concentration) in both cases is smooth.

Shocks and discontinuous state variables typical of immiscible multiphase flow prob-
lems, e.g., fluid saturation whose dynamics are described by the Buckley-Leverett equation,
pose a challenge for the method of distributions (and other uncertainty quantification tech-
niques). It requires either the analytical computation of the shock dynamics (Wang et al.,
2013) or the introduction of the so-called kinetic defect that has to be inferred from data
(Boso & Tartakovsky, 2020). For highly heterogeneous subsurface environments, in which
the streamlines are defined largely by the geology rather than flow conditions and, hence,
remains frozen in time, a version of the method of distributions named FROST (Ibrahima
et al., 2015, 2018) exhibits remarkable accuracy and efficiency (Fuks et al., 2019, 2020).
The input to FROST is the distribution of travel times, whose Monte Carlo computation
requires a large number of flow simulations and streamline tracings. To speed-up FROST
further, we eliminate the need for MCS by replacing it with a deterministic CDF equation
for travel time.

We start by formulating a two-phase immiscible flow problem with uncertain inputs in
Section 2. Its treatment with the original FROST method is reviewed in Section 3, followed
by the derivation of a CDF equation for travel time in Section 4. A numerical implementation
of the new CDF-FROST method is presented in Section 5. Numerical experiments presented
in Section 6 serve to demonstrate our method’s accuracy and efficiency vis-à-vis MCS. Main
findings and conclusions drawn from our study are summarized in Section 7.

2 Problem Formulation

We consider immiscible displacement of a non-wetting fluid (e.g., DNAPL) by a wetting
fluid (e.g., water) in a d-dimensional heterogeneous porous medium, Ω ⊂ Rd. Both fluids
are incompressible, with respective viscosities µnw and µw. Their mobilities in the porous
medium of intrinsic permeability k(x) are defined as

λnw =
k(x)krnw(Snw)

µnw
, λw =

k(x)krw(Sw)

µw
, (1)

where krnw(Snw) and krw(Sw) are the saturation-dependent relative permeabilities of the
porous medium with respect to the non-wetting fluid and the wetting fluid, respectively;
and Snw(x, t) and Sw(x, t) are the saturations of these two phases, such that Snw +Sw = 1.

Neglecting the effects of capillary pressure and gravity, the Darcy fluxes qnw(x, t) and
qw(x, t) of the non-wetting and wetting phases are related to the gradient of pressure in
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both phases, p(x, t), by

qnw = −λnw∇p, qw = −λw∇p, x ∈ Ω, t > 0. (2)

The total Darcy flux qtot = qnw + qw satisfies the continuity condition, −∇ · qtot + g = 0,
where g(x, t) represents fluid sources and sinks. Neglecting the compressibility of the porous
medium, and accounting for (2), this yields a pressure equation

∇ · (λtot∇p) + g = 0, x ∈ Ω, t > 0, (3)

where λtot(Sw) = λnw(Sw) + λw(Sw) is the total mobility. This equation is subject to
boundary conditions either controlled by pressure

p = pinj for x ∈ Γinj and p = pprod for x ∈ Γprod, (4)

or total Darcy flux

qtot · n = qinj for x ∈ Γinj and qtot · n = qprod for x ∈ Γprod, (5)

which are defined on the injection (Γinj) and production (Γprod) segments of the boundary
∂Ω = Γprod ∪Γinj of the flow domain Ω. Here, pinj and pprod are the pressure imposed along
the boundary segment when boundary is controlled by prescribed pressure; qinj and qprod
are the normal component of the Darcy flux through rate-control boundary; and n(x) is the
outward unit normal vector to ∂Ω.

Conservation of mass of, e.g., the wetting phase gives rise to a transport equation for
the saturation Sw(x, t),

ϕ(x)
∂Sw

∂t
+ qtot · ∇fw(Sw) = gw. (6)

where gw is the source (sink) term for wetting phase and ϕ is the porosity. The fractional
flow function of wetting phase, fw(Sw), is defined as λw/λtot. This equation is subject to
following initial and boundary conditions

Sw(x, 0) = Sir
w, x ∈ Ω; Sw(x, t) = 1− Sir

nw, x ∈ Γinj, t > 0. (7)

Here, Sir
w and Sir

nw are the irreducible saturations of the wetting and non-wetting fluids,
respectively.

Equations (3)–(7) govern the spatiotemporal evolution of the two state variables, fluid
pressure p(x, t) and saturation of the wetting phase Sw(x, t). With the sole exception of
intrinsic permeability k(x), values of all the parameters in these equations are assumed
to be known with certainty. Permeability k(x) is modeled as a second-order stationary
multivariate log-normal field with constant mean k̄, variance σ2

k, correlation length ℓk, and
correlation function ρk(r/ℓK), where r = |x − y| is the distance between any two points
x and y in Ω. Uncertainty (randomness) in the model input, k(x), renders the model
prediction, Sw(x, t), uncertain (random) as well. Our goal is to compute the probability of
saturation Sw, at any space-time point (x, t), not exceeding a given value s ∈ [Sir

w, 1− Sir
nw],

P{Sw(x, t) ≤ s}. The latter is the definition of the single-point CDF of Sw, i.e., P{Sw(x, t) ≤
s} ≡ FSw

(s;x, t).

3 FROST Method

Consider a streamline xsl(τ) originating at point ξ at TOF τ = 0. Given the total
Darcy flux qtot(x, t), it is defined implicitly by

xsl(τ, t) = ξ +

∫ τ

0

qtot(xsl(t
′), t)dt′. (8)
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We parameterize this streamline by a natural coordinate r, such that the distance dr traveled
by a particle along this streamline during the the time of flight (TOF) interval dτ is dr =
|qtot|dτ . A collection of streamlines forms a streamtube with a variable cross-sectional
area A(r); the volumetric flow rate in this streamtube is Qtube = |qtot|A(r). According
to the definition of a streamtube, ∂Qtube/∂r = 0 so that Qtube is independent of r, i.e,
Qtube = Qtube(t).

With these definitions, we rewrite the saturation equation (6) in the streamline coor-
dinate system,

ϕ(r)A(r)
∂Sw(r, t)

∂t
+Qtube

∂fw(Sw(r, t))

∂r
= 0, r > 0, t > 0. (9)

Next, we define the cumulative injection volume Q and the cumulative pore volume V as

Q(t) =

∫ t

0

Qtube(t
′)dt′, V (r) =

∫ r

0

ϕ(r′)A(r′)dr′. (10)

Then, with Q playing the role of time and V of spatial coordinate, Sw(r, t) 7→ Sw(V,Q) and
(9) takes the form of a one-dimensional Buckley-Leverett equation,

∂Sw

∂Q
+

∂fw(Sw)

∂V
= 0, V > 0, Q > 0. (11)

The initial and boundary conditions in (7) map onto

Sw(V, 0) = Sir
w , Sw(0, Q) = 1− Sir

nw. (12)

The frozen streamline assumption implies the direction of the total flux qtot(r, t) is
fixed in time. With this assumption, the cross-sectional area A(r) is time-independent and
given by A(r) = Qtube(0)/|qtot(r, 0)|. Hence, the ratio Z = V/Q becomes the ratio between
TOF at time t = 0, τ0(x), and the equivalent injection time (EIT), Tinj(x, t),

Z(x, t) =
τ0
Tinj

, τ0(x) =

∫ r(x)

0

ϕ(r′) dr′

|qtot(r′, 0)|
, Tinj(x, t) =

∫ t

0

Qtube(t
′)

Qtube(t = 0)
dt′. (13)

Regardless of spatial heterogeneity, the EIT is approximately uniform in space and can be
approximated by its mean value T̄inj from a relatively few MC realizations, i.e., Tinj(x, t) ≈
Tinj(t) ≈ T̄inj(t) (Ibrahima et al., 2018). This approximation allows one to express the CDF
of the wetting-phase saturation, FSw

(s;x, t), in terms of the CDF FY (y;x) of the logarithm
of TOF, Y (x) = ln τ0(x),

FSw
(s;x, t) = 1− FY (z;x), z = ln[S−1

w (s)T̄inj(t)]. (14)

The deterministic inverse mapping, S−1
w (s), is provided by the analytical solution of (11),

S−1
w (s) =


∞, s < Sir

w

f ′
w(s

∗), s ∈ (Sir
w, s

∗)

f ′
w(s), s ∈ (s∗, 1− Sir

nw)

0, s > 1− Sir
nw,

(15)

where f ′
w(·) designates the derivative of fw(·), and s∗ satisfies the Rankine-Hugoniot jump

condition,

f ′
w(s

∗) =
fw(s

∗)− fw(S
ir
w)

s∗ − Sir
w

. (16)

We designate the original version of FROST by MCS-FROST to emphasize its reliance
on MCS to estimate both T̄inj(t) and FY (y;x). Estimation of the latter is particularly
expensive because it requires a large number of MC realizations, NMC, to converge (in
our experiments, NMC ≥ 5000). Our version, CDF-FROST, replaces this computational
bottleneck with a numerical solution of the deterministic equation for FY (y;x).
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4 CDF Equation for TOF

TOF, also known as travel time, is important in its own right, since it provides useful
information for flow visualization, ranking of geomodels, and optimization of well placement
or operation. As mentioned above, TOF τ(r) at time t is defined as the time required for a
particle to arrive at location r along a given streamline,

τ(r, t) =

∫ r

0

ϕ(r′) dr′

|qtot(r′, t)|
. (17)

For any point x in the flow domain Ω, TOF from an injection point along the boundary
Γinj, τ(x), satisfies a differential equation (Shahvali et al., 2012)

qtot(x, t) · ∇τ(x) = ϕ(x), x ∈ Ω, (18)

subject to Dirichlet boundary condition

τ(x) = 0, x ∈ Γinj. (19)

Randomness in the intrinsic permeability k(x) translates into randomness of qtot(x, t), which
here serves as an input. We proceed to derive a deterministic equation for the CDF Fτ (T ;x)
of τ(x) from (18) and (19).

4.1 Derivation of the CDF Equation

Consider a function Π(T ,x) ≡ H(T −τ(x)), where H(·) denotes the Heaviside function
and T is a deterministic value that the random TOF τ at point x can take. Its ensemble
mean over all possible values of the random variables τ is

E{Π(T , τ(x))} = Fτ (T ;x) ≡ P{τ(x) ≤ T }. (20)

Multiplying both sides of (18) with ∂Π/∂T , and noting that ∇Π = −(∂Π/∂T )∇τ , yields
an equation for Π(T ,x),

qtot · ∇Π+ ϕ
∂Π

∂T
= 0. (21)

We use the Reynolds decomposition to represent the random quantities qtot and Π as the
sum of their ensemble means and zero-mean fluctuation around them, qtot = q̄tot + q′

tot

and Π = Fτ + Π′. (Throughout this manuscript, we use E{·}, ·̄, and ⟨·⟩ interchangeably
to represent the ensemble mean.) Then, the ensemble average of (21) yields an unclosed
equation for Fτ (T ;x),

q̄tot · ∇Fτ + ϕ
∂Fh

∂T
+ ⟨q′

tot · ∇Π′⟩ = 0. (22)

A closure approximation for the unknown cross-correlation term ⟨q′
tot ·∇Π′⟩ is necessary to

render (22) computable.

The large-eddy-diffusivity closure exhibits good accuracy and robustness for advection-
reaction problems (Tartakovsky & Broyda, 2011; Venturi et al., 2013). However, it relies on
Green’s functions, which are computationally expensive unless given analytically. Instead,
we use the moments-preserving closure, a generalization of the interaction by exchange with
the mean approximation, (Boso & Tartakovsky, 2016; Boso et al., 2018b; Yang et al., 2020,
2019),

⟨q′
tot · ∇Π′⟩ ≈ [α(x)(T − τ̄) + β(x)]

∂Fτ

∂T
, (23)

where α(x) and β(x) are closure variables determined below. This yields a closed (d + 1)-
dimensional CDF equation

q̄tot · ∇Fτ + [α(T − τ̄) + β + ϕ]
∂Fτ

∂T
= 0. (24)
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4.2 Coordinate Transformation

To maximize the computational efficiency of the CDF method, we introduce a new
transformation of coordinates in the frame of reference defined by the mean streamlines
x̄sl(τmean). Equation (17) establishes the duality between TOF along a mean trajectory,
τmean, and the position along the mean streamline traveled during that time, r. Using this
duality and taking the ensemble mean of (8), we obtain

x̄sl(τmean) = x̄sl,0 +

∫ τmean

0

q̄tot(s
′)ds′. (25)

This relation allows one to represent any point x ∈ Ω in the Cartesian grid in terms of
the distance r along the closest mean streamline. In the coordinate system spanned by r,
q̄tot · ∇ = q̄tot∂/∂r, where q̄tot ≡ |q̄tot| denotes the magnitude of the mean velocity vector
q̄tot; Fτ (T ;x) 7→ Fτ (T ; r); and (24) takes the form,

q̄tot
∂Fτ

∂r
+ [α(r)(T − τ̄) + β(r) + ϕ(r)]

∂Fτ

∂T
= 0. (26)

Since q̄tot is constant along a streamline coordinate r by the definition of streamline and
incompressibility, we rewrite this CDF equation in a “conservative” form,

∂(q̄totFτ )

∂r
+

∂(UFτ )

∂T
= αFτ , U(r, T ) ≡ α(T − τ̄) + β + ϕ, (27)

which is more conducive to the subsequent numerical treatment. This CDF equation is
subject to the boundary conditions derived from (19),

Fτ (T ; r = 0) = 1, T ≥ 0. (28)

The general properties of a CDF provide the remaining boundary conditions,

Fτ (0; r) = 0, Fτ (τmax; r) = 1. (29)

Following Boso & Tartakovsky (2016) and Yang et al. (2019), we determine expressions
for the closure variables α(r) and β(r) in (27) by enforcing the consistency between the
moments τ̄ and σ2

τ obtained alternatively by integration of (27) and by either using MCS
or solving the statistical moment equations (SMEs) derived in Appendix B. This procedure
yields (Appendix A)

α(r) =
qtot
2σ2

τ

∂σ2
τ

∂r
, β(r) = qtot

∂τ̄

∂r
− ϕ. (30)

We use the SMEs to compute τ̄ and σ2
τ becomes this strategy outperforms MCS in terms

of computational cost for the same accuracy (Likanapaisal et al., 2012).

The solution to the two-dimensional boundary-value problem (BVP) (27)–(29) yields
the CDF of travel time along each mean streamline. Let Nsl, Nr, and NT denote the
total number of streamlines traced in the domain Ω, the number of grid cells along each
streamline, and the number of grid cells used to discretize the interval [0, τmax], respectively.
Then, the computational complexity of solving this BVP is O(Nsl ·N3

r ·N3
T ). We contrast

this with the computational complexity of solving the corresponding CDF equation in the
Cartesian coordinate system, i.e., solving (24) directly. Even if the flow domain Ω were
two-dimensional, its discretization with Nx and Ny cells along each coordinate would yield
the computational complexity of solving (24) of O(N3

x ·N3
y ·N3

T ). This comparison highlights
the main advantage of our coordinate transformation: it enables the computation time that
is proportional to the number of streamlines Nsl that, unlike the Cartesian-grid calculations,
scales linearly with the size of Ω (Thiele, 2001).
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5 Numerical Implementation of CDF-FROST

In our approach, the CDF of saturation is obtained in three steps (Figure 1). The
first step is to obtain the mean and variance of TOF, τ̄(r) and σ2

τ (r), by solving the SMEs
(Appendix B). The second step involves numerical solution of BVP (27)–(29) to compute
the travel-time CDF Fτ (T ; r). The latter provides an input for the analytical framework of
FROST to evaluate the saturation CDF FSw(s;x, t).

Figure 1. Workflow of proposed CDF-FROST method

The first step is carried out with the research code of Likanapaisal et al. (2012). The
computational cost of the third step is negligible, since it requires no numerical solution
of differential equations. The second step, however, poses several challenges for standard
numerical methods for hyperbolic partial-differential equations. The discontinuity of the
boundary condition in (28) precludes the use of a high-order scheme without inducing spu-
rious oscillations. The non-smoothness of the coefficients U and α in (27) requires special
treatment to achieve a desired accuracy. The monotonicity of TOF τ(r) along a streamline
necessitates the deployment of a nonuniform grid in the T coordinate to improve efficiency.
To resolve these issues, we deploy three numerical techniques in this step: pseudo-time step-
ping, a flux-limited method, and exponential grid spacing. These are detailed in Appendix
C.

6 Numerical Experiments

We use two sets of numerical experiments to demonstrate the accuracy, robustness
and versatility of CDF-FROST. In both cases, the wetting phase is injected into a two-
dimensional flow domain Ω, which is initially filled with non-wetting phase. The viscosities
of the non-wetting and wetting phases are µnw = 2cp and µw = 1cp, respectively, thus the
viscosity ratio M = µnw/µw = 2. The quadratic model is used for relative permeabilities
krw = (Sw − Sir

w)
2 and krnw = (1 − Sw)

2, with Sir
w = 0.1 and Sir

nw = 0. The porosity ϕ
is assumed to be uniform ϕ = 0.1 over the computational domain. The spatial domain
Ω, a square of length L = 1000 m, is discretized with a staggered 80 × 80 grid, and the
number of grid points along the T coordinate is set to NT = 150. The number of mean
streamlines launched in the domain is Nsl = 300. The log-permeability field κ(x) ≡ ln k is
modeled as a second-order stationary multi-variate Gaussian field with zero mean (κ̄ = 0),
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variance σ2
κ = 1, an isotropic exponential covariance function Cκ = σ2

κ exp(−|x − y|/ℓκ),
and dimensionless (normalized with the domain size L) correlation length ℓκ = 0.1.

Our numerical experiments mimic two representative flow scenarios. The first is the
mean uniform flow driven by a line injection of a wetting fluid at the left boundary, while
the non-wetting fluid is extracted at the right boundary. The second is a quarter-five spot
problem with one injector at lower left corner and one producer at upper right corner. In
both scenarios, the total injection rate is 100 m3/day and the extraction wells operate at
constant pressure 100 Pa.

We compare our estimates of travel-time CDF Fτ (T ;x) and saturation CDF FSw
(s;x, t)

with their counterparts computed via high-resolution MCS. The latter employ the stan-
dard Pollock’s method (Pollock, 1988) and the finite-volume solver implementing an IMPES
scheme (Coats, 2000) to compute, respectively, the travel time and saturation field in each
MC realization. The time-step size for the IMPES scheme is set to 20 days, and the total
simulation time is 1000 days. MC realizations of the log-permeability κ(x) are generated
by the sequential Gaussian simulator (Deutsch & Journel, 1998).

6.1 Accuracy of the proposed method

We start by analyzing the ability of our CDF equation to accurately approximate the
first two moments of TOF τ(x), its mean τ̄(x) and standard deviation στ (x). These statistics
are widely to equip the TOF predictor, τ̄ , with a confidence interval, e.g., τ̄ ± στ . The
quadratures in (A1) are evaluated via Gauss-Legendre quadrature rule using 500 quadrature
points. Figure 2 exhibits these statistical moments, for the two flow regimes, along the cross-
section x1 = x2. The profiles τ̄(x1, x1) and στ (x1, x1) are alternatively computed with MCS,
the SMEs, and the CDF method.

The CDF Fτ (T ;x) in (27) is constructed to have the same τ̄(x) and στ (x) as their
counterparts computed via the SMEs in Appendix B. The slight discrepancy between the
two sets of the statistical moments in Figure 2 is due to numerical errors in the solution
of the CDF equation and the subsequent numerical evaluation of the quadratures in (A1).
Consistent with the previous SME-focused studies (Likanapaisal et al., 2012; Severino &
De Bartolo, 2015, among many others), the mean and variance of hydraulic head computed
with SMEs are in good agreement with those inferred from MCS as long as the variance of
log-conductivity is below 7, which is the case in our simulations. As usual, the discrepancy
between the two approaches is larger for the standard deviation than for the mean.

While useful, these statistics are of limited use in risk assessment, which often requires
spatial maps of exceedance/non-exceedance probabilities, P{τ(x) > T } = 1 − Fτ (T ;x),
for a selected TOF threshold T . Figure 3 exhibits such maps for T = 50 days. Visual
inspection of these maps, alternatively computed with the reference MCS and the CDF
method, demonstrates the CDF method’s accuracy in most of the computational domain,
except for the vicinity of its boundaries. In these regions, the total fluid velocity qtot is slow
and the MSEs loose their accuracy. The CDFs Fτ (T ;x) presented in Figure 4 for several
points x ∈ Ω provide another illustration of the accuracy of the CDF method.

The normalized first Wasserstein distance between two distributions,

D(x) ≡
∫ τmax

0
| Fτ (T ;x)− FMCS

τ (T ;x) | dT∫ τmax

0
Fτ (T ;x)dT

, (31)

provides a more quantitative assessment of the agreement between the CDFs computed
with the CDF method (Fh) and the reference MCS (FMCS

h ). These integrals are computed
with the Gaussian quadrature rule. The resulting contour plots of D(x) are shown in
Figure 5. The error metric D(x) is small throughout much of the domain Ω, but increase
around the boundary segments where the streamline density is small. The behavior of
D(x) mirrors that of the TOF variance σ2

τ and reflects the error in the perturbation-based
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Figure 2. Mean (left column) and standard deviation (right column) of TOF, τ̄(x1, x2 = 1/2)

and στ (x1, x2 = 1/2), for mean uniform flow (top row) and flow to a well located at the middle of the

domain (bottom row). These moments are alternatively computed with Monte Carlo simulations

(MCS), the statistical moment equations (SME), and the CDF method.
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Figure 3. Spatial maps of exceedance probability, P[τ(x) > 50 days], obtained with MCS (left

column) and the CDF method (right column) for the mean uniform flow (top row) and the quarter

five spot configuration (bottom row).
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Figure 4. Travel-time CDF, Fτ (T ;x), computed with MCS and the CDF method at selected

locations x = (x1, x2)
⊤ in the flow domain for the mean uniform flow (top row) and the quarter-five

spot configuration (bottom row).
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estimation of the latter. In both flow scenarios, the average Wasserstein distance Dave =
∥Ω∥−1

∫
Ω
D(x)dx remains small, 0.032 for the mean uniform flow and 0.046 for the quarter-

five well configuration.

Figure 5. Spatial maps of the normalized Wasserstein distance D(x) between the hydraulic head

CDFs computed with the CDF method and Monte Carlo simulations for mean uniform flow (left)

and quarter-five spot configuration (right).

Finally, we verify the accuracy of the CDF-FROST framework. Figure 6 exhibits tem-
poral snapshots of the risk maps of saturation, i.e., of the exceedance probability P[Sw(x, t) >
0.5] = 1 − FSw(0.5;x, t) computed, alternatively, with CDF-FROST and MCS for the
quarter-five spot configuration. We also computed similar maps for the mean uniform
flow, but do not show them here. In both flow regimes, the two methods yield similar risk
estimates, with slight disagreement confined to the areas of small flow velocity. This finding
suggests that the discrepancy between the reference MCS and the CDF-FROST method is
largely due to the approximation error of the SMEs. Figure 7 elaborates this point further
by presenting the CDF estimates at several points x ∈ Ω. The results demonstrate that the
high accuracy of CDF-FROST.

6.2 Computational Efficiency of CDF-FROST method

One can expect CDF-FROST to be faster than MCS because the former involves
the numerical solution of a fixed number Nsl of two-dimensional linear PDEs (27), while
the latter requires solving a large number of d-dimensional nonlinear coupled PDEs (3)–(7).
CDF-FROST is also expected to be more efficient than MCS-FROST (Ibrahima et al., 2015,
2018), since it obviates the need for any MCS. Table 1 confirms these expectations. The
CPU times are reported for the same discrepancy level, defined by the average Wasserstein
distance Dave between the saturation CDFs computed with either MCS, MCS-FROST, or
CDF-FROST and the reference MCS. It takes NMCS = 1510 MC realizations to achieve
Dave ≈ 0.03 for the mean uniform flow, and NMCS = 1860 MC realizations to achieve
Dave ≈ 0.05 for the quarter-five well configuration. To achieve the same accuracy, MCS-
FROST requiresNMCS = 3820 MC realizations for the mean uniform flow, andNMCS = 4630
MC realizations for the quarter-five well configuration. For the same discrepancy level, CDF-
FROST is about five and ten times faster than MCS-FROST and MCS, respectively.

7 Conclusions

We developed a sampling-free CDF-FROST method for probabilistic forecast of im-
miscible two-phase flow in heterogeneous porous media with uncertain permeability. By
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Figure 6. Temporal snapshots of the saturation’s exceedance probability map P[Sw(x, t) >

0.5] = 1 − FSw(0.5;x, t) at times t = 100 days (top row), t = 500 days (center row), t = 800 days

(top row) obtained with reference MCS (left column) and CDF-FROST (right column) for the

quarter-five spot configuration.
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Figure 7. Saturation CDFs FSw(s; ·) computed with MCS, MCS-FROST (Ibrahima et al., 2015,

2018), and CDF-FROST for two locations x = (x1, x2)
⊤ at times t = 100 days, t = 500 days, and

t = 800 days. The top and bottom rows correspond to the mean uniform flow and the quarter-five

spot configuration, respectively.

Table 1. CPU time and accuracy of MCS, MCS-FROST, and CDF-FROST. For the same discrep-

ancy level, our method is about five and ten times faster than MCS-FROST and MCS, respectively.

Flow regime Method Error Dave CPU time (min)

Mean uniform flow

CDF-FROST 3.22 · 10−2 9.55 · 100
MCS-FROST with NMCS = 3820 3.22 · 10−2 6.01 · 101
MCS with NMCS = 1510 3.22 · 10−2 1.38 · 102
MCS with NMCS = 1 · 104 0 8.25 · 102

Convergent flow

CDF-FROST 4.58 · 10−2 1.22 · 101
MCS-FROST with NMCS = 1860 4.58 · 10−2 8.37 · 101
MCS with NMCS = 4630 4.58 · 10−2 4.65 · 102
MCS with NMCS = 4 · 104 0 2.19 · 103
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employing a fixed-streamline assumption, the original FROST method of Ibrahima et al.
(2015) outperforms MCS in computing saturation CDFs. However, it has a computational
bottleneck, the MCS computation of the distribution of travel time and the statistics of the
equivalent injection time. CDF-FROST overcomes this limitation by developing a deter-
ministic equation for the CDF of travel time. The equation is obtained using a moment-
preserving closure approximation, whose coefficients are determined by solving moment
equations. For computational efficiency, the derived CDF equation is written for a mean
streamline grid and solved by a specialized numerical scheme that integrates pseudo-time
stepping, a flux-limited method, and exponential grid spacing. We performed a series of
numerical experiments to demonstrate the accuracy and computational efficiency of CDF-
FROST. Our study leads to the following conclusions:

• The method of distributions yields accurate estimates of the CDF of travel time in
heterogeneous porous media.

• The saturation CDFs obtained with CDF-FROST are in good agreement with refer-
ence MCS.

• For the same accuracy, CDF-FROST method is five and ten times faster than MCS-
FROST and MCS, respectively.

• CDF-FROST yields probabilistic information of both travel time and saturation that
is necessary for risk assessment and decision-making under uncertainty.

Appendix A Derivation of moment-consistent closures

We construct the closure variables α and β in a way that ensures that the CDF
equation (26) is consistent with moments τ̄ and σ2

τ computed by moment equations or
MCS. We start by recalling that the mean, τ̄(r), and variance, σ2

τ (r), of the TOF τ(r) with
CDF Fτ (T ; r) are

τ̄ = τmax −
∫ τmax

0

Fτ (T ; r)dT , σ2
τ = τ2max − 2

∫ τmax

0

T Fτ (T ; r)dT − τ̄2, (A1)

where τmax is the maximal value the random TOF τ can take; in the absence of additional
information, one can set τmax = ∞.

Integrating (26) over T and employing (A1) and (29), we can derive following equation
for τ̄

qtot
∂τ̄

∂r
− β(r)− ϕ = 0. (A2)

Similarly, multiplying both sides of (26) by T and integrating the resulting equation over
T yields

qtot
∂σ2

τ

∂r
− 2α(x)σ2

τ + 2τ̄ [qtot
∂τ̄

∂r
− β(r)− ϕ] = 0

or, accounting for (A2),

qtot
∂σ2

τ

∂r
− 2α(x)σ2

τ = 0 (A3)

Imposition of the equivalency between the mean (τ̄) and variance (σ2
τ ) equations de-

rived by the CDF method, (A2) and (A3), and the moments computed by SMEs or MCS
yields expressions for the closure variables α(r) and β(r) in (30).

Appendix B Derivation of moment equations

B1 Velocity equations

Detailed derivations of SMEs for steady-state flow equation (3) can be found in Yang
et al. (2019). Here, we derive the first- and second-moment equations for the stochastic
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average macroscopic velocity v(x). For flow in porous media with constant porosity ϕ, the
latter is defined by Darcy’s law,

v = −eY

ϕ
∇h, (B1)

where Y (x) = lnK is the random log-hydraulic conductivity and h is the hydraulic head.
Using the Reynolds decomposition Y (x) = Ȳ + Y ′(x), recalling that Y (x) is second-order
stationary multivariate Gaussian, i.e., that its mean Ȳ and variance σ2

Y = ⟨Y ′2⟩ are constant,
defining by KG = exp(Ȳ ) the geometric mean of the permeability K, expanding exp(Y ′)
into a Taylor series around Y ′ = 0, and taking the ensemble mean of the resulting equation
leads to

v̄ = −KG

ϕ

∞∑
n=0

1

2n!
(∇h̄(0)σ2n

Y + ⟨Y ′n∇h′⟩). (B2)

The first-order approximation of mean velocity, ṽ(x), is

ṽ = −KG

ϕ
[∇h̄(0)(1 +

σ2
Y

2
) +∇CY h(x,x))], (B3)

where CY h(x,x), the covariance between the log-conductivity Y (x) and the hydraulic head
h(x), is computed by solving the corresponding SME. An equation for the covariance be-
tween the i-th and j-th components of the velocity vector, Cvivj (x,χ), is obtained by sub-
tracting (B2) with (B3), multiplying v′j(x), and taking ensemble mean,

Cvivj =
K2

G

ϕ2

[ ∂h̄

∂xi

∂h̄

∂χj
CY (x,χ) +

∂2Ch

∂xi∂χj
+

∂h̄

∂xi

∂CY h(x,χ)

∂χj
+

∂h̄

∂χj

∂CY h(χ,x)

∂xi

]
, (B4)

where the auto-covariance of hydraulic head at two points x and χ, Ch(x,χ), is a solution
of the SMEs.

B2 TOF equations

The first two moments of the velocity field obtained by (B3) and (B4) are used to
generate a mean streamline. Then, the travel time moments are computed using the pertur-
bation expansion around the mean streamline. TOF along the mean streamline coordinate,
τ , is defined as

τ =

∫ r

0

dχ

vr(χ, η(χ))
(B5)

where r is the distance along the mean streamline, vr is the velocity component whose
direction is along the mean streamline, and χ is a dummy variable used to parameterize the
mean streamline. The transverse displacement η(χ), i.e., the displacement perpendicular to
the mean streamline, is defined as

η(r) =

∫ r

0

vη(χ)

vr(χ)
dχ. (B6)

Here, vη is the velocity component perpendicular to the mean streamline. Considering the
definition of mean streamline, the mean traverse displacement ⟨η⟩ = 0. Randomness of
traverse displacement η and velocity vr in (B5) renders TOF τ random as well.

The underlying assumption of our perturbation expansion is that variances of the
traverse displacement η(χ) and the velocity along the streamline vr are relatively small.
Taylor expansions of these two quantities are employed to perturb all streamline-related
random quantities around the mean streamline. Applying a Taylor expansion to (B5) and
neglecting the terms higher than first-order, we derive a truncated equation for TOF τ ,

τ(r) =

∫ r

0

[
1

⟨vr(χ, ⟨η⟩)⟩
− v′r(χ, ⟨η⟩)

⟨vr(χ, ⟨η⟩)⟩2
+

η′(χ)

⟨vr(χ, ⟨η⟩)⟩2
∂⟨vr(χ, η)⟩

∂η(χ)

∣∣∣∣
η=⟨η⟩

]
dχ (B7)
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Taking ensemble average to the (B7) yields the equation of the zeroth-order mean travel-time
τ̄(r)(0),

τ̄(r)(0) =

∫ r

0

dχ

⟨vr(χ, ⟨η⟩)⟩
. (B8)

We subtract the mean equation (B8) from (B7) to obtain the first-order fluctuation term,

τ ′(r) =

∫ r

0

[
v′r(χ, ⟨η⟩) + η′(χ)

∂⟨vr(χ, η)⟩
∂η(χ)

∣∣∣∣
η=⟨η⟩

]
dχ

⟨vr(χ, ⟨η⟩)⟩2
. (B9)

Multiplying TOF fluctuations at two different locations and taking ensemble average lead
to the expression for TOF covariance

Cτ (r1, r2) =

∫ r1

0

∫ r2

0

[
⟨v′r1v′r2⟩+

∂⟨vr1⟩
∂η

∣∣∣∣
η1=⟨η1⟩

⟨v′r2η′1⟩+
∂⟨vr2⟩
∂η

∣∣∣∣
η2=⟨η2⟩

⟨v′r1η′2⟩

+
∂⟨vr1⟩
∂η

∣∣∣∣
η1=⟨η1⟩

∂⟨vr2⟩
∂η

∣∣∣∣
η2=⟨η2⟩

⟨η′1η′2⟩
]

dχ1dχ2

⟨vr1⟩2⟨vr2⟩2
,

(B10)

where η1 = η(χ1), η2 = η(χ2), vr1 = vr(χ1, ⟨η1⟩), and vr2 = vr(χ2, ⟨η2⟩). The closure
terms related to transverse displacement, ⟨v′rη′⟩ and ⟨η′1η′2⟩, are obtained from (B6). By
expanding vη and 1/vr with a Taylor series expansion around ⟨vr⟩, we write the transverse
displacement fluctuation as

η′(r) =

∫ r

0

v′η(χ)

⟨vr(χ)⟩

[
1− v′r(χ)

⟨vr(χ)⟩
+

v′r
2
(χ)

⟨vr(χ)⟩2
− · · ·

]
dχ. (B11)

With this fluctuation term, we express the transverse displacement covariance as the ex-
pected value of two traverse displacements with first order accuracy,

⟨η′1(r1)η′2(r2)⟩ =
∫ r2

0

∫ r1

0

⟨v′η,1(χ1)v
′
η,2(χ2)⟩

⟨vr,1⟩(χ1)⟨vr,2⟩(χ2)
dχ1dχ2. (B12)

Similarly, the following first-order equation for covariance between transverse displacement
and velocity along a streamline are derived by multiplying (B11) with v′r and taking ensemble
average:

⟨v′r(r1, ⟨η1⟩)η′(r2)⟩ =
∫ r2

0

⟨v′η(r1, ⟨η(r1)⟩)v′η(χ)⟩
⟨vr(χ)⟩

dχ. (B13)

In summary, the TOF moments are computed by integrating the velocity moments
derived in Appendix B1. The numerical integration generally requires less computational
time than a linear solver. Hence, the TOF moments are obtained rapidly from the results
of Appendix B1.

Appendix C Numerical methods for CDF equation

C1 Pseudo-time stepping

A pseudo-time stepping or pseudo-transient continuation method is particularly ap-
propriate for the steady-state equation with non-smooth coefficients (Kelley & Keyes, 1998;
Fowler & Kelley, 2005). It starts with introducing the fictitious or pseudo-time t′. Dropping
the subscript τ for simplicity, (27) can be transformed into the following time dependent
equation

∂F

∂t′
+

∂(qslF )

∂r
+

∂(UF )

∂T
= vF, F (t′ = 0) = F0, (C1)
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where F0 is the initial condition. The main objective of the pseudo-time stepping method is
to seek the converged solution F ∗ = limt′→∞ F which is equivalent to the solution of (27)
regardless of initial condition.

When (C1) is discretized within the spatial domain such that ri =
∑i−1

k=1 ∆rk+∆ri/2,

Tj =
∑j−1

k=1 ∆T k +∆T j/2 where ∆r and ∆T are the spatial step, a general explicit conser-
vative scheme with forward time integration can be written as

Fn+1
i,j = (1 + v)Fn

i,j − λr,i(f
n
i+1/2,j − fn

i−1/2,j)− λT,j(g
n
i,j+1/2 − gni,j−1/2). (C2)

The subscripts n and n + 1 represent the old and new time steps, respectively, and λr,i =
∆t′/∆ri, λr,i = ∆t′/∆T i, where ∆t′ is time-step size. For a finite volume scheme, Fn

i,j

and Fn+1
i,j are cell averaged conservative variables on the computational cell defined on the

interval [ri−1/2, ri+1/2] × [Ti−1/2, Ti+1/2] where ri±1/2 = ri ±∆ri and Tj±1/2 = Tj ±∆T j .
f and g are respectively the r and T direction components of numerical flux.

C2 Flux-limited scheme

Among a plethora of schemes for approximating numerical flux, Roe’s first-order up-
wind method guarantees non-oscillatory solution near discontinuities. Since qsltot is always
greater than 0 along the streamline, flux term f can be expressed as fn

i+1/2,j = qsli,jF
n
i,j . For

flux term g, the first-order upwind method fails to impose the T space boundary conditions
(29) properly when the boundaries T = 0 or T = Tmax are downstream boundaries (i.e.,
outgoing flow direction to the boundary). In order to construct a numerical scheme that
maintains high-order accuracy near boundaries, while producing the monotone results at
discontinuities, the flux limited scheme is implemented to construct flux term g. The flux
limited method represents the flux as a linear combination of low-order (i.e., Roe first-order
upwind) and high-order (i.e., Lax-Wendroff) methods,

gni,j+1/2 =

{
Ui,jF

n
i,j +

1
2ai,j+1/2(1− λTai,j+1/2)ϕ

+
i,j(F

n
i,j+1 − Fn

i,j), ai,j+1/2 > 0

Ui,j+1F
n
i,j+1 +

1
2ai,j+1/2(1 + λTai,j+1/2)ϕ

−
i,j+1(F

n
i,j+1 − Fn

i,j), ai,j+1/2 < 0

(C3)

where wave speed ai,j+1/2 is defined as

ani,j+1/2 =

{
Ui,j+1F

n
i,j+1−Ui,jF

n
i,j

Fn
i,j+1−Fn

i,j
Fi,j ̸= Fi,j+1

Ui,j Fi,j+1 = Fi,j

. (C4)

Here, flux-limiter ϕ± is the function of θ± which is the ratio of successive gradients indicating
the smoothness of the solution. The minmod flux-limiter function ϕ(θ) = max[0,min(1, θ)]
is employed in the present study. The ratio θ±i,j is a measure of smoothness of the data near
cell (i, j); it is defined as

θ+i,j =
Fi,j − Fi,j−1

Fi,j+1 − Fi,j
, θ−i,j =

Fi,j+1 − Fi,j

Fi,j − Fi,j−1
. (C5)

The numerical solution Fn
i,j is updated iteratively using (C2) until it converges to the steady-

state solution. The convergence criteria is

max
i,j

|Fn+1
i,j − Fn

i,j | < 10−8. (C6)

C3 Exponential grid spacing

Considering the original definition of TOF (17), τ(r) increases monotonically along
the streamline. Defining the CDF equation (27) along the mean streamline coordinate,
every point along the streamline should share the same T -direction grid system. Figure C1
demonstrates that a small grid size ∆Tj is required to accurately describe the CDF when
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the distance from the origin r is small. A coarser grid could be enough to represent the
travel-time CDF at large r. We use this observation to further speed-up the computations
by introducing an exponential grid spacing.

In the exponential grid spacing system, the size ∆T j = ∆T 0ξ
j−1 of the jth cell

increases with a fixed expansion rate ξ, where ∆T 0 is the initial time. The location of the
jth cell is Tj = T0 + ∆T 0(1 − ξj−1)/(1 − ξ), where T0 is the location of first cell j = 0.
In our numerical experiments, we set ξ = 1.02. Figure C2 shows the numerical solutions
of (27) obtained by two different grid systems with same grid number (NT = 150). The
exponential grid spacing provides the same level of accuracy as the uniform grid at a fraction
of the computational cost of the latter.

Figure C1. Evolution of travel time CDF with distance r from the starting point of mean

streamline. L is the total length of the mean streamline.

Figure C2. Travel time CDFs Fτ computed with reference MCS and the CDF method with

the uniform and exponential grid systems at two selected distance r along the mean streamline for

quarter-five spot well configuration. L is the total length of the mean streamline.
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