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Introduction and background
Recent advances in imaging techniques and related modeling have made it pos-
sible to study micron and sub-micron scales in unprecedented detail. Currently,
performing direct simulations at a representative scale has proven computation-
ally prohibitive, hence, the ability to simulate flow cannot keep up with the
size of images available (e.g. x-ray micro-tomography or large area scanning
electron microscopy).
The multi-relaxation-time scheme of the lattice-Boltzmann method [4] is able
to describe flow through complicated geometries with the help of high perfor-
mance computing (many thanks to Texas Advanced Computing Center). By
discretizing:

fα(x+ eαδt, t+ δt)− fα(x, t) = −Sαi(fi(x, t)− feqi (x, t)), (1)

for a 3D domain, we are able to accurately simulate single-phase flow through
a sphere-pack[3]. The advantage of this method is that we can obtain the
velocity tensor and pressure field in a natural geometry. On the other hand, a
supercomputer cluster is needed.

To overcome this issue, we propose to train a neural network architecture to
understand relationships between pore-scale morphology and the simulation
outputs. With this, we improve our portability and prediction time.
Convolutional neural networks are attractive for this task because they support
flexible input size, they are able to capture local interactions, and they can find
places that present similar patterns. Generally, deeper networks have better
prediction performance, but they are very difficult to train due to the vanishing
gradient problem. Also, information from different scales is commonly lost
along the network.

Data analysis and preparation
The velocity component parallel to the pressure gradient and the distance away
from the solid grain (the latter is a proxy for pore space topology description)
show no correlation:

During training, the neural network will presumably find spatial correlations at
different scales between the two.
We tried the following data transformations to help network perform better:

Data transforms and average prediction error: training with 1 sample
Method Advantage er
Original data Predictions with original units >> 100 %

Modified log Well defined boundaries
(sign(y)log10(|y|)) between o.m. > 100 %
MinMax Range [0-1] ∼ 30 %
MinMaxPreserving0s Accurate predictions for solid ∼ 16 %

The training was carried out on 803 subsets of the 5003 sphere-pack.

Results
Using 6 sphere-pack datasets, we trained our network varying the filter size.
After training we got the following prediction results:

Kernel sizes and average prediction error
Sizes er(80

3)max er(80
3)

33−33−13 40.75 % 6.73 %
53−33−33 29.24 % 6.93 %
53−33−13 30.42 % 5.74 %

Using the Euclidean metric and the distance to the source, our method was
able to outperform simpler ones in pressure predictions.

For velocity predictions, we tested our model with other sphere-pack subsec-
tions and with a sandstone[2] (φ = 0.2):

The lbm simulation on the sandstone took twice as long compared to the
sphere-pack due a more constrained medium. Nevertheless, the NN predictions
are much more accurate.

Network architecture
The network [1] is composed by residual blocks that capture the relations at
different scales. The input is a 3D image with m features, the output is the
desired property (pressure or velocity).
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Objectives
Pore-space velocities span several orders of magnitude (positive and negative
range), and describing the fluid pathways with simple relationships is not fea-
sible; so using analytical solutions is not viable. Hence, the objectives of this
work are:
• To test the practicality of using advanced statistical learning tools (deep

learning) for flow prediction at the pore-scale.
• Provide guidelines on hyperparameter selection and data transforms for ob-

taining the best performance.

Conclusions and future work
• Basic geometry information is sufficient to predict flow properties for a ho-

mogeneous sample.
• Future work: For this work we explored laminar flow of a low viscosity fluid.

We are currently working on expanding the capabilities of our network to
handle multiscale domains and multiphase flow.


