Evapotranspiration partitioning based on leaf and ecosystem water use efficiency
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Key Points
1. A novel ET partitioning method coupling with WUEs at various scales was developed.
2. Magnitudes and trends in T:ET were consistent with the results of various ET partitioning methods and the known effect from LAI.
3. [bookmark: OLE_LINK15]The novel ET partitioning method is not restricted to areas and plant types and improves T:ET estimation accuracy in water-limited regions.

Abstract
[bookmark: OLE_LINK16][bookmark: OLE_LINK32][bookmark: OLE_LINK26][bookmark: OLE_LINK27]Partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T) is essential for understanding the global hydrological cycle and improving water resource management. However, ET partitioning in various ecosystems is challenging as some assumptions are restricted to certain areas or plant types. Here, we developed a novel ET partitioning method coupling definitions of leaf and ecosystem water use efficiencies (WUEleaf and WUEeco, respectively). We used 25 eddy covariance flux sites for 196 site-years to evaluate T:ET characteristics of seven plant functional types (PFTs) at different spatiotemporal scales. The results indicated the spatiotemporal characteristics of WUEleaf and WUEeco were not consistent, resulting in T:ET variation in the seven PFTs. Deciduous broadleaf forests had the highest mean annual T:ET (0.67), followed by evergreen broadleaf forests (0.63), grasslands (0.52), evergreen needleleaf forests (0.46), and woody savanna (0.41), and C3 croplands had higher T:ET (0.65) than C4 croplands (0.48). The annual mean leaf area index (LAI) explained about 26% of the variation in T:ET, with the trend in T:ET consistent with the known effects of LAI. The overall trends and magnitude of T:ET in this study were similar to different results of ET partitioning methods globally. Importantly, this method improved T:ET estimation accuracy in vegetation-sparse and water-limited areas. Our novel ET partitioning method is suitable for estimating T:ET at various spatiotemporal scales and provides insight into the conversion of WUE at different scales.
1. Introduction
[bookmark: OLE_LINK6][bookmark: OLE_LINK14]Evapotranspiration (ET)—including soil water evaporation (E), stomatal transpiration (T), and evaporation of water intercepted by the plant canopy—is crucial for understanding global ecohydrological systems [Katul et al., 2012; Kool et al., 2014; Wang and Dickinson, 2012]. Transpiration is usually considered as productive water loss because it is directly related to biological processes, concurrent with photosynthesis for plant productivity [Granier et al., 1999; Jasechko et al., 2013; Yi et al., 2019]. Enhancing the productive component (T) and curtailing the non-productive component (E) is especially critical for the sustainable management of water resources in drylands [Kool et al., 2014; Newman et al., 2010]. Therefore, partitioning ET into E and T is essential for improving surface–plant–atmosphere transfer models [Lawrence et al., 2007], quantifying water use efficiency (WUE), and coupling hydrological and biogeochemical cycles [Austin et al., 2004; Mastrotheodoros et al., 2017]. However, partitioning ET continuously is challenging in most ecosystems.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Several direct and indirect methods from the plot to ecosystem scale have been used to investigate the ratio between T and ET, denoted as T:ET, including sap flow [Rafi et al., 2019], eddy covariance [Baldocchi and Ryu, 2011; Paul-Limoges et al., 2020], stable isotope techniques [Good et al., 2014; Wang et al., 2010; Xiao et al., 2018] and modeling [Gu et al., 2018; Maxwell and Condon, 2016]. Sap flow can continuously record plant transpiration, but it is difficult to scale up to field ecosystems [Kool et al., 2014]. Water stable isotopes for ET partitioning are based on differences in the isotope signature of water vapor due to E and T, but this method is costly and labor-intensive, making continuous measurements extremely complicated [Griffis, 2013; Xiao et al., 2018]. Mechanistic and empirical models can overcome these issues, but the debatable hypothesis [Schlaepfer et al., 2014] and substantial number of parameters [Kool et al., 2014] have caused some uncertainties in modeling simulations. Eddy covariance is a widely used technique to measure biosphere–atmosphere exchanges of carbon dioxide and water vapor, and flux networks have been established globally [Baldocchi and Ryu, 2011; Zhou et al., 2016]. Traditionally, eddy-covariance techniques measure water fluxes both above the canopy and in the understory to represent ET and E, respectively. However, this method ignores understory T and plant E from canopy rainfall interception. A new ET partitioning method, based on a flux-variance similarity assumption, assumed that the relationship between E and T is due to a mixture of stomatal fluxes (T) and non-stomatal fluxes (E) and is closely related to leaf WUE [Scanlon and Sahu, 2008; Scanlon and Kustas, 2010]. However, this method has not been widely adopted as it requires high frequency (10–20 Hz) eddy-covariance data that is only available to tower owners and not widely shared [Wagle et al., 2020]. Zhou et al. [2016] introduced a new ET partitioning method, based on underlying water use efficiency (uWUE), which is simple to apply in practice and can estimate T:ET at various spatiotemporal scales [Zhou et al., 2016; Berkelhammer et al., 2016; Jiang et al., 2020], but has some limitations. Firstly, the assumption that T is equal to ET at times during the growing season may be invalid in arid and vegetation-sparse areas, where soil evaporation cannot be ignored, even during the peak growing season, and would overestimate T:ET [Li et al., 2019; Scott and Biederman, 2017]. Secondly, a linear relationship between (1–Ci/Ca) and the square root of vapor pressure deficit (VPD0.5) is only applicable for C3 plants, so uWUE at the leaf scale is not available for C4 plants due to the lack of marginal water cost of carbon gain (λcf) [Lloyd and Farquhar, 1994]. Thirdly, the uWUE method is not useful when stomata no longer behave optimally during severe water stress conditions, as the marginal WUE changes due to limited xylem water transport [Zhou et al., 2018].
Here, we developed a novel and simple ET partitioning method that accounts for leaf and ecosystem WUE (WUEleaf and WUEeco) and applies to all areas and plant types using accessible half-hourly eddy-covariance flux data. To provide a rationale and support for the proposed method for ET partitioning, this study aimed to (1) evaluate WUEleaf and WUEeco among plant functional types (PFTs) at spatiotemporal scales, (2) evaluate T:ET variation in PFTs at spatiotemporal scales, and (3) evaluate the feasibility of the new ET partitioning method and its applicability in arid areas. The proposed method can evaluate characterization of T:ET at multiple spatiotemporal scales at global flux tower networks.
2. Methods
The theoretical foundation of water loss from E, T, and ET is associated with non-stomatal, stomatal, and stomatal/non-stomatal mixing behaviors, respectively [Scanlon and Sahu, 2008; Scanlon and Kustas, 2010]. Transpiration is related to vegetation and controlled by stomatal regulation, while E is only related to soil and environmental conditions. According to observation scales and water consumption differences, WUE is defined differently at various spatiotemporal scales. The concept of WUE includes ecosystem WUE (WUEeco), which combines stomatal and non-stomatal mixing behaviors, and ecosystem transpiration efficiency (iWUEeco), which is only associated with stomatal behaviors. WUEeco is defined as carbon uptake (GPP) per unit of water loss by the ecosystem (ET), and iWUEeco is defined as GPP per unit of water loss via transpiration (T). Thus, T:ET can be determined from the ratio of WUEeco to iWUEeco. WUEeco can be calculated directly from GPP and ET provided by flux-covariance sites. It is difficult to obtain iWUEeco but it can be upscaled from WUEleaf indirectly. Ecosystem WUE is defined as ecosystem GPP per unit of ecosystem water loss via evapotranspiration (ET), and it can also be decomposed into GPP/T and T:ET:
        (1)
In this study, evapotranspiration (ET) includes both productive water use, i.e., transpiration (T), and non-productive water use, i.e., evaporation from the soil surface (Es) and canopy interception (Ei),
              (2)
Studies have shown that leaf WUE can be directly scaled to canopy scale in a consistent natural environment [Barton et al., 2012; Linderson et al., 2012]. Zhou et al. [2016] also tested that uWUE is broadly consistent at the leaf and ecosystem (GPP·VPD0.5/T) scales. Thus, ecosystem iWUEeco, i.e., GPP/T in Eq. (3), can be approximated by leaf WUE (WUEleaf) [Cheng et al., 2017; Medlyn et al., 2011].
   (3)
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]where A is leaf net photosynthetic carbon uptake (µmol(CO2) m−2 s−1), T is leaf transpiration (µmol(H2O) m−2 s−1), Ca is ambient atmospheric CO2 concentration (mol(CO2) mol−1), Pa is atmospheric pressure (kPa), VPD is vapor pressure deficit (kPa), and g1 is an empirical parameter of the Ball stomatal conductance model (kPa0.5). The stomatal conductance model used in Eq. (3) is similar to the Ball–Berry stomatal conductance model that has been widely adopted in global land surface models. What is different is that the parameters in Eq. (3) have meaningful ecological interpretations of the exchange rate between carbon uptake and water use [Knauer et al., 2018; Medlyn et al., 2011]. Lin et al. [2015] compiled the mean g1 value of different PFTs using a global-scale extensive field observation dataset. The g1 values at the fluxnet tower sites in our study were extracted from a global map of g1 parameters (see Supplementary Information of Cheng et al. [2017]) by interpolating g1 values of different PFTs with a global vegetation classification map (i.e., SYNMAP). The g1 values at the fluxnet tower sites in our study are shown in Table 1.
Substituting Eq. (3) into Eq. (1):
    (4)
Thus, the T:ET can be determined from the ratio of WUEeco to WUEleaf as follows:
  (5)
3. Datasets
3.1 Flux tower data
[bookmark: OLE_LINK7]Half-hourly eddy-covariance data were taken from the FLUXNET2015 Tier 2 dataset (http://fluxnet.fluxdata.org). Sites were selected with the following data recorded: net solar radiation, air temperature, precipitation, latent heat flux, atmospheric pressure, ambient atmospheric CO2 concentration, vapor pressure deficit (VPD), and estimates of gross primary productivity (GPP). Measurements of ET (kg H2O m–2 d–1) were calculated at half-hourly intervals using air temperature and latent heat flux data [Donatelli et al., 2006]. Twenty-five sites (196 site-years) were selected and their specific information were shown in Table 1, comprising six croplands (CRO-C3 and CRO-C4), three deciduous broadleaf forests (DBF), five evergreen broadleaf forests (EBF), four evergreen needleleaf forests (ENF), six grasslands (GRA), and two woody savannas (WSA). The selected sites are distributed in arid and humid areas, with mean annual precipitation gradients ranging from 380 to 1426 mm (Table 1).
Data screening and quality control were performed to select half-hourly observations following similar processes reported in other studies [Li et al., 2019; Zhou et al., 2016]. First, defective entries were excluded, and only daylight data with positive net solar radiation, GPP, ET, and VPD were used. Second, sensible heat flux larger than 5 W m–2 and incoming shortwave radiation larger than 50 W m–2 were used to avoid stable boundary layer conditions. Third, data from rainy days were excluded using the method in Zhou et al. [2015]. Fourth, data during the growing season were selected for each site, i.e., data from days when the average half-hourly GPP was at least 10% of the 95th percentile of all half-hourly GPP for the site. Finally, daily values were estimated only for days when there were at least 10 measured daylight points.
3.2 Leaf area index (LAI)
To analyze the effect of vegetation coverage on ET partitioning, LAI (m2 m–2) was estimated from photosynthetically active radiation (PAR) data [Xu et al., 2010]:
  (6)
  (7)
where k is taken as 0.5 [Lin et al., 2018], fPAR is the fraction of absorbed PAR, and PARout and PARin are outgoing and incoming PAR (W m−2), respectively.
4. Results and Discussion
4.1 Estimation of WUEleaf and WUEeco
[bookmark: OLE_LINK11][bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK20][bookmark: OLE_LINK21]The average and long-term WUEeco and WUEleaf of seven PFTs for the 25 sites are shown in Fig. 1. Overall, the spatiotemporal characteristics of WUEeco and WUEleaf for seven PFTs were not consistent, which is consistent with the findings reported by Yi et al. [2019]. For example, deciduous broad forests (4.95 g C kg–1 H2O) and evergreen broad forests (4.97 g C kg–1 H2O) had the highest WUEeco, while evergreen needleleaf forests (11.7 g C kg–1 H2O) and C4 croplands (11.3 g C kg–1 H2O) had the highest WUEleaf. The inconsistent trend between WUEeco and WUEleaf reflects the proportion of productive and non-productive water consumption in the water cycle across different PFTs. The results also showed that C4 croplands had higher WUEeco (4.0 g C kg–1 H2O) and WUEleaf (11.3 g C kg–1 H2O) than C3 croplands (2.8 g C kg–1 H2O and 5.2 g C kg–1 H2O, respectively). The presence of a CO2-concentrating mechanism in C4 leaves endows higher WUE than their C3 counterparts under standard conditions [Ghannoum, 2009]. However, C4 croplands had much higher WUEleaf than its WUEeco and the WUEleaf of C3 croplands, indicating that C4 croplands had lower T:ET than C3 croplands. In addition, the WUE of croplands varies in agricultural systems and is mostly determined by local irrigation and field management practices. For natural vegetation, deciduous broad forests (4.95 g C kg–1 H2O) and evergreen broad forests (4.97 g C kg-1 H2O) had higher WUEeco than evergreen needleleaf forests (4.2 g C kg–1 H2O) and grasslands (2.4 g C kg–1 H2O), which were consistent with the studied model simulation [Gu et al., 2018] and global satellite data [Huang et al., 2017]. Broad forests had higher carbon uptake capacity than evergreen needleleaf forests due to their larger leaf area (Fig. 2). Compared to grasslands, forests had higher WUEeco, which is likely due to their (1) lower E, as their large canopy and tree height reduces the gradient in vapor pressure between the soil surface and atmosphere [Brutsaert, 2005] and/or (2) lower T due to the distribution of leaf stomata. In most herbs, stomata exist on both the adaxial and abaxial leaf surfaces, while in many trees, stomata only exist on the adaxial leaf surface [Taiz and Zeiger, 2006]. In this study, woody savannas had the lowest WUEeco (1.8 g C kg–1 H2O) and WUEleaf (4.8 g C kg–1 H2O). The US_SRM and US_Ton sites for woody savannas belonged to arid and semiarid areas; their low WUEeco and WUEleaf values have been attributed to low carbon uptake and large soil evaporation [Scott and Biederman, 2017; Wang et al., 2016].
[bookmark: OLE_LINK8][bookmark: OLE_LINK22]Multi-year and interannual variations in WUEeco and WUEleaf for the DE_Gri (GRA), IT_Cpz (EBF), FR_Fon (DBF), US_Ne1 (CRO), US_NR1 (ENF), US_SRM (WSA) sites were estimated daily (Fig. 2). The multi-year variation was small for each site, but inter-sites were large for WUEeco, WUEleaf, and GPP. Similar results were reported in Nelson et al. [2020], indicating that T:ET differs more from one site to another than between years for the same site. For all PFTs, the daily variation trend in WUEeco is consistent with that of GPP, but WUEleaf showed high-frequency fluctuations over time. The high-frequency variation of WUEleaf is the main reason for the high variation in the estimated daily T:ET. In this study, the stomatal conductance model was used to estimated WUEleaf half-hourly, and the parameter of the Ball stomatal conductance model, g1, is constant when vegetation type and site are determined. Although the variations in ambient atmospheric CO2 concentration and atmospheric pressure were small on a daily scale, studies have shown that ambient atmospheric CO2 concentration has a significant effect on WUEleaf [Knauer et al., 2017; Onoda et al., 2009]. The high-frequency variation is mostly attributed to variation in VPD, which is easily affected by daily climate factors, such as light, humidity, and temperature. Similarly, Yi et al. [2019] indicated that WUEleaf was most sensitive to variations in VPD, accounting for 86% of the total influence of VPD, soil moisture, and ambient atmospheric CO2 concentration.
4.2 Estimation of T:ET
[bookmark: OLE_LINK23][bookmark: OLE_LINK25][bookmark: OLE_LINK28][bookmark: OLE_LINK29][bookmark: OLE_LINK30][bookmark: OLE_LINK31]The annual mean T:ET varied greatly among 196 site-years with seven PFTs (Fig. 3). Overall, the mean T:ET among the 196 site-years was 0.54 (range 0.4–0.67), which is very close to results (0.57, range 0.5–0.64) on a global terrestrial scale [Wei et al., 2017]. In this study, deciduous broad forests had the highest average T:ET (0.67, range 0.50–0.78), with the trend and magnitude similar to the results of a global meta-analysis (0.67) [Schlesinger and Jasechko, 2014], transpiration estimation algorithm method (0.7) [Nelson et al., 2018] and modeling study (0.6) [Gu et al., 2018]. However, Zhou et al. [2016] reported that deciduous broad forests (0.52±0.08) had the lowest T:ET among all PFTs, being lower than those reported by Schlesinger and Jasechko [2014] in a global synthesis of 81 studies on ET partitioning. The reason for underestimating T:ET of deciduous broad forests was explained in Zhou et al. [2016]. The estimated annual T:ET for evergreen needleleaf forests (mean 0.46) is lower than that reported (0.55) by Schlesinger and Jasechko [2014] but the values for each site in this study (0.34–0.61) were all within the range for this vegetation type (0.3–0.7). The reason for underestimation may be due to parameter g1 variation among the four evergreen needleleaf forest sites. Our study had two sites (CA_NS3 and US_NR1) with small g1 values (2.9 and 2.6, respectively). A low g1 would be accompanied by high WUEleaf, resulting in low T:ET. The annual T:ET of grasslands varied little (0.52, range 0.38–0.67), compared with 0.56±0.05 [Zhou et al., 2016] and 0.57±0.19 [Schlesinger and Jasechko, 2014], because we included two grasslands located in arid areas (US_Wkg and US_SRG sites) and their perennial average T:ET were 0.45 and 0.56, respectively. Thus, our estimated annual T:ET is similar to that reported in the literature for deciduous broad forests, evergreen needleleaf forest, and grasslands. Moreover, this study showed that C3 croplands had higher T:ET (0.65) than C4 croplands (0.48), which is consistent with those for wheat (C3) and maize (C4) using ET partitioning methods with a two-source model or isotope approach [Wei et al., 2018]. However, the ET partitioning method used by Zhou et al. [2016] showed that C4 croplands had higher T:ET (0.69) than C3 croplands (0.62). The reason why T:ET differs in agriculture systems may be due to human factors, such as irrigation, mulching or fertilizer. In addition, two woody savannas (US_Ton and US_SRM) located in semiarid and arid sites had an average T:ET of 0.41 (range 0.39–0.43), which is consistent with that (0.48±0.12) reported by Schlesinger and Jasechko [2014].
[bookmark: OLE_LINK5]Seasonal and interannual variations in T:ET for DE_Gri (GRA), IT_Cpz (EBF), FR_Fon (DBF), US_Ne1 (CRO), US_NR1 (ENF), and US_SRM (WSA) were estimated daily (Fig. 4). Overall trends in seasonal T:ET characteristics for six PFTs were similar to those in the transpiration estimation algorithm and underlying water use efficiency methods [Nelson et al., 2020]. We selected three sites and years (DE_Gri, US_Ne1, and US_NR1) that were also used in a novel ET partitioning method based on soil and canopy conductances [Li et al., 2019] and compared their T:ET trends and characteristics within and between years. The three sites showed consistent trends in T:ET characteristics, albeit slightly higher in Li et al. [2019] because they did not include evaporation from canopy interception.
The seasonal patterns of T:ET differed for the six PFTs. For grasslands at the DE_Gri site, T:ET increased to 0.8 over time but rapidly declined with the harvest of herbage, which occurred several times a year. For croplands, maize grew faster than the other natural plants, and transpiration rapidly reached its maximum. The daily variation in T:ET at the US_Ne1 site followed a single-peak pattern within a growing season. For evergreen broad forests at the IT_Cpz site, the T:ET was mostly above 0.4, with an unobvious peak and large variation in daily T:ET during the growing season. For evergreen needleleaf forests at the US_NR1 site, T:ET was below 0.2 in the early growing season, and showed high-frequency fluctuations, reaching a peak value of about 0.54 during the growing season. The reasons for the high-frequency fluctuations in T:ET across plant types are provided in section 4.1. Moreover, large daily variations in T:ET could be attributed to other biotic and abiotic factors, such as soil water content, vegetation coverage, and plant phenology [Berkelhammer et al., 2016; Gao et al., 2019; Oishi et al., 2008].
4.3 Evaluation of the ET partitioning method
The relationship between mean annual T:ET and mean growing season LAI is shown in Fig. 5. The linear regression between T:ET and estimated mean LAI shows a significant R2 (p < 0.01), reflecting some regulation of vegetation coverage on T:ET variability across biomes. This result is similar to that of Li et al. [2019] and Gu et al. [2018], but with improved correlation coefficients. However, the low R2 of 0.26 suggests that the mean LAI explains small (26%) variations in mean annual T:ET across biomes, implying that the explanatory power of LAI for T:ET variability is constrained in global ecosystems. Ambient atmospheric conditions (e.g., VPD and precipitation), soil moisture, and plant phenology are important factors affecting high T:ET variation at daily or seasonal scales [Good et al., 2014; Scott and Biederman, 2017; Zhao et al., 2018]. Another reason is that the mean LAI values of the growing season but not the whole growing season, including the early growing season, were selected in this study. Scott and Biederman [2017] indicated that a larger percentage of T:ET variation is explained by a commonly used power function with LAI rather than a linear relationship early in the growing season. Overall, the correlation between LAI and T:ET further demonstrates the reliability of this new ET partitioning method.
The mean annual T:ET across 196 site-years was compared with previously published estimates using several different methods (isotope, modeling, flux data, and meta-analysis). Inter-comparison of various ET partitioning methods showed a spread in magnitudes of T:ET from 0.38 to 0.75 (Fig. 6). The overall T:ET across the 196 site-years in this study was 0.54 (range 0.40–0.67). On the whole, the average T:ET values were slightly lower than previous studies, although there was a large overlap in values, which may be due to the reasons as follows. Firstly, many published studies ignore the evaporation of precipitation intercepted by the vegetation canopy, which would overestimate T:ET [Baldocchi, 2014; Li et al., 2019]. Moreover, T:ET results would be higher if soil evaporation and vegetation transpiration were observed separately [Gu et al., 2018]. Finally, different research regions (such as those that focus only on non-limited water regions) and scales may contribute to the variability; for example, the isotope-based approach that is constrained by hydrologic decoupling overestimates T:ET [Jasechko et al., 2013]. Wang et al. [2014] indicated that uncertain observations and large variability across sites could generate a large T:ET range. Similarly, Nelson et al. [2020] reported a 0.45–0.77 spread in magnitude of T:ET using three ET partitioning methods based on fluxnet data, despite plausible and qualitatively consistent T and T:ET patterns. Therefore, different independent measurement techniques should be used to quantify and reduce uncertainties in the T:ET ratio [Rafi et al., 2019].
We used three ET partitioning methods to compare monthly and growing season T:ET in two arid grasslands (Table 2). One of the methods—proposed by Scott and Bieberman [2017]—is a reliable method for estimating T:ET at water-limited sites. In general, the three ET partitioning methods produced consistent T:ET at the seasonal scale. The monthly and whole growing season T:ET values from our method were similar to those of Scott and Bieberman [2017], with small differences of +1.8% and –0.3% for the US_SRG and US_Wkg sites, respectively. Unsurprisingly, Zhou et al.’s [2015] method overestimated growing-season T:ET at the at US_Wkg site by 37.8%, relative to that in Scott and Bieberman [2017]. Moreover, we compared the daily T:ET estimation of our method and Zhou et al.’s method at two arid grassland sites (Figs 7 and 8). The Pearson’s correlation coefficients of T:ET on a daily scale for the two methods were 0.95 and 0.85 at the US_SRG and US_Wkg sites, respectively. The overall T:ET trends on a daily scale were consistent for the two methods, but Zhou et al.’s method produced higher T:ET estimation values than our method because their assumption that T equals ET throughout the growing season is not valid for arid and vegetation-sparse areas. Our ET partitioning method is not restricted to arid and vegetation-sparse areas and improved the T:ET estimation accuracy in water-limited regions.
4.4 Implications and limitations
This study developed a novel method of ET partitioning based on the relationship between WUEleaf and WUEeco by using easily available eddy-covariance data. This method has several advantages over other ET partitioning techniques that use eddy-covariance measurements. Unlike Zhou et al. [2016] and Scott and Biederman [2017], our novel method is applicable to all regions and PFTs and not limited by local soil moisture in dry or wet areas. Unlike Li et al. [2019], our method incorporates evaporation from canopy interception. Importantly, our method can easily estimate T:ET at spatiotemporal scales using meaningful ecological interpretations of WUEeco and WUEleaf through reliable theoretical derivation. Moreover, this method helps understand the upscaling or downscaling of WUEs at different scales.
However, there are several limitations to this study. First, uncertainty in GPP and ET estimations would result in some uncertainty in WUEeco and hence T:ET. Second, the lack of direct observations of E and T at the flux tower sites to validate our partitioning method. Although the comparison with other ET partitioning methods lend considerable support for our method, we also find a few inconsistent results and there is no consensus as to which method is most accurate [Kool et al., 2014]. Thirdly, we assumed that WUEleaf can be used to approximate iWUEeco, which may not be true at sites with mixed vegetation types with distinct WUEleaf or heterogeneous environmental conditions, such as VPD and light density, leading to large variations in WUEleaf within the site. Finally, the g1 values were determined from different PFTs and land cover maps. As g1 is predicted to change with moisture index and temperature [Lin et al., 2015], using a constant g1 value at each site may lead to some uncertainty in WUEleaf and hence T:ET. The reason for not considering soil moisture and temperature is to retain a simple and available parameter in the T:ET model.
5. Conclusion
This study used half-hourly flux data from 196 eddy-covariance site-years to develop a novel ET partitioning method coupled with WUE at various scales. According to WUE based on water consumption, T:ET equals the ratio of WUEeco to WUEleaf numerically through reasonable derivation, and WUEeco and WUEleaf can be easily calculated from available data provided by flux sites. The spatiotemporal characteristics of WUEeco and WUEleaf for seven PFTs were not consistent, which reflects the proportion of productive and non-productive water consumption across PFTs. For natural vegetation, deciduous broad forests and evergreen broad forests had higher WUEeco than evergreen needleleaf forests and grasslands, but evergreen needleleaf forests had the highest WUEleaf. For agricultural systems, C4 croplands had higher WUEeco and WUEleaf than C3 croplands due to the CO2-concentrating mechanism. Moreover, T:ET characteristics varied among PFTs. Deciduous broadleaf forests had the highest mean annual T:ET (0.67), followed by evergreen broadleaf forests (0.63), grasslands (0.52), evergreen needleleaf forests (0.46), and woody savannas (0.41). The C3 croplands (0.65) had higher T:ET ratios than C4 croplands (0.48). We also examined the feasibility and reliability of our ET partitioning method—the magnitudes and trends in T:ET were consistent with those of other ET partitioning methods and the known effect from LAI. Furthermore, our method improved T:ET estimation accuracy in vegetation-sparse and water-limited areas. Thus, this method is sound in principle and easy to apply in practice and could be widely implemented for all regions and plant types using data from global flux tower networks. Moreover, this method provides new insights into the conversion of WUE at different scales.
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Figure 1. Distribution of mean ecosystem (WUEeco) and leaf water use efficiency (WUEleaf) for 25 sites across seven plant functional types (PFTs). The n value above each bar indicates the number of sites for each PFT. The bars represent standard deviations of WUEeco and WUEleaf for each PFT.
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Figure 2. Seasonal and interannual variation of gross primary productivity (GPP), ecosystem (WUEeco), and leaf water use efficiency (WUEleaf) at the daily scale for the DE_Gri (GRA), IT_Cpz (EBF), FR_Fon (DBF), US_Ne1 (CRO), US_NR1 (ENF), and US_SRM (WSA) sites.
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Figure 3. Distribution of mean annual T:ET for 25 sites across different plant functional types (PFTs). The square and solid lines in the boxes refer to the average and median values, respectively. The n value below each boxplot indicates the number of sites for each PFT.
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[bookmark: OLE_LINK33]Figure 4. Seasonal and interannual variation of T:ET at the daily scale for the DE_Gri (GRA), IT_Cpz (EBF), FR_Fon (DBF), US_Ne1 (CRO), US_NR1 (ENF), and US_SRM (WSA) sites.
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Figure 5. Scatter plot between mean annual T:ET and mean growing season leaf area index (LAI). The solid black line shows the fitted linear regressions (R2 = 0.26, p = 0.01) for all sites between T:ET and LAI.
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Figure 6. Comparison of T:ET estimated by different methods. The rectangle represents the standard deviation or the reported ranges in the published literature.
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Figure 7. Comparison of T:ET estimations on a daily scale between two arid grassland sites in this study (T:ET_Y) and Zhou’s method (T:ET_Z). The points located at the (a) US_SRG and (b) US_Wkg sites are 1,987 and 2,591, respectively. The blue dotted line represents the 1:1 trend line. The red line represents the linear equation estimated using orthogonal-least-squares regression.
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Figure 8. Comparison of daily T:ET characteristics in 2010 between two arid grassland sites in this study (T:ET_Y) and Zhou’s method (T:ET_Z). The difference is expressed as T:ET value estimated by Zhou’s method minus T:ET value estimated by this method.

Table 1. Information on the 25 fluxnet sites used in this study
Note: For each site, Latitude (Lat, º), Longitude (Lon, º), Site Identifier (ID), Plant Functional Type (PFT), MAP (mean annual precipitation), MAT (mean annual temperature), g1 (parameter of the Ball stomatal conductance model), and reference are presented. PFTs were taken from the International Geosphere-Biosphere Program (IGBP) land cover classification scheme (CRO = croplands, DBF = deciduous broadleaf forests, EBF = evergreen broadleaf forests, ENF = evergreen needleleaf forests, GRA = grasslands, WSA = woody savannas).


[bookmark: OLE_LINK18][bookmark: OLE_LINK19]Table 2. Comparison of monthly and growing season T:ET among Scott and Biederman, 2017, Zhou et al., 2015 and this study at the US_SRG (2008-2015) and US_Wkg (2004-2015) sites.
[bookmark: OLE_LINK34][bookmark: OLE_LINK35]Note: The two grassland sites are in water-limited regions where mean annual precipitation is 420 and 407 mm. The difference (%) is expressed as the percent of the T:ET difference values relative to the results of Scott and Biederman (2017).
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