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Abstract

Clouds are primary modulators of Earth’s energy balance, in both short and longwave
parts of the energy spectrum. It is thus important to understand the links connecting
variabilities in cloudiness to variabilities in other state variables of the climate system,
and also describe how these links would change in a changing climate. A conceptual model
of planetary cloudiness can help elucidate these points. In this work we derive simple
representations of cloudiness, that can be useful in creating a theory of planetary cloudi-
ness. These representations illustrate how both spatial and temporal variability of cloudi-
ness over the whole planet can be expressed in terms of basic state variables. Specifically,
cloud albedo is captured by a nonlinear combination of pressure velocity and a measure
of the temperature inversion, and cloud longwave effect is captured by surface temper-
ature, pressure velocity, and standard deviation of pressure velocity. From these predic-
tors, qualitative links may be drawn between equator-to-pole temperature gradients and
cloudiness, which are relevant for an energy balance model. We conclude with a short
discussion on the usefulness of this work in the context of global warming response stud-
ies.

1 Introduction

Clouds are one of the most fascinating, important, and complex components of Earth’s
climate system. From the processes that start the cloud condensation nuclei on nanome-
ter scales, to the cloud-circulation coupling on scales larger than megameters, clouds seem
to be involved in all scales one would consider part of climate (Siebesma et al., 2020).
Despite their importance, we seem to lack theoretical understanding of what controls planetary-
wide cloudiness. For example, while we have a good understanding of the microphysics
of cloud generation and radiative transfer through clouds (Houze, 2014; Cotton et al.,
2014; Siebesma et al., 2020), it is difficult to use these theories to make claims about global
cloudiness. Earth System Models (ESMs) and other bottom-up approaches do couple
cloud formation to the global circulation. Unfortunately, so far they have not been proven
effective in constraining global cloudiness variability (Sherwood et al., 2020; Zelinka et
al., 2020). This makes it difficult to transparently establish links between variability in
global cloudiness and Earth’s energy balance, or how this link would change in a chang-
ing climate.

Conceptual models could be useful in elucidating how the main features of cloudi-
ness connect to the energy balance, and how these connections may respond to large scale
climatic changes. However, existing conceptual work on cloudiness has focused on spe-
cific regions or regimes, such as the tropics (Pierrehumbert, 1995; Miller, 1997), the Walker
circulation (Peters & Bretherton, 2005), or the formation of midlatitude storms (Charney,
1947; Eady, 1949; Pierrehumbert & Swanson, 1995), among others. What is missing, to
our knowledge, is a conceptual framework that both closes the energy budget for a given
climate state (and hence by necessity considers the planet as a whole), but also includes
clouds. A suitable candidate for such a framework would be a an energy balance model
(Budyko, 1969; Sellers, 1969; Ghil, 1981; North & Kim, 2017) that explicitly represents
dynamic cloudiness.

In this work we want to derive simple representations, or “recipes”, for planetary
cloudiness, which can be potentially included in energy balance models, helping link vari-
ations in the energy budget and state variables of such models to variations in cloudi-
ness and vice-versa. These representations therefore need to capture all main features
features of cloudiness, which are the global mean value, mean seasonal cycle, coarse spa-
tial variability, and the difference between the shortwave and longwave impact of cloudi-
ness. To derive representations that capture these features, we will use a quantitative
top-down approach, where planetary cloudiness is directly decomposed into contributions
from several simpler spatiotemporal fields. These fields are the “ingredients” of the recipe,



and in the rest of the text we will refer to them simply as predictors (in the sense of sta-
tistical predictors). The predictor contributions are calculated by fitting proposed mod-
els of predictors versus observed cloudiness. A model useful in theoretical work is one
that can explain the most with the least amount of information, and therefore in this
work the main objective is to derive minimal representations that use a few predictors.

If the predictors used can be related to state variables represented in energy balance mod-
els, which are (typically) temperature and temperature differences, then cloudiness fol-
lows naturally from the representations that we will derive here.

Similar top-down approaches have been used frequently in the literature in the con-
text of the empirical cloud controlling factors framework (Stevens & Brenguier, 2009).
For tropical low clouds there are several studies summarized in the review by Klein et
al. (2017), and see also Myers et al. (2021) for ESMs vs. observations. Attention has also
been given to the midlatitude cloudiness (a summary of existing work on extratropical
cloud controlling factors can be found in Kelleher and Grise (2019) and see also Grise
and Kelleher (2021) for ESMs vs. observations). Our approach differs from past empir-
ical approaches in that we fit absolute cloudiness, not anomalies, and we fit energetically
meaningful cloudiness fields over all available space and time (see Sect. 2.3 for more de-
tails).

Section 2 describes our quantitative analysis, from defining cloudiness, which pre-
dictors to consider and why, how to fit predictor models on observed cloudiness, and how
to judge the quality of the fits. Then, Sect. 3 presents the main analysis and results on
how well the models capture cloud albedo and cloud longwave radiative effect. Section 3.4
shows that our models approximate CERES cloudiness better than using ERA5 radi-
ation output directly. Section 3.5, discusses potential connections between the predic-
tors used and equator-to-pole temperature gradients, setting the stage for future work
on incorporating cloudiness in energy balance models. A summary and discussion of po-
tential impact for sensitivity studies concludes the paper in Sect. 4.

2 Fitting planetary cloudiness
2.1 Quantifying cloudiness

To fit any model, a definition of cloudiness that is both quantitatively precise but
also energetically meaningful is required. Hence, the radiative impact of cloudiness is tar-
geted. For the shortwave part, we use the energetically consistent effective cloud albedo
(in the following, just “cloud albedo”), C, estimated using the approach of Datseris and
Stevens (2021). C' is a better way to quantify shortwave impact of cloudiness than the
shortwave cloud radiative effect (CRE), because a large amount of variability of the lat-
ter actually comes from the variability of insolation (Datseris & Stevens, 2021). For the
longwave part the CRE, L, is a good representation of the radiative impact of clouds,
and is a proxy for cloud effective emissivity which can be added in an energy balance model
(e.g., Sodergren et al. (2018)). Furthermore, it is not directly affected by the sun. Both
C, L are derived from monthly averaged CERES EBAF data (Loeb et al., 2018) using
19 years of measurements (2001-2020).

2.2 Predictors considered

All predictors considered in this study are defined and listed in Table 1 and are ob-
tained from monthly averaged ERA5 data (Hersbach et al., 2020) using 19 years of data
(2001-2020). Pressure velocity wsoo, estimated inversion strength EIS, surface wind speed
Vite, sea surface temperature SST, and stratospheric specific humidity grgo, have been
used numerous times in the literature and it is well understood that they play a role in
controlling cloudiness. wsgg is known to be important for both shortwave and longwave
cloud radiative effects (Bony et al., 1997; Norris & Weaver, 2001; Bony et al., 2004; Nor-



ris & Tacobellis, 2005), and EIS, Vi, SST, 700 have been used to fit cloud cover anoma-
lies in a variety of regimes, see e.g., Klein et al. (2017); Kelleher and Grise (2019) and
references therein for a more detailed discussion. Do note that the connections between
predictors and cloudiness in the literature are exposed for specific regimes (such as trop-
ical subsidence regions, or North midlatitudes, etc.), while here we will test their poten-
tial in fitting cloudiness over the whole planet.

Symbol  Description Reference

C Energetically consistent effective cloud albedo Datseris and Stevens (2021)
L Longwave cloud radiative effect Loeb et al. (2018)

w500 Pressure velocity at 500hPa Grise and Kelleher (2021)
Westd Standard deviation of wsgg within a month Norris and Tacobellis (2005)
Wup Fraction of updrafts of wsgg within a month Bony et al. (1997)

Viate 10-meter wind speed Brueck et al. (2015)

SST Sea surface temperature (SST) Qu et al. (2015)

Qtot Total column water vapor -

q700 Specific humidity at 700hPa Myers and Norris (2016)
EIS Estimated inversion strength Wood and Bretherton (2006)
CTE Estimated cloud top entrainment index Kawai et al. (2017)

Table 1. Fields to-be-predicted (C, L) and predictors considered in this study. An indicative
reference for each is given as well. We multiple wsgp with —1 in this study, so that wsoo > 0

means upwards motion.

We included CTE, the estimated cloud top entrainment index, because Kawai et
al. (2017) present it as an improvement over EIS, yet recent literature continues to use
EIS instead of CTE (e.g., Grise and Kelleher (2021)), thus further analysis confirming
whether CTFE is indeed an improvement is necessary. Both g7o0, gtot (With gior the to-
tal column water vapor) are a proxy for the moisture of an atmospheric column, and ex-
pected to be relevant when fitting L. In our analysis however, g7gp gave consistently bet-
ter fits when used in place of g1, keeping all other aspects fixed (not shown). This is
likely why gtot has not been used as a predictor in published literature and also why we
will not discuss it more in the rest. Using g7oo at 700hPa instead of g7oq at surface re-
sults in only minor improvement of fit quality throughout the analysis (also not shown).
The two uncommon predictors considered here that nevertheless have major positive im-
pact on fit quality are standard deviation wssq, and fraction of updrafts wyp, of wsgg. They
are both derived from hourly w59 data, aggregated over monthly periods (we note that
using up to 6-hourly sampled data yields little quantitative difference in wgyq,wyp)-

wyp has been devised because we fit absolute values, not anomalies, see Sect. 2.3.
Specifically in the case of C, we fit a quantity that is not only strictly positive, but fur-
ther bounded in [0,1]. wy, has the same property of being bounded to [0, 1], while wso0
has many negative values that may penalize the fitting process. Another advantage of
wyp is that it can be used as a weight to distinguish between regions of large scale sub-
sidence (in fact, this weighting aspect of wyp, has already been used by Bony et al. (1997)
to better understand the connection between CREs and SSTs in the tropics).

wstd, which can be thought of as a simple quantifier of storminess, has been shown
to be a useful predictor of cloudiness by Norris and Iacobellis (2005). There the authors
highlighted the nonlinear connection between vertical motion and cloud generation (e.g.,
cloud optical depth increases more strongly with upward motion than it decreases with
downwards motion). As we will discuss in more detail in Sect. 3.3, another argument fa-



voring wgq is that it relates cloudiness with the moisture of the air column much bet-
ter than ws500-

2.3 Fitting process

Let Y be a measure of cloudiness (C of L from Sect. 2.1) and X; be some predic-
tor fields, for ¢ = 1,...,n,. Y, X; are global spatiotemporal fields. We assume that with
sufficient accuracy we can write

YVaM=f(X1,. s Xn;D1ye D) = p1X1 + paXo +p3 X1 Xo (1)

with p;, for j = 1,...,m be some parameters to be estimated (all p; € R). In the fol-
lowing we will call f the “cloud fitting function”. Naturally, it is expected that differ-

ent forms for f and/or sets of predictors will yield a better fit for C or L respectively,

as each captures different aspects of cloudiness. Given a specific form for f, and a set

of predictors X;, the parameters p; of the model are estimated via a standardized non-
linear least square optimization (Levenberg, 1944; Marquardt, 1963). The minimization
objective is the squared distance between Y derived from CERES observations, and M
produced by Eq. 1 by plugging into it predictors X; from ERA5. All data have been trans-
formed into an equal area grid of cell size ~ 250km, from their standard orthogonal longitude-
latitude grids. Additionally, only data over ocean (a spatiotemporal mask is defined when
CERES auxiliary ocean fraction is > 50%) are considered, as, favoring simplicity, we
would like to derive minimal models that do not deal with the complexities of includ-

ing a land type contribution. Data are limited to £ 70°, to avoid potential CERES mea-
surement artifacts at the poles.

This approach of fitting models with free parameters to observed data is similar
to the cloud controlling factors framework (CCFF), however there are some key differ-
ences. The first is that the data used here are not anomalies. This means that the mean
value of Y, and its seasonal cycle, must be captured by the fit. Consequently, if all pre-
dictors are zero, then total cloudiness must also be zero. The importance of capturing
the mean value and mean seasonal cycle is further enforced by the fact that the inter-
annual variability of cloudiness is small in decadal timescales (Stevens & Schwartz, 2012;
Stephens et al., 2015) and hence the mean seasonal cycle captures the majority of the
signal (e.g., for hemispherically averaged all-sky reflected shortwave radiation, 99% of
the variability (Datseris & Stevens, 2021)). Since the cloud fitting function is expected
to capture the mean, it can be a nonlinear function (and if it is linear, then it must have
intercept 0 by force). Another argument behind allowing nonlinear functions is that, gen-
erally speaking, a theory of cloudiness could answer “how cloudy is it” in fundamentally
different climatic states, not just small deviations from a reference climate (which jus-
tifies using a linear framework).

A second difference with typical CCFF studies is that we fit across all available space
and time without any restrictions to special regions of space or cloud types. Typically
in CCFF the fitted parameters (which are linear coefficients) are either aggregated over
some specific region of Earth (e.g., subtropical subsidence regions like in Myers and Nor-
ris (2016)), or are fitted for each spatial point of the planet (e.g., like in Grise and Kelle-
her (2021)), or the focus is exclusively on a specific cloud type (e.g., low clouds like in
Myers et al. (2021)).

2.4 Quantitatively measuring fit quality

It is important to be able to quantify fit quality with an objective measure that
is independent of what predictors are used, how they are combined, or even whether the
fit is over C or L. A common choice for such tasks is the normalized root mean square



error (NRMSE), defined as

Zn()/n - Mn)Q

with Y, M as in Eq. 1, Y the mean of Y and n enumerates the data points. This error
measure is used routinely in e.g., spatiotemporal timeseries prediction (Isensee et al., 2019),
and is a statistic agnostic of the values of Y, M that can compare fit quality across dif-
ferent ways of fitting or different input data. If e > 1 the mean value of Y is a better
model than M (equivalently, the variance of the observations is smaller than the mean
square error between fit and observations). Do note however, that there several ways to
compute e: on full spatiotemporal data, on zonally and temporally averaged data, or on
the seasonal cycles of tropics (0°-30° degrees) and midlatitudes (30°-70° degrees). In ad-
dition, one can also use the Pearson correlation coefficient between the timeseries of Y, M,
computed at each spatial location and then averaged over space. Each measure highlights
a different aspect of fit quality (e.g., capturing spatial or temporal variability well). All
measures were taken into account when deciding the best fits (see below).

3 Results & Discussion

In this section we describe the fit results, starting with the simplest scenario, that
can serve as guidance for the followup analysis, and then presenting the “best” fits for
cloud albedo C and longwave cloud radiative effect L. To clarify, “best” does not mean
the fits with least possible € out of all conceivable combinations of predictors and cloud
fitting functions f. As already discussed in the introduction, a main goal of this work
is to pave the way for representing cloudiness in a conceptual energy balance model. There-
fore, the “best” fits are the simplest, most minimal fits, that accommodate intuitive phys-
ical justification, but also provide good fit quality (i.e., low values for €). Only the re-
quirement is small error e is objective, while the rest have at least partly a subjective
nature. Additionally, fits that use simpler predictors, that can be more straightforwardly
represented in a conceptual framework, are preferred. If two fits have approximately equal
error €, but one uses a simpler predictor (e.g., surface temperature SST versus atmo-
spheric specific humidity groo), the first fit is “better”. Certainly, slightly different vari-
ations on the exact form f and predictors used could yield similar versions of a “best fit”,
but these small variations are not crucial for the scope of this work.

3.1 Two predictor linear model

The simplest model one can use for the cloud fitting function f is one that has two
predictors and two free parameters in a linear manner: f = p; X;+p2Xo. Even if this
model does not yield a good fit for cloudiness, it is advantageous to start with it nev-
ertheless. All possible linear combinations given all possible predictors of Sect. 2.2 are
only 36, and they can already highlight which predictors are worth a closer look for which
measure of cloudiness. The results are in Fig. 1, which showcases two different error mea-
sures (error in temporally and zonally mean cloudiness, and error in mean seasonal cy-
cle of cloudiness), and how these errors depend on which predictors are used for the lin-
ear fit.

The majority of combinations result in low fit quality (e > 0.9). Nevertheless, Fig. 1
reveals some useful information. For C', a measure of the inversion strength is necessary
for a decent fit and the combination of wy, and CTE result in the best case scenario.
For L, the most important predictor seems to be wgq, which gives decent fits in both
space and time for a wide selection of second predictors (while w5 gives decent fits only
in time). A second important predictor for L seems to be grog or SST.
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Figure 1. Error in temporally and zonally mean cloudiness (lower-right triangle of heatmap),
and error in mean seasonal cycle (upper-left triangle of heatmap), as a function of which pre-
dictors of the x and y axis combine into a linear model f = p1 X1 + p2Xs for fitting cloud
albedo (left plot) or longwave cloud radiative effect (right plot). Red outline highlights the three
combinations with the lowest error in each category, while black dashed outline highlights the
combination with lowest error overall (by multiplying the two different error measures). It is

possible that e > 1 because we are fitting without intercept.

3.2 Best fit for cloud albedo C

While it is already clear in the literature that wsgo is an important predictor for
shortwave impact of clouds (Sect. 2.2), the fact that w,, performs so much better in a
linear model hints that the bounded nature of albedo, C' € [0,1], is important. Nega-
tive predictor values yield low fit quality and also penalize fitting well positive values.
One way to counter this would be to use wy, as probability weight multiplying other pre-
dictors. An alternative would be to use appropriate nonlinear functions of the more ba-
sic wspp. Regardless the choice, CT E must also be included in the model, as it is nec-
essary to capture the important contribution of low clouds.

A model that satisfies all these requirements, and achieves the best fit, is
C= 50}')1 (tanh(p2w500 +p30TE) + 1) (3)

where we used the nonlinear function x — (tanh(z)+1)/2 to map predictors into [0, 1]
space (the prefactor 50=100/2 simply makes the equation measured in % units). The
results of the fit (i.e., estimating the parameters p1, po, p3 that give least square error be-
tween Eq. 3 and the observed CERES C) are in Fig. 2. The model fit captures all main
features of cloud albedo (including its mean value), and achieves e = 0.54 over the full
space and time, e = 0.19 in the zonal and temporal average, and e = 0.65 in mean
seasonal cycle. The inclusion of the parameter p; is necessary, because in observations
cloud albedo does not saturate to 1, but to much lower values (see Fig. 2). We also note
that using E'1S instead of CTE in the model decreases fit quality signficantly, because,
while E1S and CTFE both capture subtropical low cloud albedo well, only CTE also cap-
tures midlatitude low cloud albedo well, while E1S mostly fails.

Adding more predictors increases fit quality only slightly. E.g., adding a factor p4 Vit
inside the tanh function decreases time and zonal mean error to e = 0.18 from e = 0.19



and seasonal cycle error to e = 0.6 from e = 0.65, as well as captures hemispheric asym-
metries in C slightly better. That the decrease in error is so small gives confidence that
that the basic physics governing cloud albedo are already captured by Eq. 3. Further fine-
tuning of the model only captures higher order details that will likely not be included

in a conceptual theory anyway.
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Figure 2. Results of fitting cloud albedo C' (units of %) with the simple model of Eq. 3. First
row are time-averaged maps of the observed data, the fit, and a difference between them. See

also Fig. 4 for a zonally averaged version. Second row are the contributions of different terms in
the model. Third row shows how well the model captures temporal variability. First two panels
are the mean seasonal cycles (with semi-transparent bands noting the standard deviation around
each month) in the tropics (0-30°) and extratropics (30-70°). The mean value of all cycles has
been subtracted, and SH cycles are offset for visual clarity. The third panel is a map of the Pear-
son linear correlation coefficient between the timeseries of the model and CERES data at each
grid point. Units of wsoo in Pa/s and CTFE in K, and p1 = 0.4, p2 = 6.87,p3 = 0.08. Note that we

multiply wsoo with —1 before any analysis (so that wseo > 0 means updrafts).

Since Eq. 3 is nonlinear, it is not trivial to disentangle the contribution of the in-
dividual predictors. The middle row of Fig. 2 provides some insights. Both CTFE and
wsoo contribute to midlatitude cloud albedo, but C'T'E slightly more so. In the tropics
wsoo contributes the albedo of the convective regimes (ITCZ, Maritime Continent), and
CTE the albedo of the low stratocumulus decks (subsidence regions). CTE is in some
sense a more important predictor than wggg, because if we set explicitly po = 0 in Eq. 3,
we get lower error of e = 0.7 in full space and time, versus the error of e = 0.9 we would
get if we set explicitly p3 = 0 instead. Alternative models to Eq. 3 can give qualita-



tively same results using wy,, instead of wsgg. For example, using f = prwup+p2CTEX
(1 — wyp) provides similar, but slightly worse, fit quality with e = 0.57 over full space
and time and e = 0.23 over time and zonal mean. However, wsgg is a simpler predic-
tor than wyp, and hence a model with wsgg is more minimal (and thus, “better”).

Of course, there are some discrepancies between model and observations. The most
notable ones are:

1. Southern ocean cloud albedo is not as high as in CERES. Generally, the model
fit is more symmetric in its midlatitude cloud albedo, while CERES has strong
asymmetry with SH having much higher albedo (Datseris & Stevens, 2021).

2. There are overall large errors near most coasts. This is expected, because we have
set up a fit only over ocean.

3. In CERES, the albedo of the West Atlantic and Central Pacific ocean regions di-
rectly west of the subtropical stratocumulus decks is nearly 0. In the model fit,
the albedo there is significantly higher, up to 6 units more. This stems from wsgq.

4. The temporal variability in the SH midlatitudes is captured poorly by the model
as seen both in the seasonal cycles but also in the (incorrect) anti-correlation near
the shores of Antarctica. We believe this is because of the co-variability with ice
affecting cloud albedo (and perhaps even making CERES measurements attribute
larger-than-normal albedo to clouds), but surface type variations are not consid-
ered in our model.

3.3 Best fit for longwave cloud radiative effect L

Fitting L is more complex, versus fitting C', for mainly two reasons. First, the long-
wave effect of a cloud depends strongly on the infrared opacity, and hence moisture con-
tent, of the atmospheric column overshadowed by the cloud. Moisture content though
is, at least partly, controlled by temperature. Warm and humid atmospheres are already
almost opaque to longwave radiation, and hence the presence of a cloud would have lit-
tle difference. Contrariwise, in a cold and dry atmosphere a cloud would bring a lot of
extra absorption of outgoing longwave radiation and hence large L. A second reason that
makes L a harder quantity to fit versus C' is that cloud height matters a lot for its ef-
fective emissivity (as cloud height sets its temperature), while cloud height does not have
a significant effect on cloud albedo (keeping all other factors fixed).

It is perhaps for these reasons that we were not able to find a model that had as
good of a fit for L as it had for C when restricting the model to using at most two pre-
dictors. After an analysis of several different linear and nonlinear combinations, the “best”
model we concluded in is

L = prwsia + powsoo + p3SST. (4)

The results of the fit are in Fig. 3. Similarly with C, the fit captures all main features

of L modulo some deficiencies listed below. The fit errors are e = 0.63 over full space
and time, e = 0.46 in time and zonal mean and e = 0.41 in mean seasonal cycle. Spa-
tial variability is captured worse for L versus C, but temporal variability is captured bet-
ter for L versus C. A factor that contributes to this is that the temporal variability of

L is much simpler versus C' (e.g., relative power of 12-month periodic component is much
larger in L timeseries, leading to simpler seasonal cycle temporal structure, compare last
rows of Figs. 2 and Figs. 3).

Before discussing the main discrepancies between fit and observation, let us first
justify the choice of predictors. Monthly-mean wsqg is a proxy to cloud height (persis-
tent updrafts and with larger magnitude should result in higher clouds). The surface tem-
perature SST is a proxy for the emissivity of the air column without a cloud, because
the potential total moisture content of atmospheric columns is a monotonically increas-
ing function of temperature under first approximation. Using g7gg, specific humidity at



L, CERES L, MODEL

o s

0 14 28 42 56 70 -17.5-10.5 —-3.5 3.5 105 17.5

5 10 15 20 -20 -10 0 10 20
tropics extratropics
24 — ;
//// ) /'ﬁ\,
16 4 N 7 ) =
E== = — 4
N — CERESSH — CERESNH Y | — CERESSH — CERESNH | §
8% -~ MODELSH -- MODELNH 4 J& -- MODELSH -~ MODELNH |
-84 — ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ; : ‘ ‘ ‘
FEB  MAY JUL  NOV FEB  MAY JUL NOV  -10 -0.6 -0.2 02 0.6 1.0

Figure 3. As in Figure 2 but now for longwave cloud radiative effect L. Units of L in W/m?,
w500, wsta in Pa/s, SST in K, and p1 = 42.68, p2 = 208.9, p3 = 0.06558.

700hPa instead of SST, yields worse capturing of spatial variability (with e = 0.6 ver-
sus e = 0.46 in time and zonal mean) but improves even more the capturing of tem-
poral variability (with e = 0.34 versus e = 0.41 in mean seasonal cycle). Given that
SST is a more basic predictor than g7gg, and is directly represented in conceptual en-
ergy balance models, SST is preferred. Furthermore, and as was the case with C, adding
more predictors, or additional nonlinear terms of existing predictors, increases fit qual-
ity but only slightly. E.g., an additional nonlinear factor pjwstq X SST decreases the
zonal and temporal mean error from e = 0.46 to e = 0.43, but this small change does

not justify the increase of complexity of adding a fourth free parameter to be tuned, even
though we remain at three individual predictors (we remind that the “minimallity” of
the fit is a bigger requirement than its error minimization).

Interestingly, wstq is the most important predictor for L. Even though wsgg cap-
tures a broader range of values (~ 40 versus the ~ 30 of wgq), absence of wgq signif-
icantly lowers fit quality in all combinations of cloud fitting functions f and predictors
we tested, even when including wsgp in all of them. The spatial structure of wgtq is the
most similar to the spatial structure of L, with the main difference being that for wgq
the peak values in tropics and extratropics have equal magnitude, while for L the tropic
peak values have 33% more magnitude. Hence, some other predictor must lower the ex-
tratropical magnitude of wgq, and here this role is fullfilled by SST in Eq. 4 (or ¢700,
if one uses it instead of SST).

A physical connection between wgtq with L can be thought as follows: persistent
updrafts, that are captured by wsog, would lead to a moist atmosphere and hence weak
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L, mostly irrespectively of cloud height. On the other hand, consistent pumping of air

up and down (high wgq, but almost zero wsgp) would leave the atmosphere dry (for at
least half the time), but the formed clouds would linger longer above the dry atmosphere
and have a disproportionately strong effect, yielding high L. In the midlatitudes both

L and wgq have their latitudinal maximum in the middle of the Ferrel cell (40-45°), where
wso0 =~ 0. Of course, monthly-mean wsgy =~ 0, but in the hourly timescale there is a

lot of vertical motion, as captured by the high values of wgq. This reflects the fact that
storms form in the middle of the Ferrel cell, not its end. In the tropics, wsog and wgiq
have little differences in their latitudinal structure.

The most noteworthy discrepancies between fit and observations are:

1. L of Maritime Continent is largely underestimated by the model. This mainly stems
from wgtq having relatively smaller values there versus e.g., ITCZ.

2. For same reason as above, L of ITCZ is slightly overestimated in the fit.

3. Similarly with C, the difference between the high L of (e.g.,) ITCZ and the ~ 0
L of the ocean regions in West Atlantic and Central Pacific is not as sharp in the
model as in CERES.

4. While the temporal structure (i.e., the relative power of regular 12- and 6-month
periodic components) of the seasonal cycles is captured well, the total magnitude
of the cycles is consistently smaller in the fit than in observations. Using g7qg in-
stead of SST as second predictor removes this deficiency.

3.4 Comparison with ERA5 and reduced data

For obtaining reference values of the errors we report here, we also compare the out-
come of our analysis with using direct ERA5 radiation output to measure C or L. Cal-
culating L is straightforward, however, we cannot compute the energetically consistent
effective cloud albedo from ERAD5, because it requires cloud optical depth, a field not ex-
ported by ERA5. Instead, we can compute the cloud contribution to atmospheric albedo
aCP (specifically, Eq. 3 from Datseris and Stevens (2021)), which has only small dif-
ferences with C. a®"P also has the downside of not having a time dimension due to ab-
sence of sunlight for large portions of the data (see discussion in Datseris and Stevens
(2021) for more details).

We also present fits and their errors for fitting reduced data directly, specifically
temporally and zonally averaged data. Fitting reduced data can only increase fit qual-
ity, because this case neglects higher-order effects that contribute to e.g. zonal or tem-
poral structure, but are averaged out in the reduced version. If, however, the fit qual-
ity increases only slightly, that gives confidence that the basic connections captured by
our models are indeed the most important ones and hence also dominate full spatiotem-
poral variability. The results are in Fig. 4.

Two conclusions can be readily drawn: (1) our fits are have smaller error e than
using direct ERAS radiation output, (2) fitting the simplified version of temporally and
zonally averaged data increases fit quality only slightly, further validating the fit qual-

1ty.

3.5 Potential connection with energy balance models

In the introduction we discussed the benefits of including cloudiness in an energy
balance model. There are two steps in achieving this in practice. First, express cloudi-
ness as a function of simpler physical quantities. Second, represent these quantities in
an energy balance model. In this work we achieved the first step. To accomplish the sec-
ond step, one would have to express predictors wsgg, wstd, CTE as functions of temper-
ature, or temperature differences (which are the typical state variables of energy balance
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Figure 4. Temporally and zonally averaged data (and their errors e, Eq. 2, versus the CERES
curve) of CERES, our model fits, and direct ERA5 output for (a) the longwave cloud radiative
effect L and (b) the cloud contribution to atmospheric albedo a“*P. In (a), “FIT” is over all
space and time, and “FTZ” is a fit over temporally and zonally averaged data. In (b), “FIT” is a

fit over temporally averaged data (no time information can be used), and “FTZ” is as before.

models). While this task is certainly a subject of future research on its own right, the
choice of predictors was such that there are physically sensible qualitative connections
to start from.

The theory behind the baroclinic instability (Charney, 1947; Eady, 1949; Pierre-
humbert & Swanson, 1995) states that midlatitude storms are driven by the equator-to-
pole temperature gradient. Hence, larger temperature gradient would lead to stronger
storms, reflected by a larger wgiq in the midlatitudes. The mean circulation in the Fer-
rel cell (represented by wsgg) will likely also increase due to continuity and the increased
momentum carried by the storms. In the tropics, the Held-Hou model (Held & Hou, 1980)
establishes a proportionality between the strength of the Hadley circulation wsgo and gra-
dients in insolation, which, in a first approximation, can be taken as gradients in tem-
perature. We have noticed that in the tropics the spatial structure of wsgg and wgiq are
very similar, but why this is the case is not immediately clear from the Held-Hou model.

The estimated cloud top entrainment index CTFE is harder to express in terms of
temperatures. Measures like CTFE (or EIS or the Lower Stratospheric Stability) cap-
ture the temperature inversion magnitude between the boundary layer and surface (Wood
& Bretherton, 2006). In the tropical subsidence regions, this inversion strength can be
conceptually tied to temperature gradient between the warm equator and colder ocean
of subtropics as follows: The free tropospheric temperature is, to a first approximation,
homogenized by gravity waves to the value in the convecting regions (weak temperature
gradient approximation (Sobel et al., 2001)). Surface temperature in the tropical sub-
sidence regions however reflects the colder ocean temperature. The connection of ETS
with the underlying ocean temperature in the case of midlatitudes is less clear. Concep-
tually, a temperature inversion can occur in cyclonic storms due to mechanical reasons:
warm air masses from the midlatitudes are forced on top of the cold polar fronts, cre-
ating a temperature inversion scenario. However, more research on the subject is nec-
essary to make more concrete claims.

Given these considerations, it seems that a promising way to express these predic-
tors (and hence cloudiness) in an energy balance model is via the equator-to-pole tem-
perature gradient. Future research should focus in validating this claim in more detail,
but also make the qualitative connections we drew here quantitative and with clear func-
tional forms.
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4 Conclusions

The goal of this work was to identify ways one can accurately represent observed
planetary cloudiness using as few and as simple components as possible, such as surface
temperature or vertical wind speed. We have shown that the combination of pressure
velocity wsgg and a measure of temperature inversion CT'E are enough to capture all main
features of cloud albedo, while surface temperature SST, standard deviation of hourly
pressure velocity wgtq, and wsgg, capture all main features of longwave cloud radiative
effect. Qualitatively, these predictors can be connected with equator-to-pole tempera-
ture gradients and future research can should strive to make these qualitative connec-
tions quantitative.

Equations 3 and 4, and the analysis of Sect. 3, can also be used to quantify the re-
sponse of cloudiness to a change in the climate system. For example, how would a change
in the variability of the circulation or inversion strength impact global cloudiness and
hence the energy balance. But also, the equations can provide spatially localized infor-
mation on such changes, such as in which areas of the globe would circulation changes
impact global cloudiness the most. These applications seem useful for e.g., better quan-
tifying cloud sensitivities in the context of global warming. However, we must be aware
that the exact parameter values p; in Eqgs. 3 and 4 have been derived from fitting on cur-
rent climate (spanning two decades). At the moment we do not have any guarantee that
their values would be the same in a significantly different climate, and one would need
to perform a similar analysis as here to further confirm this.
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