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Key points 18 
·      Mesoscale hydraulic fracturing in crystalline rock observed with multi-geophysical sensor array at 19 
close proximity 20 
·      Created fracture network consists of multi-strand hydraulic fractures and reactivated pre-existing 21 
structures 22 
·      Hydraulic fracture growth is strongly influenced by rock fabric, pre-existing fractures, and stress 23 
heterogeneities 24 
Abstract 25 
Enhanced Geothermal Systems could provide a substantial contribution to the global energy demand if 26 
their implementation could overcome inherent challenges. Examples are insufficient created permeability, 27 
early thermal breakthrough, and unacceptable induced seismicity. Here we report on the seismic response 28 
of a meso-scale hydraulic fracturing experiment performed at 1.5 km depth at the Sanford Underground 29 
Research Facility. We have measured the seismic activity by utilizing a novel 100 kHz, continuous 30 
seismic monitoring system deployed in six 60 m-length monitoring boreholes surrounding the 31 
experimental domain in 3-D. The achieved location uncertainty was on the order of 1 m, and limited by 32 
the signal-to-noise ratio of detected events. These uncertainties were corroborated by detections of 33 
fracture intersections at the monitoring boreholes. Three intervals of the dedicated injection borehole were 34 
hydraulically stimulated by water injection at pressures up to 33 MPa and flow rates up to 5 L/min. We 35 
located 1933 seismic events during several injection periods. The recorded seismicity delineates a 36 
complex fracture network comprised of multi-strand hydraulic fractures and shear-reactivated, pre-37 
existing planes of weakness that grew unilaterally from the point of initiation. We find that heterogeneity 38 
of stress dictates the outcome of hydraulic stimulations, even when relying on theoretically well-behaved 39 
hydraulic fractures. Once hydraulic fractures intersected boreholes, the boreholes acted as a pressure 40 
relief and fracture propagation ceased. In order to create an efficient sub-surface heat exchanger, 41 
production boreholes should not be drilled before the end of hydraulic stimulations. 42 



 43 
1. Introduction 44 

Geothermal heat can be a reliable source of clean energy that is able to provide baseload capacity. 45 
Enhanced geothermal systems (EGS) promise the availability of geothermal energy anywhere if we only 46 
drilled to sufficient depth and were able to create an efficient subsurface heat exchanger to accommodate 47 
a sustainable circulation of fluid between injection and production boreholes (Tester et al., 2006). 48 
Creating such a heat exchanger has been a long-standing challenge (Doe et al., 2014; Grant, 2015) and 49 
one that needs to balance the economic need for high fluid flow rate, avoiding hydraulic short circuits and 50 
preemptive thermal breakthrough, and undesirable levels of induced seismicity. 51 

Past efforts to create full-scale EGS have suffered from insufficient artificial permeability created 52 
through their attempts at shear stimulation, as observed at the Soultz-sous-Forêts, France site (Genter et 53 
al., 2010) or earlier at the Fenton Hill pilot in New Mexico, USA (Norbeck et al., 2018). It has been 54 
proposed to create EGS through primarily tensile hydraulic fractures (Jung, 2013) or through specifically 55 
targeting the creation of a fracture network that is based on a mix of newly created hydraulic fractures and 56 
utilization of pre-existing structures that are to be reactivated in shear (McClure & Horne, 2014). Given 57 
the success of the modern unconventional oil and gas industry in creating engineered permeability for 58 
hydrocarbon production, researchers are hoping to harness these same technologies for EGS including the 59 
use of proppants, zonal isolation, and designer fracture networks. 60 

A critical component of EGS development is to mitigate the induced seismicity risk associated 61 
with hydraulic fracturing and potential reactivation of faults at seismogenic depth (Diehl et al., 2017; 62 
Ellsworth et al., 2019; Häring et al., 2008). It remains poorly understood exactly how high-pressure fluid 63 
injections influence the state of stress and the likelihood of seismogenic slip of nearby faults (Walsh & 64 
Zoback, 2016). Lastly, creating an underground heat exchanger must avoid creating early thermal 65 
breakthrough between production and injection boreholes (Parker, 1999), which can be caused by 66 
excessive flow channeling. Some of the open questions upon which EGS success depends are: How can 67 
we control the level of seismic activity and the largest events being induced? Can we utilize hydraulic 68 
fracturing techniques to create a suitable fracture network? What are reasonable thermal recovery factors 69 
for the seismically imaged EGS reservoir volume, and how can these be increased? What is the role of 70 
pre-existing fractures, rock features and stress heterogeneity in these processes? 71 

The complexity of the required advancements of EGS technology, the high costs of performing 72 
full-scale experiments and the difficulty of adequately instrumenting test sites at typical depths greater 73 
than 3 km are driving a recent renaissance of underground mesoscale experiments i.e. at dimensions of 74 
10s to 100s of meters. Such experiments provide the realism of a heterogeneous rock body, in contrast to 75 
laboratory studies on core samples, while simultaneously offering the potential of significantly lower cost 76 



with higher instrumentation density than a full reservoir-scale pilot study. These intermediate scale 77 
experiments try to strike a balance between easy access that allows for dense instrumentation and novel 78 
sensor deployments, size of the experimental volume, and relevant stress and temperature conditions.  79 

Several experiments are being conducted in underground laboratories in crystalline rock that were 80 
originally targeted for nuclear waste storage research such as at the Äspö Hard Rock Laboratory, Sweden 81 
(Kwiatek et al., 2018; Zang et al., 2017) or at the Grimsel Test Site, Switzerland (Amann et al., 2018; 82 
Gischig et al., 2018; Villiger et al., 2019). Other experiments used opportune mining environments to 83 
learn about the processes involved in fracturing from in-situ observations (Jeffrey et al., 2009; Kwiatek et 84 
al., 2011; Dresen et al., 2019). An advantage of deep underground mining environments in contrast to 85 
shallow tests is the availability of higher in situ stress conditions at relatively short drilling depths. 86 
The EGS Collab project strives to improve our understanding of creating subsurface heat exchangers 87 
through densely monitored mesoscale stimulation experiments at relevant depth. The project is laid out as 88 
an integrated effort to combine experimental and modelling work applied to EGS development. We 89 
selected a site at the Sanford Underground Research Facility, located in Lead, South Dakota formerly 90 
known as the Homestake Gold Mine (Kneafsey et al., 2019; Dobson et al., 2020). The first suite of 91 
experiments is being conducted in the West Drift of the 4850 ft-level, approximately 1.5 km below the 92 
surface. The site is in the immediate vicinity of prior experiments conducted as part of the kISMET 93 
project, where permeability creation through hydraulic fracturing was studied prior to EGS Collab 94 
(Oldenburg et al., 2017). A testbed consisting of eight sub-horizonal boreholes of 60 m length was 95 
designed to study the creation and function of a subsurface heat exchanger based on the utilization of 96 
hydraulic fractures designed to connect an injection-production borehole doublet. The monitoring 97 
boreholes were equipped with a wide array of sensors ranging from passive and active seismic through 98 
fiber-optics to electrical resistivity and in-situ displacement sensors. Here we report on the seismic 99 
response of the metamorphic rock mass to a series of stimulation experiments and the creation of a 100 
complex reservoir comprised of hydraulic fractures and reactivated natural fractures. First, we summarize 101 
prior baseline characterization and describe the instrumentation of the testbed. Then we describe the 102 
injection tests and seismic observations in chronological order before we discuss all tests together and put 103 
them in context with complementary observations enabled by the multi-modal instrumentation. We close 104 
with a comparison of our observations to other mesoscale experiments. 105 
  106 

2. Experiment overview 107 
Experiment 1 of the EGS Collab Project benefitted from a thorough characterization of prior experiments 108 
near the site such as from the kISMET project (Oldenburg et al., 2017). The experiment is embedded in a 109 
host rock of carbonate-rich, quartz-bearing phyllite of the upper Poorman formation (Caddey et al., 1991). 110 



This metamorphic rock is strongly foliated and as a result has a highly anisotropic mechanical response 111 
(Frash et al., 2019; Vigilante et al., 2017). The anisotropy also holds for the larger scale as revealed 112 
through baseline electrical resistivity tomography (ERT) by Johnson et al. (2019) who imaged a 10 m-113 
scale fold running through the rock volume of our testbed. A discrete fracture network model was 114 
developed based on image logs, core and fracture isolation flow tests (Neupane et al., 2019; Roggenthen 115 
& Doe, 2018; Ulrich et al., 2018). A high-resolution cross-well seismic tomography campaign was 116 
conducted to collect compressional- and shear-wave velocities, vp and vs of the testbed prior to stimulation 117 
(Schwering et al., 2018). The data were processed and initially inverted for isotropic first-arrival 118 
traveltime tomographic imaging, and the results were utilized for elastic moduli calculations (Linneman et 119 
al., 2018). Average velocity values in the best-constrained region of the tomographic models were 120 
approximately 6,000 and 3,200 m/s for vp and vs, respectively. These data have been utilized for 121 
anisotropic adjoint-state first-arrival traveltime tomography and anisotropic elastic-waveform inversion 122 
methods to refine the initial velocity models (Gao et al., 2020). The stress field has been characterized as 123 
normal faulting through hydraulic fracturing tests during the kISMET project (Wang et al., 2017). 124 
Furthermore, it was necessary to consider perturbations to the tectonic stress field accounting for the 125 
excavation damage zone, the perturbation by the presence of a free surface at the drift (mine tunnel), and 126 
lastly the excavation and ventilation history and resulting thermal stresses. The West Drift was excavated 127 
starting in 1949, flooded in 2007 after the mining activity ceased and pumped dry in 2009 to enable 128 
access for scientific experiments (Lesko, 2015). The natural temperature of the rock is about 38˚C and the 129 
drift is circulated with fresh air cooling it to an ambient temperature of about 20˚C. To assess the impact 130 
of this history on the planned stimulation activity, Fu et al. (2018) and White et al. (2018) performed a 131 
numeric analysis of thermal stresses in the host rock and their implication on fracture propagation. They 132 
predicted that a newly created hydraulic fracture would preferentially grow towards the drift. This finding 133 
was incorporated in the experimental design by placing the production borehole between the injection 134 
borehole and the drift (Figure 1). 135 
 136 

2.1.  Testbed design and monitoring array 137 
To monitor the coupled mechanical, thermal, and hydrogeologic processes occurring during stimulation, 138 
the testbed was designed to surround the experimental volume in 3-D. The testbed consists of eight 139 
boreholes of about 60 m length and 96 mm diameter, drilled from a single drift at 1480 m below the 140 
surface (Figure 1). Two of these boreholes were designated as the injection (E1-I) and production (E1-P) 141 
boreholes for the purposes of the stimulation and flow experiments. The other six boreholes were 142 
instrumented with a multi-modal instrument string that included a fiber optic cable for distributed sensing 143 
of temperature (DTS), strain (DSS) and acoustic (DAS) signals, electrode strings for ERT, thermistors, 144 
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Events were detected with a standard STA/LTA routine (Allen, 1978) where we require at least 192 
10 individual traces to trigger to detect an event. First arrival times were then refined using an AIC picker 193 
implemented in the package PhasePAPy (Chen & Holland, 2016). If at least 5 P-wave picks were 194 
obtained from one event they were passed on to Hypoinverse (Klein, 2014). We use a version of 195 
Hypoinverse that is modified to accommodate the time precision of 10−5 s needed for our application. 196 
This processing workflow is implemented on an 8-core workstation and is able to handle about 1 197 
triggered event per second. During periods of peak activity this level may be far exceeded however, 198 
leading to a backlog of events to be processed. In later processing steps we manually reviewed and 199 
refined all automatic P-wave picks and added S-wave picks where possible.  200 
 We used a simplified velocity model with a single P-wave velocity of 5900 m/s and a vp/vs ratio 201 
of 1.78. This velocity was determined by locating the active sources and then minimizing the misfits 202 
between their known location and our determined location while varying vp. The selected P-wave velocity 203 
falls within the range of vp values observed from the seismic crosswell survey of the testbed (Schwering 204 
et al., 2018). In the following section we quantify the location uncertainty obtained with our processing 205 
applied to the testbed. In normal earthquake monitoring settings, the location uncertainty is governed by 206 
the uncertainty in first break picking and unknown complexity of the applied velocity model. In our 207 
application a third component is the uncertainty in the location of sensors. Our working assumption is that 208 
borehole trajectories are generally known with better than 1 m accuracy. The location of sensors along the 209 
borehole is assumed to be known to 0.05 m or better and represent no relevant source of error. 210 

During the experiments the active seismic sources (CASSM) were operated semi-continuously to 211 
obtain a velocity model epoch every 15 minutes. We used these sources to separately quantify the 212 
location precision and accuracy of our automatic processing. We automatically determined the P-wave 213 
first arrivals and locations as described above. We computed the accuracy of our locations as the vector 214 
between the mean determined location and the assumed location of the CASSM sources. Accuracy was 215 
determined to be better than 1.5 m (Figure 3a). It is important to note that the assumed location of the 216 
CASSM sources do contain their own error related to the uncertainty of the borehole trajectories as 217 
discussed above. We noticed a systematic deviation between the determined and assumed location of the 218 
sources as we go deeper along borehole E1-PST. Based on further evidence from inversion of ERT and 219 
active seismic data, it is assumed that the trajectory of this borehole has a systematic error on the order of 220 
1˚, translating into errors of up to 1 m at the bottom of that borehole. The location precision for each 221 
source is obtained from the largest component of the ellipsoid that contains 95 % of determined locations. 222 
We found the location precision to be better than 0.8 m and typically better than 0.5 m (Figure 3a and c). 223 
Most of the recorded seismic events have a much lower signal-to-noise ratio than the active sources, so 224 
precision of our seismic event locations is limited by the accuracy of picking the first arrivals on a 225 
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We select events that appear to be associated with a planar feature that we interpret to be a fracture. The 250 
position and orientation of fractures were determined through principal component analysis. We compute 251 
the covariance matrix of all earthquake hypocenters associated with an interpreted fracture. The location 252 
and orientation of the fracture is then obtained from its eigenvector and eigenvalues, respectively. The 253 
dimensions of the activated fracture sections are obtained from the major and intermediate axes of the 254 
ellipsoid defined by the hypocenters and scaled to include the 95 % confidence interval if events followed 255 
a χ2 distribution in space. We identified 10 fractures this way as shown in Figure 5. 256 
 257 
 258 
 259 

 260 
Figure 4: Optical (OTV, left) and acoustic (ATV, right) televiewer images of the three stimulated intervals 261 
at (a) 128 ft, (b) 142 ft and (c) 164 ft. The televiewer images were obtained prior to hydraulic stimulation 262 
and show the machined notches perpendicular to the borehole axis marked by arrows. 263 
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Thompson effect as the injected fluid pressure decreased upon entry into the grouted monitoring well 286 
(Zhang et al., 2018). Seismicity at the E1-OT borehole was relatively sparse; the closest event was located 287 
at about 45.5 m along its depth. Overall, seismicity developed in a fairly planar fashion with most 288 
seismicity associated with a single fracture F4 at a strike of about N75˚E. From that point on, the 289 
hydrophones and accelerometers deployed in E1-OT were exceedingly noisy, presumably due to water 290 
jetting into the borehole and causing direct vibrations to the sensor string. Elevated flow noise subsided 291 
after the injection tests but reappeared once a comparable hydraulic regime was reached. It was 292 
determined later that the grout in the boreholes did not seal effectively and several attempts to reseal the 293 
monitoring boreholes would follow. 294 

After another overnight shut-in we resumed injection and increased the maximum flow rate to 295 
5 L/min and injected until fracture breakthrough into the production borehole was observed (Figure 6c).  296 
Breakthrough in E1-P was evidenced by fluid outflow from the well collar and deformation recorded by 297 
the SIMFIP probe in the production borehole. Because of the much higher flow rate, and despite almost 298 
unchanged injection pressure, the seismicity rate was much higher than in previous injections, producing 299 
280 events in about 20 minutes of injection. Only the largest events could be clearly located because of 300 
the ambiguity of associating wave trains for the bulk of smaller events (Figure 7). During that test, a 301 
second fracture F3 sub-parallel to the first fracture F4 became active. Further, fracture F2 with a strike of 302 
about N120˚E and with activity located below the other fractures became active as well.  303 
The seismic cloud intersected with the production borehole at around 39.5 m depth. In a later test, video 304 
footage of fluid flowing into the production well was acquired using a downhole camera. We saw fluid 305 
jetting into the borehole at 39 m depth, which is consistent with the locations of the hydraulic fracture 306 
determined from the seismic events. 307 

Following another overnight shut-in, two 1-hour long flow tests of up to 4.5 L/min flow rates 308 
were conducted on May 25, 2018. The first test injected water above fracture opening pressures for about 309 
20 minutes. Although a volume comparable to the previous stimulation was injected only minor seismic 310 
activity with a total of 65 events was recorded (Figure 6d). The second flow test began after about 5 hours 311 
of shut-in and continued with moderate seismic activity at a flow rate of 3.7 L/min. After 20 minutes at 312 
that flow rate, it was increased to 4.5 L/min, the same used in the previous test. Activity on a new fracture 313 
(F1), detached from the previous activity, appeared. Interestingly, fracture F1 has a similar strike as the 314 
previously active hydraulic fractures but is dipping in the opposite direction at similarly steep angle. After 315 
shut-in, activity lingered on in this fracture much longer than observed after any of the previous injection 316 
tests (Figure 6e). 317 
 318 
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system in the monitoring boreholes. The first thermal signal was detected at 17:15 at 37.25 m depth in 378 
OB, corresponding to seismicity in F8. A second anomaly was detected at 19:30 at 32.25 m depth in OB, 379 
corresponding to fracture F7. For both thermal anomalies the closest seismicity projects within 1 m of the 380 
thermal anomaly detected by the DTS system.  381 

Most seismic activity was confined to shear fracture F7 that was reactivated along a 10 m long 382 
segment. Fracture F9 became newly active and seismic activity grew sub-parallel to E1-I and in the 383 
opposite direction of F7. Both fractures appear to originate from the injection interval in E1-I and their 384 
reactivated sections grew one-sided away from the injection interval. The image log of E1-I does show 385 
several mineral-filled fractures near the machined notch (Figure 4) at 142 ft as well as a series of fractures 386 
at 146 ft. Two fractures identified on image logs have an orientation roughly matching the orientation of 387 
the reactivated fracture F7 (strike & dip of 138 & 78 vs. 140 & 85 for the logged fracture and F7, 388 
respectively). This feature corresponds to the Intermediate Fracture Zone as characterized by Neupane et 389 
al. (2019).  390 
Very slowly and with only minor seismic activity a part of the seismic cloud grew towards E1-P with an 391 
orientation consistent with a hydraulic fracture (F10). This feature shares the same orientation as the 392 
hydraulic fractures that were created in May and connect the 164 ft notch with E1-P. Thermal anomalies 393 
were detected at 20:19 at 37.25 m depth in E1-OT and at 17:15 at 37.20 m depth in E1-OB. Several 394 
fracture intersections with E1-P were found within 0.5 m of 31.0 m depth using a downhole camera 395 
during the Dec 21 injection. These fracture intercepts align very well with the interpreted hydraulic 396 
fracture and confirm the orientation and location of the hydraulic fracture independently. 397 
 398 



399 
400 
401 
402 
403 

404 
405 
406 
407 
408 
409 
410 
411 

Figure 10

from the i

rate (blue)

number of

4. D
Several hi

diverse ra

fracture p

in the sam

142 ft loc

128 ft and

 

0: Overview of

injection. Eve

e), pressure (r

f events for ea

Discussion 
igh-pressure f

ange of seismi

ropagation re

me borehole (F

ations, seismi

d 142 ft locati

of stimulations

ents are colore

red) and cumu

ach stage is p

fluid injection

ic responses. 

esponses desp

Figure 11). W

ic responses c

ions. Below w

s and flow tes

ed based on t

ulative numbe

printed in the 

ns at the three

Stimulations 

pite being loca

While we obse

consistent wit

we discuss the

sts at the 142 f

their correspo

er of events (b

top left corne

e notched loca

at each inject

ated in the sam

erved hydrauli

th shear fractu

e observed sei

ft notch. Top

onding fractu

black), norma

er. 

ations in the b

tion interval p

me rock type 

ic fracturing w

uring domina

ismicity and c

p panels: Dist

ure, Bottom pa

alized to fit th

borehole E1-I

produced sign

and separate

when injectin

ates the seism

complementa

 
tance of event

anels: Injectio

he panel. The 

I created a ve

nificantly diff

d only about 

ng at the 164 f

mic activity at 

ary observatio

ts 

on 

total 

ery 

fering 

10 m 

ft and 

the 

ons. 



 412 
Figure 11: Seismic activity from stimulations between May and December, 2018. Events are colored 413 
based on the injection interval where injection occurred. Red is the 164 ft interval, yellow the 142 ft 414 
interval and blue the 128 ft interval. Thick blue segments of E1-I mark the extent of the three injection 415 
intervals. Black diamonds are locations of temperature anomalies detected by the DTS system during the 416 
flow tests as a result of fracturing and associated fluid flow. 417 

4.1. DTS and E1-P intercepts 418 
Multiple thermal anomalies were detected in the monitoring boreholes during fluid injection. All of them 419 
were positive anomalies in the 0.3 – 1.0 K range. Usually, the closest seismicity was found within 1 m, 420 
i.e. the determined range of location uncertainty. Additionally, downhole camera video obtained in E1-P 421 
identified fluid inflow at several locations at ~38 m depth in E1-P during injection at the 164 ft location 422 
and at ~31.0 m depth in E1-P during injection at the 142 ft location of E1-I. These observations 423 
independently confirm the location accuracy of the seismic monitoring system as discussed above and 424 
shown in Figure 3.  425 

It appears that for several of the recorded thermal anomalies, fracture propagation stopped at the 426 
boreholes indicating that they strongly influence the local hydraulic regime and inhibit further seismic 427 
activity. For example, during the Dec 20 & 21 injections, fractures hit the boreholes E1-OB at two 428 
locations, and E1-PSB at a single location but did not continue migrating past these intercept locations. 429 
These boreholes intersections are interpreted to have acted as ‘pressure relief’ points, in agreement with 430 
the observed thermal anomalies from the Joule-Thomson effect as pressure decreased; inhibiting further 431 
fracture growth (Figure 11). These observations are in agreement with pre-stimulation modeling results 432 
and based on lab-scale experiments (Frash et al., 2018, 2020), and suggest that production boreholes 433 
should not be drilled prior to stimulations unless a dual stimulation, where injection and production 434 
boreholes are pressurized simultaneously, is planned. Any borehole will act as pressure relief as soon as it 435 
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4.3. Fracture network 463 
The injection tests at the three locations in E1-I produced seismicity having a wide variety of fracture 464 
orientations highlighting the importance of the natural rock fabric (foliation, bedding planes, pre-existing 465 
fractures, and structural heterogeneity) for fracture propagation. To understand the reactivation 466 
mechanism of the identified fracture planes we compute the slip tendency in the unperturbed stress field 467 
(Morris et al., 1996). The slip tendency T is defined as the ratio of shear stress τ to normal stress σn acting 468 

on a potential slip surface, T = τ/σn. It is a relative measure of how likely a fault of a given orientation is 469 
to slip in a given stress field. The assumed stress magnitudes are 41.8 MPa for the vertical stress, a 470 
minimum horizontal stress of 21.7 MPa and a maximum horizontal stress of 34.0 MPa with an orientation 471 
of N92˚E (Singh et al., 2019; Dobson et al., 2020). The slip tendency is plotted along with the interpreted 472 
fractures in Figure 13. Of all the reactivated fracture planes, only F9 appears to be well oriented for shear 473 
slip. Fractures F1, F3, F4, and F10 are oriented consistently about 22˚ east of the assumed SHmax direction. 474 
This difference is at the upper range of expected variation of the stress orientation at SURF and other sites 475 
with crystalline rock (Schoenball & Davatzes, 2017). Thus, these fractures are compatible with the 476 
concept of hydraulic fractures. We do note the location of fractures F1, F3, and F4 detached from the 477 
other activated fractures which are clear indications of discontinuities during the fracture propagation 478 
(Figure 5). Particularly fractures F3 and F4 appear to be sub-parallel strands of hydraulic fractures about 479 
1 m apart. This suggests that hydraulic fractures grow until they hit a hydraulically active natural fracture 480 
where they may abut, with a step-over through the pre-existing fracture until a flow barrier is hit, which 481 
would then promote the creation of a new hydraulic fracture. This has been directly observed e.g. in mine-482 
back experiments described by Jeffrey et al. (2009). 483 

Although fracture F1 does fit the orientation of a hydraulic fracture, its detached location, 484 
vigorous seismic activity and in particular the persisting seismic activity after shut-in that occurred 485 
repeatedly draws some doubt to this interpretation. These types of seismogenic responses are usually 486 
associated with critically stressed faults (Schoenball, 2019). Hydraulic fractures on the other hand are 487 
expected to be purely driven by fluid injection and would cease to propagate once the fluid injection has 488 
stopped. Indeed, seismicity quickly ceased on all of the other activated fractures after shut-in. However, 489 
this type of behavior has been observed in a number of EGS field sites, such as Soultz-sous-Forêts, Basel, 490 
and the Cooper Basin, and has been interpreted to represent ongoing pressure diffusion following 491 
cessation of injection (e.g., Baisch et al., 2010; Baisch & Vörös, 2010). 492 

Fractures F2 and F6 form off-shoots from the main trend of activity of the 164 ft injection and are 493 
of similar orientation as fracture F7 activated during the 142 ft injection. They are oriented more 494 
favorably for shearing but are still far from optimally oriented for slip. These fractures would be well 495 
oriented for failure for lower magnitudes of SHmax and a stress regime approaching strike-slip. It is likely 496 
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The seismic activity of mesoscale hydraulic fracturing and shear activation in crystalline rock has now 546 
been studied at the Äspö, Grimsel, and Sanford underground laboratories (Gischig et al., 2018; Villiger et 547 
al., 2019; Zang et al., 2017; and this study). For all of these experiments, borehole sections of 0.5 to 2 m 548 
were isolated using straddle packers. One-sided fracture zones or hydraulic fractures, i.e. fractures 549 
growing unilaterally from the injection well, were activated in almost all fracture stages during these 550 
experiments. For our experiment thermal stress gradients could explain the preferential growth towards 551 
the mine drift that was observed for most structures (Fu et al., 2018). However, this phenomenon was also 552 
observed for reactivation of pre-existing fractures and with fracture propagation away from the drift, such 553 
as for fracture F9. At Äspö and Grimsel fracture growth does not seem to follow a systematic trend. There 554 
one-sided fractures were observed to grow towards or away from the closest galleries or drifts. Together 555 
these observations suggest that the local conditions at the borehole wall crucially determine the course of 556 
a stimulation treatment. The first nucleation point of substantial fracture growth appears to determine the 557 
trajectory a propagating fracture may take. This interpretation is in line with the concept of channelized 558 
fluid flow and heterogeneous pore fluid pressure fields in rough-walled fractures (Auradou et al., 2006; 559 
Marchand et al., 2019).  560 

Similar observations that the majority of seismicity does occur away from the injection borehole, 561 
rather than centered on the well, have been made similarly at full scale at Soultz-sous-Forêts (Dorbath et 562 
al., 2009). There, highest event rates occurred in a zone about 200 m away from the injection well. At 563 
Pohang, Korea earlier seismicity on the fault plane that produced the M5.4 event also occurred at a 564 
significant distance from the injection well (Ellsworth et al., 2019) and was not centered on the injection 565 
borehole.  566 

Another interesting observation was the presence of multi-strand hydraulic fractures that were 567 
produced from the same injection interval and run sub-parallel. As has been directly observed by Jeffrey 568 
et al., (2009) through a mine-back experiment it seems that hydraulic fractures may abut against natural 569 
fractures and initiate a new hydraulic fracture after making a step-over. This is again an observation that 570 
highlights the important role that pre-existing structures play. Numerical modelling schemes that strive to 571 
represent fracture stimulation in crystalline rock need to include such fracture interactions. 572 

Our injection experiments were designed to create hydraulic fractures rather than activate pre-573 
existing features through shear. Since the rock mass is ubiquitously fractured we were not able to find 574 
injection intervals that are free of weaknesses such as fractures, quartz inclusions, foliation and bedding 575 
planes in the metamorphic rock. As a consequence, the hydraulic stimulations produced significant levels 576 
of shear reactivation. Still, we were able to create hydraulic fractures as well. For injections at the 164 ft 577 
location hydraulic fractures appear to dominate the seismic response. The dominant source for shear 578 
reactivation was fracture F2, which was intersected by the hydraulic fracture about 3 m away from E1-I. 579 



At that point the hydraulic fracture was already well-developed and its propagation was not significantly 580 
disturbed by the adjacent shear activation. For the 142 ft injection the reactivated shear fracture originates 581 
at the injection interval. Hence, the seismic activity in this feature is vigorous and presumably also 582 
channeled most of the fluid flow away from the hydraulic fracture. As a result, only minor seismic 583 
activity was observed in F10. Subsequent flow testing at the 142 ft location did not reveal significant 584 
hydraulic connectivity between E1-I and E1-P. This suggests that the shear reactivation inhibited 585 
hydraulic fracture growth. 586 

During this stimulation period parts of the activated and newly created fractures intersected a total of 587 
five monitoring boreholes. The thermal anomalies detected in the monitoring boreholes indicate a 588 
pressure reduction as water flowed from the fractures into the (partially) grouted boreholes. In most 589 
instances fracture propagation stopped along the direction of the fracture intercept, presumably as a 590 
response to this pressure reduction. 591 
 592 

5. Conclusions 593 
We have measured the seismic activity associated with mesoscale hydraulic fracturing tests utilizing a 594 
novel 100 kHz, continuous seismic monitoring system deployed in six monitoring boreholes surrounding 595 
the experimental domain in 3-D. The multi-modal data that were recorded at several stages of the 596 
experiment provided extremely useful complementary constraints that helped to validate the image 597 
obtained from the passive seismic monitoring. 598 

Despite the high seismic Q properties of the rock the signal-to-noise ratio achieved by the 599 
accelerometers proved challenging to analyze. We were able to locate a total of 1933 seismic events 600 
during several injection periods at three locations of the injection borehole E1-I. Our seismicity locations 601 
were confirmed through locating known active sources as well as independently through 12 fracture 602 
intercepts in all monitoring boreholes recorded with the DTS system and observed fluid inflow in E1-P. 603 
When propagating fractures intersected boreholes, the boreholes (grouted or not) appeared to act as 604 
pressure relief points that arrested fracture growth. 605 

For two injection intervals we were able to create hydraulic fractures. In all intervals, however, 606 
we observed significant shear activation of pre-existing structures. Although the geometry of the 607 
hydraulic fractures may be complex, including branching into parallel strands and step-overs, the two 608 
main hydraulic fractures are remarkably parallel intersecting each of the boreholes E1-I, E1-OT and E1-P 609 
at locations 12 m apart. One-sided fractures and heterogeneity of stress dictate the outcome of hydraulic 610 
stimulations. This is still the case when stimulation attempts to rely on theoretically well-behaved 611 
hydraulic fractures that develop parallel to SHmax in an idealized system. 612 



Once fractures were intersected by boreholes, the boreholes acted as a pressure relief and fracture 613 
propagation ceased, consistent with pre-stimulation modelling. Further, when a fracture only grows to a 614 
production borehole and stops its propagation there, the aperture of this new hydraulic connection would 615 
not be very large. This would further limit the created hydraulic connectivity between injection and 616 
production boreholes. Likewise, because a fracture connection has already been made between the 617 
boreholes, it may be difficult to further create a good hydraulic fracture connection by reversing the flow 618 
direction (i.e., inject into the production well) after the fracture has been created. This suggests that in 619 
order to create a good hydraulic communication between injection and production boreholes, the latter 620 
should not be drilled before the end of a stimulation. 621 
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