Abstract

# Abstract

I work towards a formula to predict $$2^n$$ for any $$n$$. I don’t expect to complete it, but I have found the last four digits for any $$n \in \mathbb{N}$$.

Update: I have found a relationship between the sequences that in theory should allow the calculation of any digit of $$2^n$$ by storing only $$4$$ digits...

Update II: The sequence fails for some numbers as it cycles in a non prime manner, numbers would either need to be stored, or a prime cycling sequence discovered which seems unlikely.

# Statement of Problem

I would like to be able to predict any given digit of then number $$2^n$$ for any $$n$$. The sequence begins $2,4,8,16,32,64,128,256,512,...$

We can see the end digit here will always be predictable by a sequence of period $$4$$, which is $$2,4,8,6...$$. This is nice and simple.

Assuming, there exists such a sequence for any given digit, we may attempt to find them and thier relationships with each other and the original sequence, apart from the obvious $$2^n \; \mathrm{mod} \; 10^k$$, for the $$k^{th}$$ digit.

# Finding the Sequences

So categorising the sequences $$D_k$$ for the $$k^{th}$$-least significant digit, we have $D_0 = 2,4,8,6... \;\; p:4 \;\; OEIS:A000689 \\ \\ D_1 = 0|0,0,1,3,6,2,5,1,2,4,9,9,8,6,3,7,4,8,7,5...\;\; p:20 \;\; OEIS:A160590 \\ \\ D_2 = 0,0|0,0,0,0,1,2,5,0,0,0,1,3,7,5,0,1,2,5,1,3,6,2,4,8,7,4,9,8,6,2,5,1,3,7,\\ 4,9,8,7,5,1,2,4,8,6,3,6,3,6,2,4,9,9,9,9,8,7,4,9,9,9,8,6,2,4,9,8,7,4,8,6, \\ 3,7,5,1,2,5,0,1,3,7,4,8,6,2,5,0,1,2,4,8,7,5,1,3,6,3,6,3,7,5... \;\;p:100 \;\; OEIS:-- \\ \\ D_3 = 0,0,0|... \;\; p:500 \;\; OEIS:-- \\ \\$

Where the $$|$$ denotes the starting point of the recuring sequence. We can see that the sequence $$D_k$$ is prepended by $$k$$ zeroes before the sequence with periodicity $$4\cdot5^k$$ occurs.

We may describe the first sequence by: $P*v[*(((n+3) mod 4)+1)]=D_0 \\ \mathrm{where} \\ Pv=D_0=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}\begin{bmatrix} 2\\4\\6\\8 \end{bmatrix}=\begin{bmatrix} 2\\4\\8\\6 \end{bmatrix}$

Asessing the occurence of each number within $$D_1$$, apart from the prepended $$0$$, we have each digit $$d\in[0,9]$$ occurring exactly twice. Therefore we may express \[0,0,1,3,6,2,5,1,2,4,9,9,8,6,3,7,4,8,7,5... \\ Pv=D_1 \\ \begin{bmatrix} 1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0\\ 0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&1\\ 0&0&0&0&0&0&0&0&1&0&0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0&