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Key Points:

• Solar UV Radiation is found to be the most important factor driving
surface ozone.

• Ozone is produced well under both polluted and clean conditions, includ-
ing both high and low PM2.5 and CO conditions.

• Ozone is well produced temporally across nine very different urban areas
using the same big-data derived approach.

Abstract

This work constructs multiple regression equations of surface ozone concentra-
tion based on non-linear combinations of high temporal frequency and multi-
year measurements of air pollutant concentrations (PM2.5, CO, NO2, SO2) and
remotely sensed ultraviolet Index (UVI) in nine different urban regions in China.
These nine regions all have different emissions profiles, economic drivers, and
climatology, allowing a more rigorous investigation of the factors most respon-
sible to local surface ozone. The results show a good fit of ozone can be made
temporaly (including many peaks and troughs), under conditions ranging from
relatively clean through polluted, with minimum and maximum bounds on the
goodness of the fit usually in the range from 5 to 130 �g/m3. Overall, the re-
sults demonstrate significant differences in terms of the most important driving
factors in the different cities, with UV radiation being most important in all
cities, followed by CO, PM2.5, and NO2 or a combination, depending on each
individual city. The performance of the ozone prediction and real measurements
under both clean and polluted conditions of PM2.5 or CO mass concentrations
are further explored and found to match very well in Xi’an and Beijing. Discus-
sion is presented and supported to quantify insights into why solar ultraviolet
radiation coupled with easier to measure longer-lived air pollutants contribute
a significant amount to surface ozone is possible, all without needing to nec-
essarily at first order wade into the extremely complex chemistry and physics
involved with boundary layer meteorology and VOC chemistry.

Plain Language Summary

Since ozone is both an air pollutant and a greenhouse gas, understanding its
atmospheric concentration is very important. However, measurements of surface
ozone are highly difficult to obtain from remotely sensed platforms, requiring
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surface stations running at high frequency. Since ozone is not directly emitted,
any simple relationship between drivers and concentrations is complex. To this
end, many studies have worked to either address the complex chemistry in high
detail, or to make a simple set of linear approximations using big data. This
work aims to strike a balance between these two positions, using both large-data
sets and some form of non-linear chemistry, and fitted over nine very different
urban regions with vast ranges of emissions factors, economics, geography, and
meteorology. Overall, this work finds that solar UV radiation is the single most
important factor in terms of understanding and predicting surface ozone, which
while supported by theory, tends to be less considered in general. Overall, this
works finds that a good representation can be made under conditions ranging
from clean through polluted. The non-linear impacts of co-emissions of PM2.5
and CO are also explored, and open further discussions into applications of this
approach to possible future mitigation strategies.

1 Introduction

Tropospheric Ozone (O3) is a secondary gaseous species produced from photo-
chemical reactions including CO, VOCs, and NOx (Seinfeld and Pandis, 1998).
Due to its absorption in the infrared range, tropospheric ozone is a short-
lived greenhouse gas, with an estimated radiative forcing in the range of 0.32-
0.62W/m2 during the period from 1850 to 21st century (Brasseur et al., 1998;
Rap et al., 2015; Sitch et al., 2007; Skeie et al., 2020). Ozone has also been found
to be detrimental to human health and agriculture (Lu et al., 2020; Wang et
al., 2017). Over the period from 2013 to 2017, surface ozone measurements of
large amounts of cities in China are observed to be increasing. This time period
corresponds to the first year when China developed and implemented multiple
policies making efforts to find ways to reduce fine particle matter. In this pe-
riod a tremendous amount of progress has been made since this time to reduce
anthropogenic emissions of directly and indirectly emitted species, with a focus
on reducing the surface concentration of PM2.5 (Wang et al., 2019). It has been
demonstrated clearly that the PM2.5 concentration has decreased in many tier
1 and tier 2 cities in coastal and more developed regions of China, along with
certain precursors of PM2.5 including NO2 and SO2 (Cheng et al., 2019; Liu &
Wang, 2020).

However, even with all of this successes, tropospheric ozone has been observed
on average to not decrease. Furthermore, high ozone days have been found to
occur more frequently (K. Li et al., 2019; Ke Li et al., 2019; Lu, Hong, et al.,
2018; Y. Wang et al., 2020). This is a common phenomenon also found to be
the case in many urban areas of the developed world such as the Northeastern
USA, Western Europe, and Japan, where ozone levels have proven stubborn to
lower based solely on policies meant to reduce PM2.5 (Liao, 2008; Lu, Hong, et
al., 2018). There are many possible reasons for this, including: an increase of
solar radiation reaching at surface due to reductions in PM2.5 (Cohen & Prinn,
2011; Pan et al., 2019; Wu et al., 2020), non-linear chemistry of NOx (Wu et al.,
2009), biogenic VOCs (Li et al., 2013; Wang et al., 2008), and long term changes
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in OH (Prinn et al., 2005). It is believed that the increase of surface ozone is
due in part to the changes in ultraviolet radiation as a function of PM2.5.

To this end, there have been very few studies which have looked at the impact
of changes in solar radiation on ozone formation, especially so from an environ-
mental management perspective (Belan & Sklyadneva, 1999; Liu et al., 2019). A
small portion of incoming solar radiation, is at wavelengths smaller than 400nm,
called solar ultraviolet radiation (UVR). While small amounts of UVR are ben-
eficial for people, specifically with respect to Vitamin D production and aiding
in the treatment of certain diseases, in general long-term exposure to UVR may
cause damage to the human body (Cadet et al., 2020; WHO, 2020). Generally
UVR is divided into 3 bands according to different wavelengths and energy lev-
els: UVC(100-280nm), UVB(280-315nm), and UVA(315-400nm), with all UVC
and a large portion of UVB being absorbed or scattered by atmospheric ozone,
water vapor, oxygen, nitrogen, black carbon aerosol, and clouds, among others,
leaving a small part of UVB and a moderate part of UVA emitted from the
sun that actually can reach the Earth’s surface (Engelsen et al., 2005; Wang,
Wang, et al., 2021; WHO, 2020). It is these energetic wavelengths which are
the key driver of the photochemistry impacting ozone, as well as also being a
major driver behind photochemical reactions of many various relatively stable
molecules into more reactive fragments in the troposphere (Tang et al., 2011).

Long term average concentrations of PM2.5 (atmospheric fine particulate matter
with aerodynamic diameter less than or equal to 2.5�m) in China has been
observed at extremely high levels over a considerable amount of time over the
last two decades, attracting widespread attention due to its harmful impacts on
visibility, human health (mental and physical health), traffic safety, construction,
economy , nature, and its interaction with climate (Liang et al., 2016). Previous
studies have pointed out that coal combustion, motor vehicle emissions and
industrial sources are major PM2.5 sources in China, while domestic fuel burning,
biomass burning, other anthropogenic emissions sources, as well as dust also
contribute to PM2.5 concentration in China as well (Cohen & Wang, 2014; Huo
et al., 2011; Karagulian et al., 2015; Wang, Cohen, et al., 2021; Zhang et al.,
2007). PM2.5 comprises of inorganic sources such as sulfate, nitrate, and mineral
dust, and organic sources such as organic carbon and black carbon (BC), with
the portion of these components varying in degree based on the day of the
year, source time, geographic region, and local meteorology, among other factors
(Deng et al., 2021; Ding et al., 2016; Wang, Wang, et al., 2021).

PM2.5 can lead to a decrease in solar radiation reaching at surface through a
combination of scattering and absorption, which are in determined by the PM2.5
concentrations in the air, its chemical composition, its size distribution, its hy-
groscopic potential and water vapor, its vertical distribution, the land surface
properties, meteorology, and more (Guo et al., 2019; Holben et al., 1998; Hu
et al., 2017; Huang et al., 2014; Tao et al., 2017; Wang et al., 2015; Xu et
al., 2020; Zhang et al., 2015). Scattering of solar radiation decreases the direct
visible light intensity at the surface, thereby leading to issues with visibility and
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surface temperature change, while the absorption may increase the temperature
at the height of the aerosol layer and thus generate effects on meteorology and
precipitation among other issues (Hill & Ming, 2012; Ramanathan et al., 2001).
It is also noted that scatter/absorption of PM2.5 may inhibit/favor photochem-
ical and temperature sensitive reactions respectively in the lower troposphere
through decreasing the radiation intensity or increasing the temperature in the
aerosol layer.

Satellite-based remote sensing can be used to measure atmospheric ozone based
on absorption in both UV and infrared bands. Some instruments, such as the
Nimbus Total Ozone Mapping Spectrometer (TOMS), the Aura Ozone Mon-
itoring Instrument (Huang et al.), and Global Ozone Monitoring Experiment
(GOME), etc., can derive ozone amounts and its vertical profiles in the strato-
sphere, while in general tropospheric ozone detection is less sensitive (Bak et al.,
2012; Liu et al., 2004; Martin, 2008; Miyazaki et al., 2019), due to the fact that
the majority of the vertically integrated O3 column is found in the stratosphere.
At the present time, the best remote sensing can generally do for tropospheric
ozone is to make observations of the lower troposphere (not only confined to the
surface or the boundary layer) over highly polluted regions, in which case there
still remains a large bias (of or greater than 10%) with respect to measurements
(Liu et al., 2005; Kajino et al., 2019). There are also point-measurements made
by upward looking O3 LIDAR, but these results are highly limited in space and
also tend to also be error prone (Steinbrecht et al., 2009; H. Wang et al., 2020).

The concentration of ozone in the troposphere is controlled by a complex balance
between different forms of organics, nitrogen, hydrogen, oxygen, UV radiation,
and thermodynamics, as compared to being directly emitted. In specific, the
concentration of ozone is related to the atmospheric concentrations of CO, NO2,
and SO2 (all of which have high frequency surface measurements readily avail-
able) specifically via the HOx and NOx cycles. Furthermore, it is known that
the second-to-last step in the chain is directly related to UV radiation cleaving
the O radical from the NO2 to finally form Ozone, and therefore is also directly
related to measurements of UV radiation (such as UVI). Due to the interactions
between aerosols and UV radiation, and the high amount of availability of mea-
surements, PM2.5 is also used in this study. In specific, this work constructs
a surface O3 prediction based directly upon measured concentrations of PM2.5,
CO, NO2, SO2, UVR, and a subset of their non-linear terms in terms of UVR.

This paper takes a similar approach of using simple models grounded in physical
and chemical understanding, and then applying these large datasets of measure-
ments to construct a response and analyze its impacts, as demonstrated in other
recent papers relating to fire plume height (S. Wang et al., 2020), biomass burn-
ing geospatial sources (Cohen, 2014), and the 3-D emissions profile of CO (Lin
et al., 2020). The idea is to reach a deeper understanding that can be further
integrated into intense and detailed models, or used for policy and other down-
stream analysis, with a modeling system which is more physically and chemically
realistic as compared with a pure big-data approach (Wei et al., 2021), yet still
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is fully grounded in approximately 4 million individual measurements of O3
and another similar number of individual measurements of each of its precursor
species. Additionally, each precursor’s contribution to local ozone is explored as
a function of geography, UVR intensity, and PM2.5 levels, including quantifica-
tion of uncertainty. Finally, possible reasons for the results have been discussed
in the following sections.

2 Methodology and Data

The goal is to use high frequency measurements to allow for the reproduction of
both daily-to-weekly frequency events that are relatively polluted and relatively
clean. The non-linear terms aim to analyze the effects of each pollutant gas and
particle measured on how its concentration may interfere with or change the
UVR, as supported by the theory and modelling papers previously introduced.
Therefore, from a measurement perspective, we aim to find a way to analyze the
effects in the real world on the real-world measurements of O3 at the ground
level, based on both analytics of large data sets as well as on physical underlying
models.

2.1 Approximating Ozone Formation

The concentration of ozone in the atmosphere is effectively and fundamentally
the chemical balance between UV moderated photolysis, the HOx cycle, the
NOx cycle, and carbon in the atmosphere. The photochemistry of Ozone is
well established by (Seinfeld & Pandis, 1998; Tang et al., 2011), with its main
reactions shown in Equations 1a-1i. With the key initiating reaction of ozone
photolysis with UVR (shown as h� in Equations 1a and 1h), one of the prod-
ucts, electronically excited oxygen atoms, O(1D), react with H2O to further
produce hydroxyl radicals (·OH). This product, which is an essential cleaning
agent of the atmosphere for gasses such as NO2, SO2, VOCs and CO, Equa-
tions 1c~1f (Wang & Prinn, 2000), produces HO2 through series of cleaning
reactions. HO2 further oxidizes NO into NO2, which further photolyzes under
the radiation of wavelengths less than 420nm to produce odd oxygen atoms
(·O), and further produces Ozone in the troposphere.

𝑂3 + h� (𝜆 < 320nm) → 𝑂(1𝐷) + 𝑂2 (1a)

𝑂(1𝐷) + 𝐻2𝑂 → •OH + •OH (1b)

•OH + NO2 → HNO3 (1c)

•OH + SO2 → … → HO2 + 𝐻2SO4 (1d)

•OH + hydrocarbons → HO2 + partly oxidated organics (1e)

•OH + CO
𝑂2→ HO2 + CO2 (1f)

HO2 + NO → •OH + NO2 (1g)

NO2 + h� (𝜆 < 420nm) → NO + •𝑂 (1h)
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•𝑂 + 𝑂2 → 𝑂3 (1i)

Generally, the concentration of O3 in the troposphere is affected by meteoro-
logical conditions like temperature, humidity, wind, UVR, and concentrations
of various chemicals including PM2.5, NOx, SO2, CO and VOCs, as demon-
strated in Chinese urban and downwind areas by (Cohen et al., 2011; Li et
al., 2021; Wang et al., 2017). The fundamental measurements, techniques, and
approaches used to approximate surface ozone concentration in this work are
described below.

2.2 Chemical Concentration Measurements

Atmospheric concentrations of PM2.5, CO, NO2, O3, and SO2, with unit of
�g/m3 are measured and recorded hourly by the China National Environmental
Monitoring Center at 1718 Distinct stations. This work specifically uses all
of the available data from the 92 stations found within the urban, suburban,
and rural parts of the following 9 cities: Beijing, Shanghai, Wuxi, Chengdu,
Chongqing, Guangzhou, Xi’an, Taiyuan, and Jiaozuo. All observations are used
which are available starting from 1 January 2014 through 31 December 2018.
In this work, daily average values are computed and subsequently used, with
statistics of the daily average climatological mean and standard deviation across
the various stations given in Supplemental Tables A1 and A2.

2.3 OMI Ultraviolet Measurements

Ultraviolet Index (UVI) was adopted as a standard indicator of solar ultraviolet
(UV) levels by the World Meteorological Organization and World Health Or-
ganization in 1994. UVI quantitively describes the amount of integrated total
solar ultraviolet radiation at the Earth’s surface (World Health Organization,
2002), which is a unitless quantity starting from 0 when there is no UV radiation
present, and increasing with UV intensity.

In this study, the daily UV Index was obtained from the daily OMI satellite
product OMUVBG, at a spatial resolution of 0.25 degree x 0.25 degree, over the
time from 1 January 2014 through 31 December 2018. Previous studies have
shown that UVI decreases with increasing latitude, consistent with the theory of
the atmospheric pathlength extinction of UV radiation. For this reason, coupled
with the fact that higher elevations have a thinner atmospheric pressure, the
highest UVI value occurs at high altitude sites in the tropics (e.g., at Reunion
Island (21°S, 55°E) and at Hawaii UVI has been observed of about 20 while
Satellite-based estimates of UVI value are more than 25) (Cadet et al., 2020).
Using these results to ensure that the results are valid (quality controlled), in this
work all values of UVI greater than 20 are regarded as missing values, consistent
with the maximum values in Hawaii and the most equatorial region of this study
being located at about 23∘N. A statistical summary of the UVI data in terms
of daily average mean and standard deviation are given in Supplemental Table
A3.

2.4 Geography
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Given that urban areas tend to have a much larger range of values of ozone,
encompassing both background and active chemical production conditions, as
well as larger populations to be impacted by ozone, an ideal model of surface
ozone should be able to reproduce values in urban regions at reasonably high
frequency and over the range of conditions present. Furthermore, due to the
impacts of cloud-cover, the atmospheric water cycle, AOD, and temperature on
UV radiation and ozone reaction rates, it is essential for vastly different geo-
graphic regions to also be considered if a successful model is to be constructed.
On top of this, it is hoped that by considering a wide-enough range of condi-
tions that the model may potentially be generalizable in the future. For these
reasons, we choose 9 large urban sites in China with varying degrees of economic
development and emissions, high population density, and various climatological
chemical and meteorological forcings. In specific the areas selected include: Bei-
jing, Shanghai, Wuxi, Chengdu, Chongqing, Guangzhou, Xi’an, Taiyuan and
Jiaozuo as displayed in Figure 1. To address the heterogeneous nature of these
urban areas, data have been selected from both central city measurement sites,
as well as from those in outer regions which have lower ozone loadings and dif-
ferent emissions profiles, but are still quite chemically active due to local and
long-range transport of the subset of moderate to longer-lived ozone precursors.
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Figure 1. Locations investigated in this study.

2.5 Statistics and Analytics

Multiple statistical methods were used in this study to connect the concentra-
tion measurements of those species factors which drive ozone formation and
transport, with the measured concentrations of surface ozone. Multiple linear
equations are used to approximate ozone compiled on the basis of measured
values of PM2.5, CO, NO2, SO2 and UVI were built and tested following the
approach in (S. Wang et al., 2020). To accommodate both simple linear reac-
tions, as well as the fact that multiple reactions involve concentrations of both
chemical species as well as the UV available flux, additional non-linear terms
have also been added. In specific, these linear and a first order non-linear terms
are used in a manner so as to include all possible logical combinations from the
basic chemical theory, particularly those between UV radiation and chemicals
which are UV sensitive. For this reason, the sets of equations employed in this
work are shown based on Equations 2a (linear) and 2b (linear plus non-linear)
below,

𝑂3 = 𝑏1 × PM2.5 + 𝑏2 × 𝐶𝑂 + 𝑏3 × NO2 + 𝑏4 × SO2 + 𝑏5 × 𝑈𝑉 𝐼 (2a)

𝑂3 = 𝑏11 × PM2.5 + 𝑏21 × 𝐶𝑂 + 𝑏31 × NO2 + 𝑏41 × SO2 + 𝑏51 × 𝑈𝑉 𝐼 + 𝑏12 ×
PM2.5 × 𝑈𝑉 𝐼 + 𝑏22 × 𝐶𝑂 × 𝑈𝑉 𝐼 + 𝑏32 × NO2 × 𝑈𝑉 𝐼 + 𝑏42 × SO2 × 𝑈𝑉 𝐼 (2b)

where the terms bi, bij, (etc.) are the values which are meant to be fit based on
the measurements and which depict the magnitudes of the various different driv-
ing forces underlying the contributions of those processes to the total measured
surface O3 concentrations.

To determine which least squares fits are most ideas, a set of specific quanti-
tative statistics are generated, including the coefficient of determination (R2),
the Root Mean Squared Error (RMSE), and the correlation between the de-
rived equations and original surface ozone measurements. These equations were
analyzed assuming a value of p<0.05.

Analytical techniques employed when comparing the results from the simple
model to those across different measurements include simple statistics as well as
Probability Distribution Functions (PDFs). In specific, the range of the modeled
outputs is considered important as a means of evaluating the region over which
the fit can be trusted. In general, knowledge of any upper or lower cutoff bounds
provide guidance as to whether or not the approach may have practical use in
the real world. Furthermore, specific levels of bias are also determined, so that
a deeper understanding of what steps may be taken to improve upon this work
can be subsequently investigated.

3 Results

3.1 Multiple Regression Equations of Ozone Using Linear and Non-linear Terms

One of the simplest chemical systems capable of representing the ozone con-
centration is given by Equations 1a~1i. As expected from the complexity
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of Equations 1a~1h, forming a specific relationship between non-linear terms
and ozone is not likely to be sufficient to be fully predicted across a broad range
of concentrations, even though most previous attempts at using big-data have
done exactly this (Tie et al., 2009; von Kuhlmann et al., 2003). Therefore, this
work builds a relationship between the forcing terms PM2.5, CO, NO2, SO2, UVI
and the selected first order non-linear terms PM2.5*UVI, CO*UVI, NO2*UVI
and SO2*UVI, as given by Equations 2a,2b. The reason for choosing these
non-linear terms with respect to UVI and a chemical concentration is that the
PSSA (photochemical steady state assumption) only holds true when both the
chemical concentration and the actinic flux of active radiation are both well
constrained (Seinfeld et al., 2003).

The coefficients of these terms, including both first order linear and non-linear
contributions were fitted using a least squares optimization, with the statistics
of the best fitting cases listed for each site in (Table 1). These results are the
ones subsequently used to build the model results herein. However, to determine
which the goodness of the modeled solutions, a combination of computed R2

(temporal goodness of fit) and RMSE (magnitude goodness of fit) are both
applied. The resulting fits are demonstrated to be especially good in Xi’an,
Chongqing, and Chengdu, which consistently have R2 values larger than 0.489
and RMSE values smaller than 19.8 �g/m3, which are considered very good
based on the measurement errors associated with the data from this network
as given in Guo et al. (2019) and Liang et al. (2021). Those stations located
in extremely urban and spread-out areas tend to have R2 values which are less
good, with the values in Shanghai and Wuxi, all having an R2 less than 0.36, and
the RMSE at these stations is worse than that of other sites, ranging from 25.0
to 25.8 �g/m3. This is consistent with the complex chemical environments from
multiple anthropogenic sources and even many of the best transport models also
showing disparities in the timing and location of peak ozone concentrations in
highly urban areas, while in generally still matching the magnitudes reasonably
well (Abdi‐Oskouei et al., 2020; Visser et al., 2019).

Table 1

Coefficients and Statistical Data of the Regression Equations (Units: bij and R2:
unitless (i=1,2,3,4, j=1,2); b51 and RMSE: �g/m3).

b11 b21 b31 b41 b51 b12 b22 b32 b42 R2 RMSE
Beijing 0.0440 -0.0168 0.929 -0.854 18.5 0.0402 1.66E-3 -0.392 0.346 0.442 28.5
Shanghai -0.950 0.130 -0.332 -0.300 16.1 0.263 -0.0275 -0.0303 -1.78E-3 0.231 25.8
Wuxi -0.722 0.0520 -0.0111 0.454 11.8 0.189 -8.89E-3 -0.0684 -0.147 0.357 25.0
Chengdu -0.308 0.0200 0.463 -0.292 12.9 0.0806 -9.28E-3 -0.0897 0.147 0.489 19.8
Chongqing -0.143 5.11E-3 0.283 -0.0702 9.27 0.0210 -4.84E-3 -0.0140 0.0445 0.557 17.7
Guangzhou -0.332 6.39E-3 0.289 1.48 9.74 0.178 -7.93E-3 -0.0968 -0.150 0.426 19.5
Xi’an -0.124 0.0141 0.0834 -0.141 14.3 0.0483 -6.22E-3 -0.0425 -9.01E-3 0.595 18.7
Taiyuan -0.154 0.0183 0.315 -0.171 12.5 0.0816 -5.68E-3 -0.0795 -0.0169 0.459 23.5
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b11 b21 b31 b41 b51 b12 b22 b32 b42 R2 RMSE
Jiaozuo -0.0675 8.27E-4 0.567 0.0265 18.2 0.0342 -2.36E-3 -0.229 0.0159 0.386 29.9

The distribution of the best fitting coefficients constrains the weight of each term
with respect to its impact on the predicted ozone concentration. However, to
make comparisons between the different contributing factors, weighted overall
rather than on their magnitude, a weighted fitting is required. First, a universal
mean value species-by-species is computed over all of the sites analyzed in this
work. Second, this is used to weight each respective species, leading to a mean
of 1.0 overall, but a possibility of more/less polluted individual cities having
higher/lower mean values. This also accounts for the non-linear terms having
multiple magnitudes associated with them across different sites. These weighted
coefficients are then used to form a new best fit set of results (Table 2), which
are solely used to analyze the respective importance of each contributing term
and at each urban area, to the overall ability of the model to reproduce the
ozone concentration.

Table 2

Weighted Coefficients of Each Term.

b11g b21g b31g b41g b51g b12g b22g b32g b42g

Beijing 0.0465 -0.351 0.756 -0.347 1.78 0.225 0.183 -1.69 0.747
Shanghai -1.00 2.71 -0.271 -0.122 1.55 1.47 -3.04 -0.131 -3.83E-3
Wuxi -0.762 1.08 -9.02E-3 0.184 1.13 1.06 -0.982 -0.295 -0.317
Chengdu -0.325 0.416 0.377 -0.119 1.24 0.451 -1.03 -0.388 0.317
Chongqing -0.151 0.106 0.230 -0.0286 0.891 0.118 -0.534 -0.0605 0.0961
Guangzhou -0.351 0.133 0.235 0.601 0.936 1.00 -0.876 -0.419 -0.323
Xi’an -0.131 0.293 0.0679 -0.0574 1.37 0.270 -0.687 -0.184 -0.0195
Taiyuan -0.162 0.381 0.257 -0.0696 1.20 0.457 -0.627 -0.344 -0.0366
Jiaozuo -0.0712 0.0172 0.462 0.0108 1.75 0.192 -0.260 -0.992 0.0343

First, it is observed that the linear UVI term is consistently positive and has
a significant magnitude across all cities in the study. This is consistent with
the fact that the UV drives the photochemical production via equations 1a,
1h. The remaining species are all important under a specific subset of urban
areas, but not consistently across the entire domain. In general, the magnitudes
of the non-linear terms are larger than of the linear terms. Furthermore, the
non-linear terms involving CO and NO2 are relevant in most regions, while the
terms involving PM2.5 and SO2, both linear and non-linear terms to be relevant
in fewer locations, although with a few important exceptions.

The species most connected with ground level ozone concentrations in the liter-
ature have historically been NO2 and VOCs, and herein are reflected by mea-
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surements of NO2 and CO. Although the lifetime of CO is far longer than most
other VOCs, it is directly connected with background ozone, as well as being a
byproduct of more active VOC chemistry in urban areas, while still being mea-
sured at high temporal frequency over long periods of time. It is observed that
the linear NO2 terms only has a significant influence on surface ozone in Beijing
and Jiaozuo and a moderate effect in Chengdu, in all cases being positive in
nature. The non-linear NO2 terms are more significant than the linear NO2
terms respectively in Beijing, Jiaozuo, and to a lesser extent in Chengdu, while
the non-linear term is also somewhat important in Guangzhou. In all cases, the
non-linear NO2 terms apply a negative forcing on surface ozone. The positive
contributions are consistent with previous studies which reflect the importance
of both NO2 concentrations and UV actinic flux on Ozone levels (Ke Li et al.,
2019; W. Wang et al., 2020), while the negative contributions are consistent
with the non-linear effects at high actinic fluxes on the titration effects of con-
ditions in which the concentration of NOx is already very high (Keller et al.,
2021).

It is found that the linear CO term plays a rather significant role on the surface
ozone in Shanghai and Wuxi, while it also plays a moderate role in Chengdu
and Taiyuan. In all of these cases this linear term is also positive, which is
consistent with the impacts of CO on consuming OH, leading towards shifts in
the HOx cycle and hence ozone production. This is found to be relevant in those
sub-set of areas studied which have a larger number of stations in background
environments where stations in Wuxi are located in or close to Taihu Lake, and
Shanghai where stations are located in residential blocks, and which otherwise
have a generally higher OH level coupled with a high level of CO from large-
scale industry and upwind transport. The other subset of places such as in
Chengdu and Taiyuan tend to have fewer VOC sources and basin-types of effects
allowing for a build-up of OH. This is clearly evidenced by the non-linear CO
terms, which are similarly important in the four stations above, although they
all tend to be negative. In addition, there is an important non-linear CO term
found in Guangzhou, Chongqing, and in Xi’an. These additional urban areas
tend to have more complex sources than the other locations, with Guangzhou
having intense biomass burning and VOC sources depending on the time of the
year, Chongqing having both a rapidly evolving economy plus being an upwind
basin receptor from Chengdu, and Xi’an having a considerably growth in both
local emissions as well as being upwind of major energy production sources
further to its North and West, unique among all of the other locations here. In
each of these cases, the secondary production of CO, as well as the effect of
CO’s reduction of OH in terms of changing the lifetime of HCHO and other
smaller VOCs all play important roles. These results are consistent with the
fact that Wuxi and Shanghai are the furthest downwind sites in China with a
large-scale continuous upwind CO concentration and higher local OH levels, and
possibly therefore have the largest possible influence on CO chemistry related
to ozone formation, as it has both high OH levels and high CO levels. This is
also found to be consistent with the unique status of CO observed in coastal
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Jiangsu, Shanghai, and coastal Zhejiang as reported based on the rapid vertical
distribution change over this region by Lin et al. (2020), consistent with a
possible rapid concentration change associated with surface ozone, due to a
measured vertical change in the CO over this region. In Guangzhou the non-
linear formation of CO from biogenic VOC oxidation is also important, which
may lead to a spike in local CO production which is less smooth and which has
had less time to react fully within the urban area.

Although a lot of work has been discussed to look at the issues of aerosols on
ozone, analyzing merely the linear term produces a skewed interpretation. It is
true that Shanghai and Wuxi have a significant reduction in surface ozone while
Guangzhou and Chengdu have a smaller reduction in surface ozone associated
with high PM2.5, which as explained by Hu et al. (2021) and Wang et al.
(2019) would be due to the reduction in surface actinic flux. However, in every
one of these cases, the non-linear term shows a positive coefficient which is
even larger than the negative coefficient, with the cases of Wuxi, Shanghai
and Chengdu being roughly 50% larger and in Guangzhou being nearly 300%
larger. In these cases, it is clear that there is a far more complex issue going
on involving PM2.5 and the reactivity of surface ozone. There are hypotheses
which have been explained demonstrating that changes in absorbing aerosols (a
sub-component of total PM2.5) in turn heats the atmosphere where the aerosol
layer is present, stabilizing it, and hence accelerating the formation of ozone
through both dynamical and thermodynamic effects (Li et al., 2017; Qu et
al., 2021). There are other hypotheses that demonstrate that there could be
a significant amount of change in localized deep convection, leading to more
intense downwelling of UV during the middle of the day when it is maximized,
as compared to more cloud in the morning and evening when the UV flux is
otherwise low to begin with, imposing yet another form of non-linearity (Li et
al., 2016; Lu, Zhang, et al., 2018; Wang & Prinn, 2000).

Furthermore, SO2 seems to have a small bit significant negative direct influence
in Beijing, while the non-linear term has a larger but positive effect in Beijing.
In this case, the behavior of the linear SO2 is found to generally be similar
to the effects of PM2.5, and likely are connected with the fact that oxidation
and condensation of SO2 leads to a significant change in the sulfate loading, at
which point it would then have a negative impact on ozone formation. There is
also a non-linear positive feedback, in which oxidation of SO2 behaves like CO
by reducing OH and therefore accelerating the HOx cycle (Equation 1d), and
promoting ozone formation. In Guangzhou the effects of SO2 are also found
to be important, but are completely reversed in magnitude. Here, the rapid
formation of sulfate will lead to condensation and layering on top of already
sulfur-starved organic particles and thereby tend to increase their absorption
(as demonstrated in Wang (2021)). This would lead to the behavior of SO2 to
be more similar to the non-linear impacts of PM2.5, while the non-linear effects
do not consume as much OH, since the OH tends to be more controlled by
the intense amount of biogenic VOC which is in part responsible for the high
loadings of organic particles to begin with.
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Overall, this may explain that air pollutants and UVR do not influence surface
ozone independently, which in turn promotes the idea that interactions between
air pollutants and UVR should be taken into account for better quantifying
ozone concentration. This is clearly known by the chemical modeling community,
which has developed highly complex models to address these phenomena, but
which are far too-costly to run at the temporal and spatial frequencies being
addressed in this work.

Another critical factor in determining the significance of the fitting is quan-
tifying the ability of the model to match the measurements temporally. As
demonstrated in Figure 2, ozone simulated by the method employed here is
reproduced well in most sites, including Beijing, Chengdu, Chongqing, Xi’an,
Taiyuan, and Jiaozuo, with the method capable of capturing both localized
temporal trends and well as many of the peaks and troughs. There are some
exceptions for extreme events when the measurements are either very high or
very low (this will be explained in detail in the next section). Furthermore,
there are a few cases in which the results are negative (an example is one daily
measurement in Beijing where the model computes a negative value, while the
measurement is at about 50 �g/m3). This total number is incredibly small and
may be due to errors in the measurements or some other special case in which
the ozone concentration is controlled due to an extreme change in a variable not
considered in this work.

While the fit is less good in terms of the total match against ozone in Shanghai
and Wuxi, the temporal variation is reproduced very well when the ozone concen-
tration is neither extremely high or low. However, the general season-to-season
variations tends to be matched well at each site. This is even in Guangzhou,
where there is no evident typical seasonal feature according to the available data,
which instead is found to match better with some combination of the changes
in the Monsoon and local cloudiness, the fit still behaves well under moderate
levels of Ozone.
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Figure 2. Time series of measured surface ozone (black) and simulated
surface ozone (red) at each respective site: a. Beijing; b. Shanghai;
c. Wuxi; d. Chengdu; e. Chongqing; f. Guangzhou; g. Xi’an; h.
Taiyuan; i. Jiaozuo.

3.2 The Best Fit of Range of Ozone and Its Accuracy

In addition to the model’s ability to reproduce the temporal nature of peaks
and troughs of ozone, it is essential to capture the magnitude clearly. This is of
particular importance under both background and relatively polluted conditions,
where linear models tend to do less well. PDFs have been computed from both
the measured ozone as well as the modeled ozone, as demonstrated in Figure
3. This analysis shows that there is an especially good representation of the
magnitude in general in all of the cities above a lower cutoff and below an
upper cutoff in ozone concentration. In Guangzhou, the respective lower and
upper cutoff are 25 �g/m3 and 90 �g/m3, in Xi’an and Taiyuan the respective
lower and upper cutoffs are 10 �g/m3 and 70 �g/m3, and in general elsewhere the
respective lower and upper cutoffs are about 10 �g/m3 and 100 �g/m3. In general,
the observed goodness of fit range is found to be better in regions which have
a drier climatology, with in general the ranges being broader by 25 �g/m3 to 30
�g/m3 or so. This is consistent with the fact that drier regions have fewer issues
with clouds and impacts on actinic flux, as well as less non-linear chemistry
involving HOx and water vapor.

A comparison between the ranges of decent fit when using the total linear and
non-linear model is generally wider than when using a purely linear model, as
demonstrated in the PDFs in Supplemental Figure A1. In specific, the range
is found to be more accurate in the upper bounds from about 60 to 100 �g/m3.
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Furthermore, the non-linear fits are far more smooth, better reproducing the
central peak and range far better than the linear fit, with the area between
the PDFs over the respective ranges of probability for the non-linear fits being
about 0.01 smaller than the respective area between the PDFs for the respective
ranges of the linear fits.

Figure 3. Probability Distribution Functions (PDFs) of measured sur-
face ozone concentrations (black) and simulated surface ozone (red)
at the respective sites: a. Beijing; b. Shanghai; c. Wuxi; d. Chengdu;
e. Chongqing; f. Guangzhou; g. Xi’an; h. Taiyuan; i. Jiaozuo.

There are sources of error which are observed in the fits at this point are due to a
combination of measurement errors (for the inputs used in developing the mod-
els as well as the ozone measurements itself) and missing mechanisms (which
tend to be more non-linear than represented in this work). There are uncer-
tainties in the surface measurements underlying this work (Hong et al., 2021;
Huang et al., 2016), and even larger uncertainties in the remotely sensed mea-
surements (Rodgers, 1990). In addition, such forcings not included in this work
but which may also affect the concentration of ozone are non-linear meteorol-
ogy (i.e. fronts), rapid temperature changes (especially those crossing the 0o
threshold), extremely high levels of humidity (RH over 90%), mixing of long-
range and local atmospheric air masses, changes in the vertical mixing profile
and boundary layer, and strong aerosol layers aloft (An et al., 2007; Chen et
al., 2019; Tang et al., 2021). Therefore, it is essential to find a way to choose
a range of conditions under which the fitted model is expected to yield a more
realistic result. The approach adapted here computes the RMSE of measured
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ozone and the bias between the daily model and the measured ozone at each
site. The days in which the computed bias is smaller than the measured RMSE
are considered to be when the model works well. Additionally, any modeled
results which are computed to be smaller than zero also lead to that day’s data
being not considered.

After these constrains are taken into consideration, the remaining data repre-
sents from a minimum of 71% of the total data in Shanghai to a maximum of
78% of the total data in Jiaozuo. Under these new constraints, new PDFs of the
remaining measurements of ozone and model fits are given in Figure 4. In this
case the range of ozone that is capable of being simulated by the model is found
to be from 5 to 130 �g/m3 in most of sites, and from 5 to 110 �g/m3 in Chengdu
and Chongqing. The statistics of goodness of fit in terms of R2 and RMSE as
done in Section 3.1 are re-applied and show a considerable improvement, with
the average value of R2 increasing from 0.43 to 0.75 and the mean value of
RMSE decreasing from 23.1 �g/m3 to 12.1 �g/m3, as displayed in Table 3.

Figure 4. PDFs of all measured surface ozone concentrations (black),
well-matched measured surface ozone concentrations (red), and well-
matched simulated ozone concentrations (green) at: a. Beijing; b.
Shanghai; c. Wuxi; d. Chengdu; e. Chongqing; f. Guangzhou; g.
Xi’an; h. Taiyuan; i. Jiaozuo.

Table 3

R2 and RMSE of the whole fit and the well-matched fit.

The whole fit The well-matched fit
Sites R2 RMSE(µg/m3) R2 RMSE(µg/m3)
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The whole fit The well-matched fit
Beijing 0.442 28.5 0.739 14.6
Shanghai 0.231 25.8 0.635 13.8
Wuxi 0.357 25.0 0.670 13.3
Chengdu 0.489 19.8 0.815 9.95
Chongqing 0.557 17.7 0.823 8.80
Guangzhou 0.426 19.4 0.713 10.8
Xi’an 0.595 18.7 0.838 9.77
Taiyuan 0.459 23.5 0.752 11.6
Jiaozuo 0.386 29.9 0.727 16.2

3.3 Ozone Concentrations under Different PM2.5 or CO Levels

Due to the fact that aerosols have an impact ozone through changes in the ac-
tinic flux as well as the surface temperature due to scattering and absorption,
there are expected to be considerable impacts on the ozone levels under both
high and low particulate concentration conditions. In this work a classification
scheme based on the concentration of PM2.5 was used to sort the ozone, with
concentrations under 30 �g/m3 considered to be “clean” and concentrations over
120 �g/m3 considered as “highly polluted”. PDFs of the UVR and surface ozone
under these “clean” and “highly polluted” conditions of PM2.5 are presented in
Figure 5 for Xi’an and in Figure 6 for Beijing. These two urban areas were
considered for careful analysis in this section due to the fact that they both ex-
hibit a drier climatology and are therefore expected to have a closer relationship
between the PM2.5 concentrations, actinic flux, and ozone concentrations.

It is clearly observed that under clean PM2.5 conditions there is a very good
representation between the total UVI overall distribution and the clean UVI
distribution, all the way from 0 to 9 in Xi’an and from 0 to 8 in Beijing. Fur-
thermore, it is evident that there is a very good representation between the
total surface ozone distribution and the clean surface ozone distribution, all the
way from 0 �g/m3 to about 110 �g/m3 in both Xi’an and Beijing. However,
the relationship between total UVI distribution and polluted PM2.5 UVI distri-
bution are found to not match as well in both locations, with the values only
matching well in Xi’an from 0 to 4, and in Beijing from 0 to 3. Similarly, the
relationship between total surface ozone distribution and polluted PM2.5 ozone
concentrations also are not found to match very well, with the values of overlap
only being reasonable from 0 �g/m3 up to 40 �g/m3 in both cities.
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Figure 5. PDFs of all measured UV Index and Ozone values (black),
polluted UV Index and Ozone values (red), clean UV Index and
Ozone values (blue), and simulated ozone values (green) in Xi’an:
a. UV Index at clean PM2.5 levels; b. Ozone at clean PM2.5 levels;
c. UV Index at highly polluted PM2.5 levels; and d. Ozone at highly
polluted PM2.5 levels.

There is also observed to be a small tail in very high ozone conditions in Beijing
that occur under highly polluted PM2.5 conditions, but does not occur in Xi’an,
with concentrations observed in the range from 60 to 110 �g/m3 (in Figures 6c
and 6d). This set of low-probability high impact conditions are consistent with
the finding that in Beijing, due to both the basin effects and the large amount of
absorbing aerosol contribution to total PM2.5, that there may be a large amount
of net heating and stabilization of the boundary layer, further promoting the
formation and accumulation of surface ozone. This result is consistent with the
argument above about why Beijing is the only site with a positive coefficient on
PM2.5.

In general, the distribution and probability of ozone concentration reproduced
in this work is similar to that of measurements at different PM2.5 levels, except
the fit has overestimated O3 in Guangzhou when PM2.5 level is regarded as
“heavily polluted”. This result, to some extent, suggests the interaction between
PM2.5 and O3 was taken into account in the multiple equations computed in
this work, while still having deeper complexity in terms of reproducing highly
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non-linear meteorological and chemical interactions.

Figure 6. PDFs of all measured UV Index and Ozone values (black),
polluted UV Index and Ozone values (red), clean UV Index and
Ozone values (blue), and simulated ozone values (green) in Beijing:
a. UV Index at clean PM2.5 levels; b. Ozone at clean PM2.5 levels;
c. UV Index at highly polluted PM2.5 levels; and d. Ozone at highly
polluted PM2.5 levels.

The PDFs of surface ozone concentrations were also computed under two differ-
ent loadings of CO levels, with one is considered to be “clean” (CO with a mass
concentration less than 500 �g/m3) and the other considered to be “highly pol-
luted” (CO with a mass concentration over 1500 �g/m3), as displayed in Figure
7. Ozone concentrations show an average concentration of 63 �g/m3 and a range
from 24 to 111 �g/m3 under clean conditions and an average concentration of 31
�g/m3 and a range from 5 to 110 �g/m3 under highly polluted CO levels. This
finding is consistent with the idea that under higher concentrations of CO, the
HOx cycle would be disrupted, with more photolysis required to obtain a similar
level of OH, due to the fact that CO acts to both suppress OH, as well as being
a surrogate of other larger VOC oxidation pathways, which in turn may have
also acted to suppress OH.
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Figure 7. PDFs of all measured Ozone values (black), polluted Ozone
values (red), clean Ozone values (blue), and simulated ozone values
(green): a. Ozone at clean CO levels in Beijing; b. Ozone at polluted
CO levels in Beijing; c. Ozone at clean CO levels in Taiyuan; and d.
Ozone at polluted CO levels in Taiyuan.

4 Conclusions and Discussions

This work has built a multiple regression equation of surface ozone using a com-
bination of measured air pollutant concentrations (PM2.5, CO, NO2, and SO2)
and remotely sensed ultraviolet index (UVI). Furthermore, non-linear terms be-
tween each air pollutant and UVI has also been built into a multiple regression
equation. All models are at high frequency based on daily measurements, and
their fits evaluated against daily measurements of surface ozone. Overall, the
measurement fit was found to have an R2 over 0.43 and RMSE smaller than 24
�g/m3 in most sites investigated. This is consistent with the fit capturing both
localized temporal trends and well as many of the peaks and troughs. Even in
sites where the temporal fit does not seem very good, the seasonal variation is
still well captured in terms of larger-scale peaks and troughs. It is worth noting
that in Guangzhou, while surface ozone shows no evident season-to-season fea-
tures, the non-linear timing and impact of the Monsoon and other non-linear
tropical forcings are still reasonably well represented.

Secondly, the impact of extreme values in terms of time and range are explored
at each site. It is determined that so long as the ozone is within a central range,
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varying from 5 �g/m3 to 120 �g/m3 of ozone across the different sites, that the
overall fit is found to be far better in terms of both space and time, with the
overall R2 increased to over 0.64 to RMSE decreased to under 14 �g/m3 at all
sites. This is an excellent result for 24-hour ozone concentration prediction,
which is even better than other big-data approaches, which tend to only focus
on. Maximum 8 hourly ozone, and still have an RMSE of 20 �g/m3 and higher
(Wei et al., 2021).

Thirdly, the driving factors behind the various fits and ranges were successfully
analyzed, considering both clean and heavily polluted levels of PM2.5 and CO
respectively. It was found that under clean PM2.5 conditions, that UVI and
ozone both were higher than under heavily polluted PM2.5 conditions, with a
difference in UVI average of 2 and a difference in Ozone average of 23 �g/m3.
In the case of heavily polluted CO conditions, the average Ozone was found
to be 31 �g/m3 while in the case of clean CO conditions, the average Ozone
was found to be 63 �g/m3. These indicate clearly that PM2.5 and CO both
represent extreme forcings that contribute to surface Ozone, and that these are
two important factors in particular in urban areas found under drier climate
conditions. These results are found to be consistent with theory, where changes
in UV radiation reaching at surface due to aerosol extinction led to changes in
photochemistry. Furthermore, this is consistent with the theory that higher CO
levels would significantly impact the HOx cycle.

Fourthly, the work shows clearly that UVI is the single most important overall
species in terms of total contribution to the overall surface ozone conditions.
This is true for both its direct term, as well as its non-linear terms, with CO
and NO2 in a larger number of urban areas, and PM2.5 and SO2 in fewer urban
areas. These results show clearly that solar ultraviolet radiation, together with
longer-lived air pollutants contribute a significant amount to lot to surface ozone,
without needing to directly consider various meteorological variables or VOCs.
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