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S1. Supplemental Methods Text

Accounting for ice-cover

Current observations of CO> fluxes over lakes are mostly limited to an open water season due to
wintertime measurement challenges and lack of consistent observations for all sites during ice
covered season. These measurement challenges lead to a persistent under-sampling of ice-
covered seasons and periods around ice-on/ice-off. Transitions to/from open-water are often
accompanied with large CO» efflux (Anderson ef al., 1999) and in some cases, comprise a
significant proportion of annual CO, budget (Denfeld et al., 2018). Therefore, the annual CO»

flux estimates in Table 1 are conservative.

When the observational CO; data extended beyond the predicted ice-free season, the length of
ice-free days was adjusted to the first and/or last day of flux measurements. When the
observational fluxes were missing data near ice-on/ice-off dates, the seasonal mean daily CO»
flux for a given lake was imputed to derive annual open water emissions. We assumed negligible

CO transfer at the air-lake interface during the ice-covered season.

Footprint screening

Six out of 13 flux towers were placed on the lakeshore, shoals or islands (Table S1) to avoid
problems with power supply, wave and ice exposure, or because of the original research question
studied (e.g. CO; flux in heterogeneous landscape). This introduced an additional problem with
COz advection from catchments and flux contamination. While well-selected tower locations
minimize the advection term to <3% of CO; flux (Morin et al., 2018), the towers located in the
middle of the lake can also be affected by CO» advection, particularly small lakes surrounded by
forest (Esters et al., 2021; Kenny et al., 2017). The contribution of advected air to annual CO>
lake budgets in this project is unknown and might be substantial. Tower height also influences

footprint area and likelihood of encountering secondary circulations (Kenney et al., 2017). To
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account for these at some level, data from sites and time periods with suspected significant
contribution of mixed footprint were removed from this analysis. PI applied wind directional

screening is also applied to avoid land contributions and noted in Table S1.

Gap-filling of missing observations

Observations gap-filled were the climatic (i.e. air temperature, incoming solar radiation,
photosynthetically active radiation, horizontal wind speed, friction velocity, relative humidity,
barometric pressure, net radiation, vapor pressure deficit) and the lake fluxes (i.e. sensible, latent,
and CO; turbulent flux), and the in-water (i.e. surface water temperature, CO> concentration)
variables. However, there is no consistent method of flux gap-filling existing for freshwater
waterbodies. Here, we tested two approaches to gap-filling, the artificial neural network (ANN)
(Morin et al., 2014) and marginal distribution sampling (MDS) (Wutzler ef al., 2018). The MDS
approach resulted in a smaller number of end-gaps, always used the same variables for gap-fill
and was computationally efficient relative to the ANN approach. Since a standardized gap-filling
protocol significantly reduces the uncertainty of compared NEE sums in multi-site syntheses
(Mofftat et al., 2007), we therefore used the MDS approach for computing filled fluxes and

biophysical variables.

Uncertainty analysis

To reflect uncertainty, we calculated the standard error of the mean (i.e. square root of summed
variances normalized by square root of number of observations, SEM) for daytime and nighttime
half-hourly averages (Table S1). SEM for daytime observations varied from 0.196 pmol m?2 s’!
in FI-VKa to 1.82 pmol m? s”! in DE-Zrk, whereas SEM for nighttime observations ranged
from 0.200 pmol m2 s! in FI-VKa to 1.38 pmol m? s! in US-UM3. The average nighttime CO;

uncertainty was higher than daytime uncertainty in seven lakes.

The open-path (OP) gas analyzer measurements were on average one third more uncertain than
the closed-path (CP) measurements (Table S1). The daytime SEM in OP ranged from 0.228
pumol m? s! to 0.932 pmol m2 s! (mean: 0.565 umol m s™!), while the daytime SEM in CP
ranged from 0.196 pmol m2 s! to0 0.558 umol m? s (mean: 0.382 umol m? s™!). The CO> flux

uncertainty in DE-Zrk measured with CP was higher (mean: 1.76 umol m? s!') compared to
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uncertainties in lakes because a large proportion of emergent macrophytes within the flux tower

footprint contributed to much stronger signal and flux magnitudes comparable to wetlands.

COs fluxes over freshwater systems are small relative to fluxes to terrestrial systems, show low
signal-to-noise ratio, and require the Webb-Pearson-Leuning (Webb et al., 1980) and Burba
corrections (Burba et al., 2008) for covarying fluctuations of water vapor flux and temperature.
The corrections terms, especially for OP measurements, can be larger than measured CO»
quantities, leading to biased CO, flux especially when carbon flux is small and corresponding
heat flux is large (Helbig et al., 2016) and result in physiologically unreasonable net CO; flux,
such as nighttime uptake in eutrophic water bodies (Lee et al., 2014; Potes et al, 2017). The sites

consistently showing such a nighttime uptake were excluded from this meta-analysis.

Intercomparison with other methods

We assume with sufficient sampling period, the continuous EC flux measurements are
representative for ecosystems with similar biotic and abiotic conditions. The inter-comparison
with other methods of estimating CO> flux from lakes (i.e. floating chambers, surface renewal
model, and boundary layer models) showed varying degrees of agreement. Relative to CO, flux
estimates, the simultaneous measurements with other methods typically agreed within 20%,
though periods with large departures up to 2-3 times larger or smaller do occur (e.g., Anderson et
al., 1999; Baldocchi et al., 2020; Eugster et al., 2003; Erkkild et al., 2018; Jonsson et al., 2008;
Podgrasjek et al., 2014; Vesala et al., 2006). The agreement varied on level of stratification,
overlap in timing of measurements, season, and the selection of piston velocity models. There is
good reason to believe that flux tower approaches can be a viable method for estimating
lake/reservoir CO» fluxes, though studies that found greater discrepancies among independent

methods and models require reconciliation.

Interannual variability calculation

One standard deviation of annual CO> fluxes was calculated to determine the inter-annual
variation (IAV) of fluxes for sites with multi-year measurements. We acknowledge that
calculating the standard deviation from a limited number of site-years (i.e. <5 years) can lead to

uncertain estimates of AV, however, it cannot be further constrained with this study dataset.
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With more multi-year time series of continuous measurements, we will be able to determine the
S-year time threshold is sufficient to capture inter-annual CO> flux variability in freshwater

ecosystems.

Regression analysis

We tested several models (e.g. quadratic, linear, exponential, gaussian, etc) available in the
library of models in the Curve Fitting Toolbox in MATLAB with the variable number of models’
parameters to select the most robust model. We selected the robust linear least-squares second-
order polynomial model with bisquare weighting method. This statistical model maximized the
goodness-of-fit (e.g. 12 and rmse), required less parameters to estimate and dealt with
nonlinearities. To avoid influences of outliers on fitted curves, values beyond 1t and 99

percentile of each variable were removed before curve fitting.

Fluxes over a macrophyte reservoir (DE-Zrk)

A significant fraction of emergent macrophytes within a flux tower footprint of a shallow
reservoir DE-Zrk increased the flux temporal dynamics by an order of magnitude relative to
fluxes measured over open water lake surfaces (Table S2). Since the emergent macrophyte
stands are common in shallow lakes and reservoirs, the unique CO; flux over such systems is

worth describing separately.

The mean and standard deviation of daily CO2 were 0.072+£0.970 umol m? s™! (range: -0.858-
1.352 umol m? s°!, Fig. 1, Table 1). Daytime to nighttime hourly fluxes were on average 250%
lower, indicating a strong mid-day photosynthetic CO; fixation of macrophytes, roughly seven
times higher than daytime CO, drawdown observed in open-water systems (Fig. 2). The negative
correlation with PAR additionally confirmed a strong control of macrophyte photosynthetic
activity over sub-daily CO: flux variation (Fig. 3). The maximum uptake of the monthly-
averaged daily flux amplitudes typically occurred in July ranging 6.15-8.31 uM m s™! and
declined towards both ends of the ice-free season. At annual timescale, CO; fluxes indicated a
net source of C in two lake-years (Table 1). The mean interannual variability (IAV) of annual
CO; flux 428%. Overall, the mean and median uncertainty of daily CO> flux were 162% and
421% for DE-Zrk (Fig. 3b). The flux values were several-fold underestimated relative to the
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669  published CO; flux estimates for this site (Franz et al., 2016) The CO, fluxes contributing to the
670  tower footprint of DE-Zrk were distinct between the open water and the emergent vegetation
671  categories. The lack of footprint heterogeneity was not considered in the uniform method of flux
672  computation applied in this study but was the most significant source of discrepancies in

673 estimated fluxes between these two studies.
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S3. Supplemental Tables
Supplemental Table S1. Additional site characteristics of the eddy flux tower sites synthesized
in this study.

Supplemental Table S2. Summary statistics of the literature-compiled mean daily, annual and
inter-annual CO; fluxes derived from at least four samples per year. Within-study flux variation
is expressed as one standard deviation of the (published or calculated) mean. Numbers in

brackets indicate the minimum and maximum flux values at given time scale
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Supplemental Table S2. Summary statistics of the literature-compiled mean daily, annual and inter-annual CO, fluxes derived from at least four samples per year.

Within-study flux variation is expressed as one standard deviation of the (published or calculated) mean. Numbers in brackets indicate the minimum and maximum flux values at given time scale

Source

| Daily CO2 flux [mgC m|Annua| €02 flux [gC n'l Inter-annual CO2 flux IMeasurement Frequel Notes

Site-level discrete CO2 flux

Brothers et al, 2012 1343172 na na 22 year-1 Estmain R., Ice-free season; Jun-Sep sampling; Boreal
Casper et al., 2000 480[na na 13 year-1 Priest Pot; Ice-free season; May-Oct sampling
Chmiel et al, 2013 406 94[na Two-year 6 years-1 | L. Gaddtjarn; Ice-free season; Boreal
Coleand Caraco, 1998 10929 (80-138) 4011 (30-50) na Multi-year weekly L. Mirror, Two methods of flux estimation;
Demarty et al,, 2011 na 81152 (21-137) 4 (Eastmain R.) Space-resolved two-ye| One reservoir and two lakes; Ice and ice-free sampling; Boreal
Denfeld et al,, 2018 na 30437 (-11-152) 11 (4-23) Multi-year 7-9 year-1 |10 lakes; lce-free season; Temperate
Einola et al., 2011 na 50£232 (18-86) 102 (4-19) 1-4 year-1 (5 lakes)2; |5 lakes; Ice-free season; Boreal
Eugster et al,, 2003 191-102 (114-365) |na na 8-602 year-1 L. Toolik; Convective and stratified periods; Four methods of flux estimation; Arctic
Finlay et al, 2019 34161224 7| Multi-year (37) weekly | Bufallo Pound Lake; Ice-free season; Great Plains;
Jonsson et al, 2008 180245 (119-225) |na na 6 summer-1 (2 method L. Merasjarvi; Three methods of flux estimation; Summer; Boreal
Karlsson etal, 2013 na 9114 na 7 year-1 Twelve lakes; May-Oct sampling
Kling et al., 1991 2584100 (150-420) |[na na Multi-year mean 44-62| Two lakes and multi-lake (25) average; Arctic;
Kokic et al, 2015 500£100 (400-600) |[na na 5 year-1 L. Gaddtjarn and headwater lakes, Ice-free season; Jun-Nov sample; Boreal
Miettinen et al., 2015 542413 (529-555) | 845 (79-89) 5]14 year-1 Kuivajarvi; lce-free season; Boreal;
Natchimuthu et al.,, 2017 549£193 (306-780) 1433|na Space-resolved 89-129 Three lakes; Ice-free season; Jun-Oct sampling; Hemiboreal
Ojala et al.,, 2011 261£109 (151-401) |59:16 (41-82) na weekly Two lakes, Two methods of flux estimation; Ice-free season; Boreal
Repo etal, 2007 3284136 (136-437) |na na 6-7 year-1 Three lakes; Jul-Sep sampling; Subarctic
Riera et al., 1999 2451223 (5-549) | 54-49 (1-120) na 8-32 year-1 Four lakes; Ice-free season; Apr-Nov sampling; Temperate
Sobek et al. 2003 na 10418 na 4 year-1 29 lakes; lce-free season; Boreal
Stets et al,, 2009 na 26124 (2-49) na daily Two lakes; Year-round integration; Mass-balance model; Temperate;
Striegl & Michmerhuizen 1998 na 49147 (1-96) na 21-25 year-1 Two lakes; Ice and ice-free season; Mar-Aug sampling; Temperate
Site-level, high-frequency, seasonal CO2 flux
Franz etal., 201529 516 174[na d Zarnekow macrophyte reservoir; Footprint heterogeneity incorporated; Temperate; Eddy covariance
Huotari et al, 2009 na 3717 (30-44) 7| Two-years continuous | L. Valkea-Kotinen; Ice-free season; Boreal
Huotari et al, 2011 na 77+10 (68-97) 10 [ Five-year continuous | L. Valkea-Kotinen; Ice-free season; Boreal, Eddy covariance
Lundin etal, 2015 na 2416 (5-54) na Continuous Six lakes; Ice-free season; Subarctic
Morales-Pinnieda et al, 2014 3114202 (96-601) |na na Continuous Two reservoirs; Ice-free annually; May-Oct sampling; Two methods of flux estimation; Mediterranean
Pelletier et al, 2014 450£300 na na Two-year continuous | Pool in peatland; Ice-free with a brief under-ice period; May-Oct sampling; Boreal
Vachon etal, 2017 311139 (272-350)  |49:6 (43-56) na Continuous Two lakes; Ice and ice-free season; Boreal
This study 4504354 (-78-1298) | 95249 (14-224) 22 (4-44) Continuous Nine lakes and three reservoirs, Ice-free season; Six climatic zones; Eddy covariance
75+1006 (-890-1402)[ 164151 (-39-632) 151 Continuous Macrophyte reservoir DE-Zar, Ice-free season; Temperate; Eddy covariance
Regional upscaling (Process- or mass balance models) CO2 flux
Cardille et al, 2009 na 119:18 (99-142) |na daily time steps Ice-free season; US Mid-west region; Different precipitation scenarios
Zwart etal, 2018 na 4715 (41-53) na daily time steps Ice-free season; US Mid-west region
na 2713 (24-31) na daily time steps Year-round; US Mid-west region
McDonald etal, 2013 263£180 (-50-610) |96366 (-18-223)  |na daily Year-round; Continental US
Regional / global upscaling ion-based models or sp: Ived average) CO2 flux
Alin and Johnson, 2007 na 52426 (14-91) na variable Large lakes, Latitudinal gradient, Global
Buffam etal, 2011 na 32 (25-39) na 1 summer-1 (168 lakes Ice-free season, Summer sampling; US Mid-west region;
Bogard & delGiorgio., 2016 232 (-187-979) na na 1 summer-1 (346 lakes Boreal region
Deemer etal, 2016 451186 (330-525) [na na variable Reservoirs, Global summary statistics
Del Sontro et al.,, 2018 3744114 (242-563) |na na variable Size area bins, Global summary statistics
Hastie et al, 2018 na 139 (54-257) na variable Size area bins, Boreal region
Holgersson and Raymond, 2016 269477 (138-423) |[na na variable Size area bins, Global summary statistics
Kankaala et al.,, 2013 na 7743 (41-159) na weekly (17 lakes) 17 lakes; Ice-free season; Size area bins, Boreal region
Kortelainen et al., 2006 na 65424 (37-102) na 4 year-1 177 random lakes; lce-free season; Size area bins; Boreal region
Rantakari & Kortelainen, 2005 13812 (114-149) 24432 (18-28) 32(3year-1 37 lakes; Ice-free season; Boreal region
Raymond et al., 2013 na 1483146 (-1-537)  |na variable Back-calculated from flux yield; d Northern excl. tropical region;
Weyhenmeyer etal., 2015 708 (128-2,620) 448 (na na 1 autumn-1 (5,118 lak| Ice-free season, Two methods of flux estimation; Boreal and hemiboreal region,
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S4. Supplemental Figures

Supplemental Fig. S1. Seasonal patterns of CO, flux in three

example lakes: a) FI-Van - a

boreal lake, mesotrophic, mesohumic, deep, fall monomicitc with episodic summer mixing due

to weak stratification, b) FI-VKa - a boreal lake, mesotrophic,

mesohumic, shallow, fall

monomictic, strong summer stratification, and ¢) DE-Zrk — a temperate eutrophic reservoir,

shallow, cold polymictic with emergent macrophytes.
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