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Figure S1. Temporal evolution of the surface COS mixing ratio at site BRW as observed
(black) and simulated by several Atmospheric Transport Models (orange) using the Ctl
scenario. The full line in orange is the averaged concentrations simulated by all transport
models and the shaded area is the standard deviation at each time step of the simulated
concentrations by all transport models.The simulated COS abundances have been shifted
of 396 ppt, which is the observed concentrations averaged over all surface sites for January

2010.
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Figure S2: Zonal mean mole fraction of COS in ppt for the reference for the Ctl scenario
(top row). The reference is the average of COS over all transport models. Second and third
rows: Zonal mean mole fraction difference between each transport model and the reference.
Left: The zonal mean is averaged in winter (DJF) from 2012 to 2018. Right: The zonal

mean is calculated from 2012 to 2018 (annual mean).
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Figure S3: Comparison of the latitudinal variations of the COS abundance simulated by
several transport models using the Ctl surface flux dataset (colored dots) with the
observations (black line) averaged over the years 2012-2019. The simulated COS
abundances have been shifted such that the means are the same as the mean of the
observations (~500 ppt). The curves have been detrended and filtered to remove the
synoptic variability. The value at site GIF simulated by the TOMCAT ATM was
removed as it was an outlier (value above 755 ppt).
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Figure S4 : Mean seasonal cycle of the observed (black) and simulated (color) COS mixing
ratios at 15 surface sites for the Ctl scenario. The curves have been detrended and filtered
to remove the synoptic variability.

Annual vertical gradient @ obs
o ® ™5
401 ™3
® NICAM6
_ 20 . 2 o NICAMS
-
a o2 > K, % . o MIROC4
o  of % % - o od © o %o ® LvDZ
0 . .
O -20f . .
[ ] L]
_40» ° L ]
L]
L]

TGC CMA HIL CAR BNE THD WBI NHA LEF ESP  ETL

Figure S5. Annual mean observed and simulated COS gradient between 1 and 4 km at each
airborne station for the Ctl scenario. For each subregion, the monthly COS gradients are
calculated by averaging the differences in COS concentrations between 1 and 4 km over
all the vertical profiles.
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Figure S6: Simulations of the seasonal cycle of tropospheric COS mixing ratios at several
surface stations averaged over all transport models. The shaded area is the standard
deviation around the mean COS seasonal cycle associated with the different transport
models. The dotted black line represents the observed seasonal cycle.
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b) ORC-SIB4
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Figure S7: a) Climatology of the biosphere flux of COS (mmol/m?/yr) in the SIB 4 LSM,
b) Climatology of the difference of the biosphere flux (mmol/m%/yr) between the
ORCHIDEE LSM and the SIB 4 LSM. ¢) Same as b) but in terms of percentage.
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Figure S8 a) Climatology of the ocean flux (mmol/m?/yr) using the Lennartz et al., 2017
DMS fluxes, b) Climatology of the difference of the ocean flux (mmol/m?/yr) between
the DMS fluxes of Lennartz et al., 2017 and the DMS fluxes simulated by the NEMO-
PICSES Ocean Model. c) Same as b) but in terms of percentage.
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Figure S9 Difference of monthly mean COS mole fractions between the Diurnal scenario
and the Ctr scenario (without the soil fluxes) at each surface station for the year 2015. At
each site, the solid line is the mean COS mole fraction across all models, and the shaded
envelope represents the standard deviation around the mean. Here, only the vegetation
fluxes contribute to the difference of COS mole fractions.
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Figure S10 Difference of monthly mean COS mole fractions between the Diurnal 2
scenario and the Bio 2 scenario at each surface station for the year 2015 with the LSM



ORCHIDEE. At each site, the solid line is the mean COS mole fraction across all models,
and the shaded envelope represents the standard deviation around the mean.
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Figure S11: a) Climatology of the biomass burning flux (mmol/m?/yr) from Stinecipher et
al., 2019. b) Climatology of the biomass burning flux (mmol/m?/yr) from Ma et al., 2021,
which takes into account the biofuel use.



