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1. Numerical Method

The discretization of the governing equations is a straightforward extension of previous work. We employ the7

Cartesian grid finite difference method developed by Erickson & Dunham (2014) and Allison & Dunham (2018)8

to solve the static elasticity and heat equations, both on the same grid. We select the along-fault grid spacing to9

resolve the nucleation length (e.g., Ruina, 1983; Rice, 1983, 1993; Rice et al., 2001),10

h∗ =
µdc

σn(b− a)
(1)11

and the cohesive-zone size (Dieterich, 1992; Ampuero & Rubin, 2008),12

Lb =
µdc
σnb

, (2)13

which is generally smaller than h∗. In the fault-normal direction, we must resolve thermal boundary layers near14

the fault, the width of which will be no larger than w. Therefore, we use a grid spacing of Lb/4 in the z-direction15

in the seismogenic zone, and w/5 in the y-direction near the fault, with aggressive grid stretching outside of this16

region.17

We next explain time stepping. We utilize the explicit Runge–Kutta algorithm with adaptive time-step selection18

described in Allison & Dunham (2018) to update slip, state variable, and viscous strains. However, stiffness of the19

heat equation requires implicit time-stepping for efficiency. To handle this, we use operator splitting, updating20

temperature in the heat equation with backward Euler after each full adaptive step.21

Specifically, during each adaptive Runge–Kutta time step from time tn to tn+1 = tn + ∆t, temperature is held22

fixed at ∆Tn while solving for slip δn+1, state ψn+1, and the viscous strains γn+1
xy and γn+1

xz . We then compute23

the stresses at tn+1, and the flow law provides the viscous strain rates γ̇n+1
xy and γ̇n+1

xz . Then, these fields are held24

fixed and used to compute the shear heating source term Qn+1 when solving for ∆Tn+1.25

2. Stresses

The similarities and differences between these three simulations featured in Figure 4 can also be seen in the26

temporal evolution of shear stress on the fault and its deep extension, plotted in Figure S1. In the upper crust,27

the shear stress is very similar in all three simulations, because the off-fault material is effectively elastic and28

stress is limited by the frictional strength of the fault. At greater depths, around 23 km in the viscoelastic29

simulation without shear heating and 15 km in the viscoelastic simulation with shear heating, the viscoelastic30

material becomes much weaker than the frictional strength of the fault, resulting in a much weaker shear stress31

than in the elastic simulation.32

3. Influence of Pore Pressure on Contributions to Shear Heating

Figure S2 explores the influence of pore pressure, parametrized through λ, on the thermal anomaly.33

4. Thermal Energy

One way of summarizing the results of our parameter space search is to integrate the thermal anomaly times34

the heat capacity over the domain, producing the thermal energy per unit length θ. As shown in Figure S3, the35

total thermal energy increases with deeper LAB depths. It also decreases slightly with increasing pore pressure,36

but this is a much smaller effect. Also, for all the parameters considered, both frictional and viscous shear heating37

contribute substantially to the total thermal energy in the system, with viscous shear heating constituting more38

than half the total (except for the simulation with a 70 km deep LAB and λ = 0.8).39
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Figure S1. Comparison of the temporal evolution of
shear stress on the fault and its deep extension in elastic,
viscoelastic without shear heating, and viscoelastic with
shear heating cycle simulations, for an LAB of 50 km
and hydrostatic pore pressure. (a), (c) and (e) First 20 s
of the coseismic period, with contours plotted every 5 s.
(b), (d) and (f) Interseismic period with contours plotted
every 50 years.

= +

Figure S2. Comparison of ∆T and its components
∆Tfric and ∆Tvisc, as a function of λ, for a simulation
with a 50 km deep LAB.

5. Temperatures of Various Transitions

The temperatures which correspond with the depths plotted in Figure 8 are shown in Figure S4.40

6. Comparison of Steady-State and Cycle-Averaged Results

Figures S5 and S6 compare steady-state and cycle-averaged results.41
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Figure S3. Total thermal energy θ (purple), portion
of total thermal energy contributed by frictional θfric
(yellow, solid lines) and viscous θvisc (red, solid lines))
shear heating, total energy from simulations with only
frictional shear heating (yellow, dashed lines), and total
energy from simulations with only viscous shear heating
(red, dashed lines), as a function of LAB depth and pore
pressure.
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Figure S4. Comparison between the temperatures of
earthquake nucleation (red circles), the down-dip limit
of coseismic slip (blue triangles), and the BDT tempera-
ture range (yellow filled regions) for simulations with and
without shear heating. For the viscoelastic simulations
with shear heating, the average interseismic temperature
is used. Also shown are estimates of the BDT tempera-
tures from steady-state results (black lines).
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Figure S5. Comparison between steady-state and cycle-
averaged results: thermal anomaly (a and b), and effec-
tive viscosity (c and d). Results are for a 50 km deep
LAB and hydrostatic pore pressure.
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Figure S6. The steady-state shear stress on the fault
and its deep extension (black) shows good agreement
with the interseismic shear stress (blue) for a viscoelastic
cycle simulation with shear heating, with a 50 km deep
LAB and λ = 0.37. Also shown, for reference, is the
shear stress for rate-and-state friction assuming the fault
is sliding at the tectonic loading velocity (red).
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