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Text S1. Second moments analysis11

We perform empirical Green’s function (eGf) analysis to obtain the apparent source12

time functions (ASTFs) for the Mw 5.4 earthquake. We obtain the ASTFs individually13

at each station by deconvolving seismograms of the Mw 5.4 event with those of a nearby14

M 3.7 earthquake to remove the path and site effects for both P- and S-waves (Figures S2).15

We use stations from the regional broadband networks and the strong motion networks16

to investigate the earthquake. The seismic records are band-pass filtered at 0.5 to 20.017

Hz with a causal 2nd-order Butterworth filter. The ASTFs show clearly separated episodes18

indicating two major subevents E1 and E2. The seismic moments of E1 and E2 are es-19

timated by computing an average moment ratio between the two episodes and requir-20

ing the total moment equal to that of a Mw 5.4 earthquake. For each ASTF, a moment21

ratio is obtained from dividing the subevent moments, which are integrations of the episodes22

respectively (Figure S2a). The moment ratio of E1 to E2 is about 5%, equivalent to a23

Mw 4.5 earthquake for E1. We further estimate the centroid location separation distance24

by curve fitting the centroid lag time at different directions (Figures 1b and S2). The25

centroid location of E2 is 1.1 km northeast of E1, showing that the earthquake ruptured26

a fault plane that is orthogonal to the main fault strike of the Mw7.1 mianshock (Shelly,27

2020).28

With the ASTFs and a local 1D velocity model, we solve the rupture length and29

width of the subevent E2 by estimating its second seismic moments. The 1D velocity model30

is obtained from averaging the community velocity model of Southern California (Lee31

et al., 2014). We closely follow a method that is used to study the second moments of32

other Southern California earthquakes (Meng et al., 2020; McGuire, 2004, 2017), and only33

briefly explain the physical meanings of the second moments here. Centroid location and34

centroid time are the first moments of an earthquake, and the second seismic moments35

characterize the variances of the first moments, which effectively represent the earthquake36

length, width, duration and rupture directivity (Backus & Mulcahy, 1976a, 1976b; McGuire,37

2004). Knowing the local velocity structure, the second seismic moments µ̂(2,0), µ̂(0,2),38

and µ̂(1,1) can be obtained by solving:39

µ̂(0,2)(s) = µ̂(0,2) − 2s · µ̂(1,1) + s · µ̂(2,0)s (1)

where µ̂(0,2)(s) is the apparent duration obtained from the ASTF and s is the slowness40

of either P- or S-waves in the source region for a given source-receiver pair (McGuire,41

2004). The second moments can estimate an earthquake characteristic duration (τc =42

2
√
µ̂(0,2)) and earthquake characteristic rupture extents (xc(n̂) = 2

√
n̂T µ̂(2,0)n̂), where43

n̂ is a unit eigenvector of µ̂(2,0) and xc represents the associated rupture dimension, e.g.,44

the rupture length Lc or the rupture width Wc (McGuire, 2004).45

Following a case study of the 1999 Izmit, Turkey Mw 7.6 earthquake and its fore-46

shocks (Ellsworth, 2019), we estimate the stress perturbations from E1 to E2. We ap-47

proximate the subevent E1 as a Mw 4.5 earthquake (point source) with the same focal48

mechanism of the Mw 5.4 earthquake, and assume the E1 source time function as a parabola49

function lasting 0.3 s. We then synthesize a 3D displacement field of E1 in a whole-space50

homogeneous medium with Vp = 6.169 km/s, Vs = 3.523 km/s, and ρ = 2, 600 kg/m3
51

(Aki & Richards, 2002) (Figure S3). The 3D model space is set as 4,000 m along strike52

by 4,000 m along dip by 40 m perpendicular to the fault surface with a grid spacing of53

20 m and the subevent E1 is set in the center of the model space. We calculate the three-54

component displacements at each grid for 2 seconds with a sampling rate of 500 Hz to55

account for both the transient- and permanent-displacement. The strain-tensor pertur-56

bations on the fault plane are computed as numerical spatial derivatives of the displace-57

ment field. We then use the Hooke’s law to obtain the stress perturbations. The fault-58

plane normal stress perturbations are zero and the static and peak dynamic shear stress59

perturbations exceed 0.1 MPa in the vicinity of the subevent E2 (Figures 2 and S3).60

–2–



manuscript submitted to Geophysical Research Letters

Text S2. Detection of immediate-foreshocks61

We detect immediate-foreshocks by using the vertical component records and au-62

tocorrelating the P-waves with their 100 s preceding waveforms. The seismic records are63

band-pass filtered at 1 to 20 Hz with a causal 2nd-order Butterworth filter. With a re-64

gional catalog (SCEDC; Hutton et al., 2010), the P-wave arrival times are first calcu-65

lated using a 1D velocity model, which is obtained from averaging the community ve-66

locity model of Southern California (Lee et al., 2014). The P-wave onset times are then67

further refined with manual corrections. The autocorrelation is performed independently68

for all stations within epicentral distance of 30 km, including both the regional network69

stations, the rapid deployment broadband stations, and the nodal array stations. For a70

given station, we test a set of P-wave time windows from 0.5 s to 1.0 s with an incremen-71

tal step of 0.1 s, and the preferred time window of the event-station pair maximizes the72

autocorrelation coefficient (AC).73

For a given event, we select candidate stations with maximum AC greater than 0.7,74

and record the autocorrelation differential time (signal preceding time) and the ampli-75

tude ratio in addition to the autocorrelation coefficient. For M ≤ 3.5 earthquakes, an76

immediate-foreshock is detected when (1), the average AC exceeds 0.8 for more than 1077

stations; (2), these stations are from an azimuthal range greater than 180◦; (3), the pre-78

ceding time distribution has a standard deviation less than 0.01 s. For 3.5 ≤M ≤ 5.079

earthquakes (there are only 3 events), we impose a similar set of criteria, including (1),80

the average AC exceeds 0.7 for more than 10 stations; (2), these stations are from an az-81

imuthal range greater than 180◦; (3), the preceding time distribution has a standard de-82

viation that is less than 0.05 s. P-waves are more complex for larger magnitude earth-83

quakes, and this modification allows us to effectively search immediate-foreshocks for all84

earthquakes with 0.5 ≤M ≤ 5.4. In total, we find 527 earthquakes with clear immediate-85

foreshocks and do not observe a magnitude dependence of the measured amplitude ra-86

tio or the preceding time.87

The three-component nodal stations are short-period seismographs with a natu-88

ral frequency of 5 Hz. Because of the natural frequency, the instruments may fail to record89

the low frequency (≤5 Hz) ground motion faithfully. Additionally, the band-pass filter90

(1-20 Hz) used in the analysis may introduce possible biases. To evaluate these poten-91

tial biases, we compare the records of four earthquakes from M 2.5 to M 4.0 at a pair92

of collocated seismographs, including a broadband station CA03 and a nodal station U0193

(Figure S11). We first remove the instrumental responses and then band-pass filter the94

records at 0.2 to 45 Hz with a causal 2nd-order Butterworth filter. The two sensors recorded95

almost identical ground motions and the results show that the nodal stations can record96

the investigated earthquakes with high fidelity. Given the noise level and the site con-97

ditions of the nodal stations, the 1-20 Hz band-pass filter can effectively suppress the high-98

frequency noise, and it does not impact small earthquake amplitudes very much. Our99

results show that the nodal array stations recorded high-quality data, and they can be100

used to investigate a range of earthquake rupture features.101

Text S3. Estimating the creeping transition depth102

Following the standard approach (Magistrale, 2002; Rolandone et al., 2004), we es-103

timate the deep creeping transition depth as the 95 percent earthquake depth thresh-104

old. In this study, the seismogenic zone depth extent is estimated as 11.0 km from a re-105

gional catalog of the 2019 Ridgecrest sequence (SCEDC; Hutton et al., 2010).106

Text S4. Relative location of the immediate-foreshocks107

We determine the relative locations between the immediate-foreshocks and the main-108

shocks using the differential times measured at multiple seismic stations. We first com-109

pute the slowness of the P-wave in the source region with a 1D velocity model, which110

is obtained from averaging the community velocity model of Southern California (Lee111
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et al., 2014). The preceding time tj of the precursory signal from an immediate-foreshock112

i at station j and the location of the immediate-foreshock are linked as113

tj = ∆ri · sij + t0j (2)

where ∆ri is the relative location between the ith pair of the immediate-foreshock and114

the mainshock, sij is the slowness vector of P-wave in the source region of the seismic115

ray-path connecting the mainshock hypocenter and the seismograph j, and t0j is the pre-116

ceding time of the immediate-foreshock. With multiple measurements of tj , the relative117

location and preceding origin time can be determined using the equation above. With118

the relative locations, we found most of these foreshocks are located within 0.2 km of their119

mainshocks with a median separation of 59 m (Figure 4a).120

We further evaluate the uncertainties of the relative locations by performing jackknife-121

resampling of the stations (Efron & Tibshirani, 1994). For each realization, we remove122

one measurement tj and perform inversion with the remaining measurements. For a given123

separation distance (e.g., the vertical separation distance) or origin time m, m̂j is the124

jth jackknife realization of m and m̂ is the mean of m̂j :125

m̂ =
1

N

N∑
i=1

m̂j (3)126

where N is the total number of measurements. The jackknife estimate of the standard127

deviation (m̂σ) of m is computed as128

m̂σ =

√√√√N − 1

N

N∑
i=1

(m̂j − m̂)2 (4)129

We estimate the standard deviations (uncertainties) at three directions independently130

for the hypocentral separations of the 527 immediate-foreshock and the mainshock pairs131

(Figure S7). About 85% of the separation distance between the immediate-foreshocks132

and mainshocks has a standard deviation less than 0.1 km with a median value of 15 m133

horizontally (Figure S7f). Vertically, 78% of the separation distance has a standard de-134

viation less than 0.1 km with a median value of 31 m (Figure S7f).135

Text S5. Foreshock-mainshock and mainshock-aftershock sequences in a lo-136

cal high resolution catalog137

We use a catalog that is obtained with a template matching technique (Shelly, 2020)138

to investigate the foreshock-mainshock and mainshock-aftershock sequences of the Ridge-139

crest earthquakes. The high resolution catalog reports 34,091 −0.3 ≤ M ≤ 7.1 earth-140

quakes occurring from 4 July 2019 to 16 July 2019 in the Ridgecrest region (Shelly, 2020).141

For a given earthquake, we search for events preceding the target earthquake within 100 s142

and within 1 km hypocentral distance. If these events have magnitudes smaller than the143

target earthquake, they are considered as foreshocks of the target earthquake. In total,144

there are 524 candidate foreshock-mainshock sequences with one or more foreshocks. Out145

of the 524 candidates, 363 foreshock-mainshock sequences are further confirmed by vi-146

sual inspections of the nodal array waveforms, and we focus on analyzing these cases.147

Out of the 363 earthquakes, 16 events have more than one foreshocks and the remain-148

ing earthquakes only have a single foreshock. There are no clear migration patterns of149

the foreshock-mainshock sequences. The preceding time, magnitude, hypocentral sep-150

aration and depth of these foreshocks show similar characteristics to the 527 immediate-151

foreshocks reported in this study (Figures S8 and 3). We also search for earthquakes with152

smaller magnitudes within 100 s after a target earthquake and within 1 km hypocentral153

distance. These events are considered aftershocks. In total, we find 519 mainshock-aftershock154

sequences in Shelly (2020).155

Text S6. Inverse Omori’s law156
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We evaluate the frequencies of the 527 immediate-foreshocks reported in this study157

and the 363 foreshocks in Shelly (2020). The seismicity rate is evaluated by binning the158

event occurrence in 5 seconds non-overlapping bins up to 100 seconds preceding the main159

events (Figure S9). Both the immediate-foreshocks and the foreshocks occur more fre-160

quently as the mainshock approaches, following an exponential increase trend. Assum-161

ing such increases follow an inverse Omori’s law, k/(−t)p, where k is a productivity con-162

stant and p is the growing rate, we perform a grid search on these two parameters to fit163

the two parameters for both catalogs respectively. We found a growing rate of p = 0.57164

for the 527 immediate-foreshocks and a rate of p = 0.89 for the 363 foreshocks in the165

Shelly (2020) catalog. The the different p-values may indicate a possible difference in trig-166

gering efficiency at different scales (Figure 4). However, the physical meaning of the p167

parameter is unclear and we do not discuss the details in this paper (Shcherbakov et al.,168

2004).169

Text S7. Data and materials170

The earthquake catalogs were accessed from Southern California Earthquake Data171

Center (SCEDC; Hutton et al., 2010) and Shelly (2020). The seismic data were provided172

by Data Management Center (DMC) of the Incorporated Research Institutions for Seis-173

mology (IRIS) and the SCEDC (Caltech.Dataset., 2013). The facilities of IRIS Data Ser-174

vices, and specifically the IRIS Data Management Center, were used for access to wave-175

forms, related metadata, and/or derived products used in this study. IRIS Data Services176

are funded through the Seismological Facilities for the Advancement of Geoscience and177

EarthScope (SAGE) Proposal of the National Science Foundation (NSF) under Coop-178

erative Agreement EAR-1261681. The nodal array data is openly available through IRIS179

DMC and was acquired by the U.S. Geological Survey (USGS) (Catchings et al., 2020)180

and the Southern California Earthquake Center (SCEC) and SCEC member institutions.181

The experiments were led by Rufus D. Catchings and Mark R. Goldman. The rapid seis-182

mic deployment of nodes for the 2019 Ridgecrest earthquake sequence was partially sup-183

ported by the U.S. Geological Survey (USGS), the Southern California Earthquake Cen-184

ter, and the National Science Foundation (Grant Number EAR-1945781).185

–5–



manuscript submitted to Geophysical Research Letters

Table 1. 527 earthquakes with immediate-foreshocks. The event ID and locations are from the

SCEDC catalog (Hutton et al., 2010).
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Figure S1. Precursory signals and P-waves of the Mw 5.4 earthquake at eight example broad-

band stations. The waveforms are from the vertical-component records and are band-pass filtered

at 0.2 to 20 Hz with a causal 2nd-order Butterworth filter. The traces are aligned with their

station azimuths. The station names and azimuthal directions are listed by the traces. az stands

for the azimuth and td is the preceding time. The blue and red curves are scaled P-waves of a

nearby M 3.7 eGf. Arrows show the nodal plane directions of the Mw 5.4 earthquake. The black

dash-curves show the arrival times of the two subevents E1 and E2 with the first event aligned at

0.6 seconds. The differential arrival times suggest a northeast rupture propagation.
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Figure S2. The apparent source time functions (ASTFs) and the waveform fit of the Mw 5.4

earthquake. (a) The ASTFs of P-waves (blue) and SH-waves (red). The black dash-curves show

the centroid lag times at different stations (see Figure 2). The early small pulses are the ASTFs

of subevent E1 and the later strong pulses are the ASTFs of subevent E2. (b) Waveforms of the

observed and synthesized P- and SH-waves. The black traces are observations recorded by re-

gional broadband and strong motion seismographs, the blue traces are synthetic P-waves, and the

red traces are synthetic SH-waves. The gray traces are the synthetic waveforms by suppressing

the ASTFs of E1. (c) and (d) The zoomed-in view of the waveforms and synthetics of E1. The

observations cannot be recovered by the synthetics without the ASTFs of E1.
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Figure S4. (a) Precursory signals and P-waves of a M 3.9 earthquake (Figure 2). The earth-

quake event ID is 38627095 (35.74567◦/−117.55800◦/5.5 km). (b) Precursory signals and P-waves

of a M 2.5 earthquake. The earthquake event ID is 38592095 (35.64167◦/ − 117.47150◦/6.4 km).

(c) Precursory signals and P-waves of a M 1.3 earthquake. The earthquake event ID is 38580791

(35.61883◦/ − 117.46617◦/2.3 km). (d) Precursory signals and P-waves of a M 0.9 earthquake.

The earthquake event ID is 38641623 (35.60983◦/ − 117.45650◦/8.0 km) (SCEDC; Hutton et al.,

2010). The waveforms are recorded by the nodal array stations and they are band-pass filtered at

1 to 20 Hz with a causal 2nd-order Butterworth filter. The station names and station azimuths

(az) are listed by the traces. (e) to (l) The corresponding amplitude ratio and preceding time

(∆t) distributions of (a) to (d). The gray circle and error-bar show the mean and one standard

deviation of the amplitude ratio or the preceding time.
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Figure S5. (a) and (b) Successive precursory signals and P-waves of a M 2.5 earthquake.

The earthquake event ID is 38582951 (35.68017◦/ − 117.54300◦/4.1 km) (SCEDC; Hutton et al.,

2010). The waveforms are recorded by the nodal array stations and are band-pass filtered at 1 to

20 Hz. (c) and (d) Corresponding amplitude ratio and preceding time distributions of precursory

signals 1 and 2. (e) and (f) Corresponding amplitude ratio and preceding time distributions of

precursory signal 2 and P-wave. The gray circles and error-bars show the mean and one standard

deviation of the amplitude ratio or the preceding time.
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Figure S6. (a) The magnitude-frequency distribution of the 13,895 analyzed earthquakes

and 527 events with observed immediate-foreshocks. (b), (d) and (e) The distributions of am-

plitude ratio, depth, and preceding times of the 527 events with observed immediate-foreshocks.

The magnitude-frequency distribution of the earthquakes with immediate-foreshocks is statis-

tically similar to that of the investigated earthquakes. The solid and dashed black lines in (a)

show b-values of all analyzed earthquakes and events with immediate-foreshocks 0.787 and 0.752

respectively (Aki, 1965). We use earthquakes with magnitudes from 1.5 to 5.5 to estimate the b-

values. (c) and (f) The range of the amplitude ratio and the preceding time of earthquakes with

different magnitudes. Earthquakes are binned with a 0.5 magnitude interval from 0.5 to 5.5. The

bars show 5 and 95 percentiles of the measurable. The dashed line is the 95 percentile seismicity

depth, 11.0 km (Text S3).
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Figure S7. (a) Horizontal and vertical the separations of the immediate-foreshocks to the

mainshocks. The error bars show the location uncertainties in the east and north component es-

timated using jackknife-resampling method (Text S4). (b) Similar to (a), but with the error bars

showing the location uncertainties in the vertical component. (c) A histogram of the hypocentral

separations between the immediate-foreshocks and the mainshocks. (d) and (e) The zoomed-in

views of (a) and (b). (f) The histograms of location uncertainties in east, north, and vertical

component.
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Figure S8. Scatter plots of the differential magnitude, preceding time, magnitude, hypocen-

tral separation, and depth of the 363 foreshock-mainshock sequences in a local high-resolution

catalog (Shelly, 2020). The dashed line is the 95 percentile seismicity depth, 11.0 km (Text S3).
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Figure S9. Event occurrence and inverse Omori law fits. (a) Differential time distribution of

the immediate-foreshocks detected in this study and the inverse Omori law fit. (b) Normalized

residuals by performing grid search on k and p, p = 0.57 for the best fit. (c) Differential time

distribution of foreshocks in Shelly (2020) and the inverse Omori law fit. The foreshocks are

selected with preceding time less than 100 seconds and spatial separation less than 1 km of the

mainshocks. (c) Normalized residuals by performing grid search on k and p, p = 0.89 for the best

fit.
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Figure S10. Earthquake density plots of the measured amplitude ratio, preceding time, mag-

nitude, hypocentral separation, and depth of the 527 earthquakes with their observed immediate-

foreshocks.
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Figure S11. Ground motion comparison of two collocated seismographs. (a) Vertical-

component velocity-waveforms of a M 3.9 earthquake at the nodal station U01 and the broad-

band station CA03. The earthquake event ID is 38653975 (35.63717◦/ − 117.47417◦/1.6 km).

(b) Velocity spectra of the raw waveforms of the M 3.9 event at the collocated stations. The

instrumental responses are removed. (c) A zoomed-in view of the gray box in (b). (d) to (l)

The waveform and spectrum comparisons for a M 3.5 earthquake (ID: 38580111, 35.59900◦/ −
117.37100◦/5.7 km), a M 3.0 earthquake (ID: 38659655, 35.68417◦/ − 117.52483◦/9.2 km), and a

M 2.5 earthquake (ID: 38635783, 35.59617◦/−117.43250◦/6.4 km). The waveforms are band-pass

filtered at 0.2 to 45.0 Hz with a causal 2nd-order Butterworth filter. The event IDs and locations

are from the SCEDC catalog (Hutton et al., 2010).
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