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1 Description of Python routines for trapdoor
VRM

The following Python routines are used to model trapdoor VRM processes. The
corresponding Jupyter notebooks are provided.

1.1 Nearly uniform distribution of points on the sphere

The first function is generating a numpy array of unit vectors in three dimen-
sions, that nearly uniformly covers the unit sphere and contains for each vector
also the antipodal vector.

import numpy as np

import matplotlib.pyplot as plt

from scipy.spatial import SphericalVoronoi
import math

5 from numba import njit
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def fibonacci_symsphere (samples=100):
points = []
phi = math.pi * (math.sqrt(5.) - 1.)
for i in range(samples):
z =1 - (i / float(samples - 1))
radius = math.sqrt(l - z * z)

theta = phi * i

math.cos(theta) * radius
math.sin(theta) * radius

X
y

points.append ((x, y, z))
points.append ((-x, -y, -z))

return np.array(points)

1.2 Fast calculation of trapdoor VRM

To use the numba in-place compiler ’@Qnjit’ for accelerating the nested summing
involved in tVRM calculation, a fast function is defined that lies outside the
later defined class "Trap_-VRM _Density’. This function performs the main task
in tVRM modeling by updating the occupation p for each parameter combina-
tion of barrier w (E1), magnetic moment energy ¢ (MH), and magnetic moment
direction u (dirs[k] weighted by dir_weights[k]). The updating is done by
performing a time step ¢ of the exponential decay using the individually cal-
culated appropriate decay constant p;2. The loop also calculates the average
magnetic moment after the time step by adding all moments gu with their
correct weight and occupation density.
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def _fast_Trap(b,m,d,fd,t,E1,MH,dirs,rho,dir_weights):
avmag=np.zeros (3)
for i in range(b):
for j in range(m):
for k in range(d):
pl2=np.exp(-(E1[i]+MH[jl*np.dot (fd,dirs[k])) ) #
decay constant for specific barrier
rho[i,j,k]l*=np.exp(-pl2*t) # updating decay of
state density during time t
avmag+=dirs [k]*MH[jl*rho[i,j,k]l*dir_weights[k] #
contribution to total magnetization
return avmag

1.3 Trapdoor VRM density class

The main functions to define and calculate tVRM models are encapsulated in
the "Trap_VRM _Density’ class. It has three parameters containing the list of
energy barriers w, the list of g values and the list of magnetic moment direc-
tions u. With initialization the lengths of these lists are calculated and also the
weights of the individual directions through the area of their spherical Voronoi
cell. Initially a constant density is assigned to all states, but this can be changed
to the density described in the main article by calling the function ’set_density’
which requires a and o as parameters. The evolution of the state occupation p is
performed through the function ’density_evolve’ that also uses the helper func-
tion ’time_rescale’ to convert the human readable time scales m,h,d,a.ka,Ma,Ga
into multiples of 79. The computationally challenging part of ’density_evolve’ is
performed by calling the previously described ’_fast_Trap’ function.

class Trap_VRM_Density:
def __init__(self, bar, mag, directions):
self .b=np.shape(bar) [0] # Length of energy barrier list
self .m=np.shape(mag) [0] # Length of magnetic field emnergy
list (for given h)
self .d=np.shape(directions) [0] # Number of directions on

the sphere

self.w_min=bar [0]
self.w_max=bar [-1]

self.t0= 1e-9 # tauO0 in unit seconds

self .E1 = bar # [Energy barrier list in units k T

self .MH = mag # Magnetic field energy list (for given h)
in units k T

self .dirs =directions # Direction unit vectors on the
sphere

try:

sv = SphericalVoronoi(directions, 1, np.array ([0, O,

0]1)) # Voronoi tesselation with these centers

self.dir_weights=sv.calculate_areas()/4/np.pi #
Weights of all Voronoi cells
except:
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self.dir_weights=np.array([1 for dd in self.dirs])/np.
shape (self.dirs) [0]

self.constant_density ()

def constant_density(self):
self .rho = np.ones((self.b,self.m,self.d)) # all
combinations are assumed to have the same initial probability
self .history=[[’constant density’]] # <clear history

def set_density(self,alpha,sigma ):
self .rho = np.ones((self.b,self.m,self.d)) # all
combinations are assumed to have the same initial probability
i=0; j=0; k=0
for i in range(self.b):
rw= 1/(self.w_max-self.w_min)+ alpha * (self.E1[i
]-0.56%(self.w_max+self.w_min))/(self.w_max-self.w_min)/(self.
w_max-self.w_min)
rw=2*rw/(sigma) /np.sqrt (2*np.pi) # normalization
parameter depends on i only
for j in range(self.m):
rq=rw*np.exp (-0.5*self .MH[jl*self .MH[j]/sigma/sigma

for k in range(self.d):
self .rhol[i,j,k]l= rq
self .history=[[’density reset’,alpha,sigmal]] # clear

history

def time_rescale(self,t,t_unit):

if t_unit==’a’:
t*=60%60%24%x365.25

if t_unit==’'m’:
t*=60

if t_unit==’h’:
t*=60%60

if t_unit==’d’:
t*=60%60%24
if t_unit==’ka’:
t*=60%60%24%365.25%x1000
if t_unit==’Ma’:
t*=60%60%24%365.25%1.¢e6
if t_unit==’Ga’:
t*=60%60%24%365.25%1.e9
t/=self.t0 # time now in units of tau0
return t

def density_evolve(self ,tval,t_unit,field_dir):

t= self.time_rescale(tval,t_unit) # time in units of tau_ 0O

fd=1.0*np.array(field_dir) # non-normalized field
direction e.g. [1,1,1]

norm=np.linalg.norm(£fd)

if (norm>0.0001): # allows for zero field in case of
viscous decay

fd/=norm # unit vector in field direction



avmag=_fast_Trap(self.b,self.m,self.d,fd,t,self.El,self.MH,
self.dirs,self.rho,self.dir_weights)

self .history.append ([tval,t_unit,field_dir ,t,avmag]l)

return avmag

Additional figures
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Figure 1: Top left: Modeled tVRM acquisition in an MD sample with ini-
tial density defined by @« = 0, ¢ = 3 and VRM acquisition in x-direction
for At = 0.5,1,2,5,10,20 x103s (sequence blue to brown). The plot shows
the results of a repeated VRM acquisition in x-direction after this history.
Note the marked non-log(¢) behavior and the systematic dependence on the
previous At marked by red dots. Top right: The same data after subtract-
ing the initial magnetization to simplify comparison to experiments. Bottom
Left: Same as top left, but with initial density defined by o = 0, o = 3 for
At = 0.5,1,2,5,10,20 x103s (sequence blue to brown). Bottom right: The
same data as on the left after subtracting the initial magnetization.



