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Keypoints : 32 

 High resolution snow observations are needed in mountain and forested regions due to 33 

high snow water equivalent uncertainty in these areas. 34 

 At mid-latitudes, snow observations at near peak are most beneficial whereas at high 35 

latitudes, those are most needed during the melt season. 36 

 Substantial uncertainty in snow water storage and dominance of water storage in Tundra 37 

point the need for high accuracy snow estimation. 38 

 39 
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Plain Language Summary 46 

Snow is a major component in the global water resources, Earth’s climate, and ecological 47 

systems. It serves as the primary freshwater supply worldwide, yet we do not know exactly how 48 

much snow exists. Methods to merge multiple observations through a physics-based modeling 49 

framework are a potential solution; however, well-characterized uncertainty associated with any 50 

technique is required. In this study, we apply an ensemble-based land surface modeling approach 51 

to establish a baseline characterization of snow water equivalent (SWE) and its corresponding 52 

uncertainty across North America. Uncertainty is assessed spatially by evaluating ensemble 53 

spread across regions with different topography, snow classes and vegetation, and temporally 54 

throughout the snow accumulation and melt season to address several gaps in our current 55 

understanding of SWE uncertainty. Results indicate that high SWE uncertainty is observed in 56 

mountainous and forested regions, highlighting the need for high-resolution snow observations in 57 

these regions. Substantial uncertainty in snow water storage in Tundra regions and dominance of 58 

water storage in these regions points the need for high accuracy snow estimation. Finally, snow 59 

measurements during the melt season are most needed at high latitudes, whereas observations at 60 

near peak snow accumulations are most beneficial over the mid-latitudes.  61 

 62 

Abstract 63 

The Snow Ensemble Uncertainty Project (SEUP) is an effort to establish a baseline 64 

characterization of snow water equivalent (SWE) uncertainty across North America with the goal 65 

of informing global snow observational needs. An ensemble-based modeling approach, 66 

encompassing a suite of current operational models, is used to assess the uncertainty in SWE and 67 

total snow storage (SWS) estimation during the 2009-2017 period. The highest modeled SWE 68 

uncertainty is observed in mountainous regions, likely due to the relatively deep snow, forcing 69 
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uncertainties, and variability between the different models in resolving the snow processes over 70 

complex terrain. This highlights a need for high-resolution observations in mountains to capture 71 

the high spatial SWE variability. The greatest SWS is found in Tundra regions where, even 72 

though the spatiotemporal variability in modeled SWE is low, there is considerable uncertainty 73 

in the SWS estimates due to the large areal extent over which those estimates are spread. This 74 

highlights the need for high accuracy in snow estimations across the Tundra. In mid-latitude 75 

boreal forests, large uncertainties in both SWE and SWS indicate that vegetation-snow impacts 76 

are a critical area where focused improvements to modeled snow estimation efforts need to be 77 

made. Finally, the SEUP results indicate that SWE uncertainty is driving runoff uncertainty and 78 

measurements may be beneficial in reducing uncertainty in SWE and runoff, during the melt 79 

season at high latitudes (e.g., Tundra and Taiga regions) and in the Western mountain regions, 80 

whereas observations at (or near) peak SWE accumulation are more helpful over the mid-81 

latitudes.  82 

 83 

1 Introduction 84 

Seasonal snow plays an important role in Earth’s climate and ecological systems and 85 

influences the amount of water resources available for agriculture, hydropower, and human 86 

consumption, serving as the primary freshwater supply for more than a billion people worldwide 87 

(Foster et al., 2011). There is a critical need to better understand the role of snow in global 88 

climate and land-atmosphere interactions (Brooks et al., 2011; Robinson & Kukla, 1985; 89 

Stielstra et al., 2015), and associated influences on soil moisture, vegetation health, and 90 

streamflow (Berghuijs et al., 2014; Ryberg et al., 2016; Stewart et al., 2005). Decreases in total 91 

snow water storage can lead to increased droughts (Barnett et al., 2005; Fyfe et al., 2017; 92 
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Mahanama et al., 2012) and wildfires (Westerling et al., 2006). In addition, snowmelt is a 93 

dominant driver of flooding in many regions of the U.S. (Berghuijs et al., 2016).   94 

Though accurate and timely estimates of snow water equivalent (SWE) are required for 95 

water and ecosystem management, obtaining reliable, spatially distributed SWE has been a 96 

challenge, particularly at continental and global scales. At these scales, satellite observations are 97 

ideal, but global SWE observations remain a major gap in snow remote sensing (Dietz et al 2012; 98 

Lettenmaier et al 2015; Nolin 2010), and the U.S. National Research Council committees of the 99 

Decadal Survey (National Academies of Scienecs, Engineering, and Medicine, 2018) identifies 100 

SWE as a missing component of spaceborne water cycle measurements. This has motivated the 101 

advancement of models and remote sensing techniques to estimate global snow characteristics 102 

(e.g., NASA SnowEx, Durand et al. 2019; Kim et al., 2017). Developing the necessary 103 

observational methods for global coverage while also supporting local snow applications is a 104 

significant challenge facing the snow community (Dozier et al., 2016; Lettenmaier et al., 2015). 105 

Both models and remote sensing techniques are impacted by numerous factors, resulting in 106 

significant spatial or temporal errors in SWE estimation.  107 

A potential solution to reduce uncertainty associated with any single technique is to 108 

combine models and remote sensing in a data assimilation framework, but this requires an 109 

understanding of the underlying uncertainty to be employed. In this study, called the Snow 110 

Ensemble Uncertainty Project (SEUP), we apply an ensemble-based land surface modeling 111 

approach to establish a baseline characterization of SWE and its corresponding uncertainty 112 

across North America. The term “SWE uncertainty” used in this study will refer to the range of 113 

SWE estimates across models and is quantified as the ensemble spread. Compared to the use of a 114 

single model realization, ensemble modeling is generally considered a better approach to 115 
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characterize the inherent uncertainties in modeling, with the ensemble spread providing a 116 

measure of the uncertainty in the predictions across models and forcing data (Bohn et al., 2010; 117 

Dirmeyer et al., 2006; Franz et al., 2008; Guo et al., 2007; Kumar et al., 2017; Mitchell et al., 118 

2004; Mudryk et al., 2015; Murphy et al., 2004; Xia et al., 2012). An ensemble evaluation can 119 

also lead to increased skill by combining a variety of model estimates and allowing the 120 

individual model errors to cancel each other out (Xia et al., 2012). We use the ensemble SWE 121 

estimates to assess the general spatial and temporal North American SWE characteristics. 122 

The SEUP ensemble is comprised of 12 ensemble members, created by the combination 123 

of four different land surface models (LSMs) and three different forcing datasets. By using a mix 124 

of different LSMs and boundary conditions, the SEUP ensemble captures the uncertainties from 125 

both these sources.  The design of the SEUP ensemble is focused on current snow capabilities in 126 

macroscale modeling, as the land models and forcing datasets selected here represent models and 127 

datasets currently being employed at key operational centers and systems (described in Section 128 

2.2). The designed experiment is conducted at a 5km spatial resolution for multiple winter snow 129 

seasons (2009-2017). By using a range of forcing products and commonly-used operational 130 

models, we assume that the SEUP ensemble implicitly provides a representation of both sources 131 

of uncertainty. It is likely, however, that the SEUP ensemble may be deficient in representing the 132 

“true uncertainty,” given the possible errors in boundary conditions, model parameters, and 133 

model structure. Nevertheless, the SEUP ensemble establishes an important baseline over the 134 

continental scales to characterize current capabilities and inform global snow observational 135 

requirements. Toward this goal, in this article we strive to address several gaps in our current 136 

understanding of SWE uncertainty with our simulation of snow states over the North American 137 

continental domain, including: 1) Where are the areas of significant uncertainty in SWE?, 2) 138 
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What is the seasonality of SWE uncertainty and its spatial distribution?, 3) How does uncertainty 139 

in SWE vary with key land surface characteristics such as vegetation, topography, and snow 140 

climate?, 4) How do these regions of high SWE uncertainty correlate with runoff uncertainties?.  141 

The paper is organized as follows: Section 2.1 introduces the study area and time period, 142 

followed by the descriptions of the LSMs and forcing datasets used in this study in Sections 2.2 143 

and 2.3, respectively. Section 2.4 provides the details about the experimental design, ensemble-144 

based methods, and datasets used in the uncertainty evaluation. An evaluation of the SEUP 145 

ensemble against a number of reference products is presented in Section 3.1.  Section 3.2 146 

provides the results of SWE uncertainty analysis over North America. The influence of factors 147 

such as topography, snow regime, and vegetation type on SWE/SWS uncertainty is examined in 148 

Section 3.3. Section 3.4 discusses how the snow modeling uncertainty impacts the uncertainty in 149 

the terrestrial water budget components.  Finally, Section 4 provides the major findings and 150 

conclusions of this effort. 151 

2 Study Area and Ensemble Configuration 152 

2.1 Study Area and Time Period 153 

The study area is the North American continental domain consisting of a 0.05° latitude by 154 

0.05° longitude equidistant cylindrical grid that extends from 24.875°N to 71.875°N and 155 

168.625°W to 51.875°W (Figure 1a). The glacier regions are excluded from the study domain as 156 

the representations of glacier processes are limited in the LSMs used here.  These glacier 157 

exclusions are developed using the Global Land Ice Measurement from Space (GLIMS) 158 

geospatial glacier database (Raup et al., 2007). The model integrations and analyses are 159 

performed from 2000 to 2017 with the first 9 years (2000-2009) used as a model spin-up to 160 

initialize the model’s thermal and hydraulic equilibrium states.  161 
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2.2 Land Surface Models (LSMs) 162 

The National Aeronautics and Space Administration (NASA) Land Information System 163 

(LIS; Kumar et al., 2006; Peters-Lidard et al., 2007) is a comprehensive terrestrial modeling 164 

infrastructure designed to facilitate the efficient use and assimilation of terrestrial observations. 165 

This study uses a modeling configuration within the NASA LIS that employs four different land 166 

surface models (LSMs) of varying complexity at a 5km spatial resolution over North America: 1) 167 

Noah version 2.7.1 (Noah2.7.1, Ek et al., 2003), 2) Noah-MP version 3.6 (Noah-MP3.6, Niu et 168 

al., 2011; Yang et al., 2011), 3) Catchment version 2.5 (CLSM-F2.5, Ducharne et al., 2000; 169 

Koster et al., 2000), and 4) Joint UK Land Environment Simulator (JULES, Best et al., 2011, 170 

Blyth et al., 2006, Clark et al., 2011). These models are selected because all are used 171 

operationally at major modeling centers (e.g., Noah2.7.1 is used at the U.S. National Centers for 172 

Environmental Prediction (NCEP), Noah-MP3.6 at the National Water Model (NWM), CLSM-173 

F2.5 at the NASA Global Modeling and Assimilation Office Research (GMAO), and JULES at 174 

the United Kingdom Met Office (UKMO)) to provide a baseline of current operational 175 

capabilities. Though the outputs from these models are used widely for a variety of water 176 

resources management applications, only a few studies have conducted careful examination of 177 

their differences and limitations, particularly over continental spatial scales.  178 

All four LSMs are able to dynamically predict land surface water and energy fluxes in 179 

response to surface meteorological forcing inputs, but they differ in their structural 180 

representation of surface and subsurface water, and energy balance processes. As most land 181 

surface models were originally developed to provide the lower boundary conditions for global 182 

atmospheric models, their applicability is largely assumed to be at coarse spatial scales where the 183 

influence of lateral interactions is negligible. Consequently, similar to other model physics 184 
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components, the snow physics schemes in these models are not designed to resolve processes at 185 

fine spatial scales (e.g., < 100 m), such as the influence of blowing and drifting snow. Further, 186 

the complexity of snow metamorphic process representation varies across these models. The 187 

snow schemes in these models range from a simple single-layer scheme in both Noah2.7.1 and 188 

JULES to three-layer intermediate complexity schemes in both Noah-MP3.6 and CLSM-F2.5, 189 

which greatly influence the snowpack thermodynamics and the resulting timing and presence of 190 

melt (Dutra et al., 2011). It is important to note that initial model conditions and model 191 

parameters used in the operational set-up were not tuned in this study to assess current 192 

configurations (Best et al., 2011, Blyth et al., 2006, Clark et al., 2011, Ducharne et al., 2000, Ek 193 

et al., 2003, Koster et al., 2000, Niu et al., 2011, Yang et al., 2011). The key details of the model 194 

configurations with forcing datasets are summarized in Table S1. 195 

2.3 Forcing Datasets 196 

Three different modern forcing datasets are used to drive the models: 1) Modern-Era 197 

Retrospective Analysis for Research and Applications, version 2 (MERRA2; Gelaro et al., 2017; 198 

Molod et al., 2015), 2) Global Data Assimilation System (GDAS; Derber et al., 1991), and 3) 199 

European Centre for Medium-Range Weather Forecasts (ECMWF; Molteni et al., 1996). All 200 

models are run at 15-minute time intervals. To improve the spatial representativeness of the 201 

coarse resolution meteorological inputs, the input forcing fields were downscaled to a 5 km grid 202 

as follows. Meteorological inputs of near surface air temperature, relative humidity, surface 203 

pressure, wind, and downward longwave radiation are downscaled by applying a lapse-rate and 204 

hypsometric adjustments using the 5 km Shuttle Radar Topography Mission (SRTM) elevation 205 

data. The lapse-rate correction method follows the approach used in the North American Land 206 

Data Assimilation System (NLDAS)-1 and 2 projects (Cosgrove et al., 2003), where a static 207 
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environmental lapse rate of 6.5 K/km is used to apply an elevation adjustment to the coarse 208 

meteorological fields. The downwelling shortwave radiation fields are downscaled using terrain 209 

characteristics of slope and aspect as described in Kumar et al. (2013). Over the east and west-210 

facing slopes, the slope and aspect-based corrections lead to improvements to diurnal processes. 211 

Kumar et al. (2013) demonstrated that these adjustments are particularly important for improving 212 

snow simulations over midlatitude domains in complex topography. The precipitation fields are 213 

downscaled using a variant of the scaling approach of Lenderink et al. (2007) with the high 214 

resolution monthly precipitation climatology dataset, WorldClim (Fick & Hijmans, 2017). The 215 

downscaling is performed by fixing the ratio of high-resolution precipitation climatology to that 216 

of the same climatology at the coarser-scale resolution in order to maintain the heterogeneity of 217 

the precipitation forcing fields. The three global data sets are all derived using global 218 

atmospheric models that assimilate a large collection of surface and atmospheric observations 219 

and differ primarily in the atmospheric model and assimilation system used.  220 

2.4 Methods 221 

2.4.1 SEUP Ensemble Evaluation Methods 222 

We use two metrics to evaluate the SEUP ensemble: 1) ensemble rank (ER), which ranks 223 

the observation relative to the ensemble providing a measure of how well the ensemble 224 

encompasses a reference observation, and 2) continuous rank probability score (CRPS; Matheson 225 

and Winkler, 1976) that measures the difference between the model and the reference 226 

distributions. For computing ER, the ensemble is first organized in the following order: CLSMF-227 

2.5 (ensemble members 1 to 3), JULES (4 to 6), Noah-MP3.6 (7 to 9), and Noah2.7.1 (10 to 12), 228 

with the order within each LSM being the runs forced with ECMWF, GDAS, and MERRA2 data, 229 

respectively. The ensemble SWE at each grid point and each temporal instance is then sorted and 230 
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ordered first. The rank of the reference data within this sorted array is then used as the ER. If the 231 

observation is more than 10% of the highest ensemble member, then the rank is set to 13. As a 232 

demonstrative example, if the ensemble SWE values are 1, 3, 7, 2, 4, 5, 6, 1, 3, 8, 1, 0 units and 233 

the observation has a value of 5 units, the ER of the observation is set to 9 as the sorted array will 234 

be 0, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8. Note that the main objective of the ER metric is to examine 235 

whether the ensemble encompasses the reference data.  236 

CRPS is an often-used performance measure in probabilistic forecasting, computed using 237 

Equation 1. It provides a measure of the degree of difference between the model distribution and 238 

the observation. CRPS reduces to the mean absolute error when used with deterministic (single-239 

member) ensembles.   240 

𝐶𝑅𝑃𝑆 = ∫ (𝑃𝑚 − 𝑃𝑜)2𝑑𝑥 
𝑋=+∞

𝑋=−∞
      (1) 241 

where 𝑃𝑚 represents the cumulative distribution function (CDF) of the model and 𝑃𝑜 represents 242 

the observation occurrence. Note that the SEUP ensemble size (12) is relatively small, which 243 

may affect the resolution of the CDF derived from it. Nevertheless, CRPS provides an integrated 244 

way of capturing the error associated with the SEUP ensemble when compared to reference 245 

measurements, where a low (good) score indicates small ensemble spread that encompasses the 246 

reference observation and a high (bad) score indicates large spread and/or large difference from 247 

the observation.  248 

2.4.2  Reference and Ancillary Datasets used in the Uncertainty Evaluation 249 

The reference datasets used for evaluation in SEUP are: (1) the daily, gridded snow depth, 250 

and SWE analysis from the NOAA National Weather Service’s National Operational Hydrologic 251 

Remote Sensing Center (NOHRSC) SNOw Data Assimilation System (SNODAS; Barrett (2003)) 252 

available at 30 arcseconds spatial resolution, (2) daily gridded estimates of snow depth and SWE 253 
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developed by University of Arizona (UA; Zeng et al. (2018)), and (3) the daily, gridded snow 254 

depth analysis from the Canadian Meteorological Centre (CMC; Brown and Brasnett (2010)) 255 

available at 25 km spatial resolution. All three datasets are model-based, but they incorporate in-256 

situ measurements from various ground networks. SNODAS analyses also encompass satellite 257 

and airborne measurements, meteorological aviation reports, and special aviation reports from 258 

the World Meteorological Organization (WMO). Though these data are subject to errors, this 259 

product provides a consistent, spatially distributed estimate of snowpack conditions throughout 260 

the U.S. and has been used as a comparison dataset in numerous studies (Guan et al., 2013; 261 

Meromy et al., 2013; Vuyovich et al., 2014). The UA analysis is developed using an empirical 262 

temperature index snow model with data from networks such as the National Resources 263 

Conservation Services’ SNOTEL and the National Weather Service’s Cooperative Observer 264 

Program (COOP). The dataset was developed to provide a high-resolution, long-term snow mass 265 

product for use in assessing climate change impacts (Zeng et al. 2018). SNODAS and UA 266 

datasets are available only over the continental U.S., whereas the CMC data are used for snow 267 

evaluation over the entire domain. While the CMC data have been frequently used for LSM 268 

evaluation (Forman et al., 2012; Reichle et al., 2017; Takala et al., 2011), and have been shown 269 

to capture interannual variability well (Brown et al., 2018), several studies have provided 270 

evidence that the data underestimate SWE (Dawson et al, 2016; Wrzesien et al. 2017). Since 271 

CMC data only includes snow depth, we evaluate the modeled snow depth fields (instead of 272 

SWE, when comparing with CMC data) for the sake of uniformity. 273 

A number of ancillary datasets representing topography, vegetation type, and snow class 274 

are used in stratifying the spatial dependence of snow uncertainty. First, to treat mountainous and 275 

non-mountainous regions separately in our study, we upscale Wrzesien et al. (2018)’s 1km 276 
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binary mountain mask to our 5km grid (see Figure 1b). Wrzesien et al. (2018) adopted the 277 

definition of “mountain” from Kapos et al. (2000) based on the elevation, slope, and local relief. 278 

In their work, the mask was divided into eleven individual mountain domains, which we use here 279 

to evaluate SEUP results over mountain areas. Table S2 shows the areas of these eleven 280 

individual mountain ranges. 281 

An uncertainty analysis on SWE estimation is performed across different snow class 282 

regions to understand which regions account for the highest variability. To the best of our 283 

knowledge, analyzing uncertainty in SWE estimation across different snow classes at continental 284 

scales has not been explored in the literature. In this analysis we use a snow classification 285 

proposed by Sturm et al. (1995), and recently updated at a higher (10 km) resolution (Liston and 286 

Sturm, 2014), which analyzes the relationships among textural and stratigraphic characteristics 287 

of snow layers, climate variables (e.g., air temperature, precipitation, and wind speed), and 288 

vegetation to globally categorize terrestrial snow into seven classes: Tundra, Taiga, Maritime, 289 

Ephemeral, Prairie, Warm forest, and Ice. We downscale this global snow classification dataset 290 

to our 5km model grid (from the native 10km spatial resolution). Figure 1c shows the individual 291 

domains of 7 snow classes over North America and Table S3 presents their individual areas.  292 

The Moderate Resolution Imaging Spectroradiometer (MODIS)-derived land cover 293 

employing the International Geosphere-Biosphere Programme (IGBP) land cover classification 294 

method is used to examine the influence of SWE uncertainty to vegetation. For simplicity of 295 

comparison, we reclassify the original 20 different land cover classes into 2 classes. These 296 

reclassified land cover classes (i.e., forested vs non-forested) are displayed in Figure 1d, and 297 

their areas are presented in Table S4.  298 



 14 

3 Results and Discussion 299 

 This section presents and discusses results from a range of perspectives. Section 3.1 300 

compares the ensemble with observations derived from data assimilation techniques. Section 3.2 301 

considers spatial and temporal variation in model uncertainty. Ensemble characteristics are 302 

linked to land surface classification in Section 3.3. Finally, the impact of model uncertainty on 303 

runoff estimation is examined in Section 3.4. 304 

3.1. Evaluation of the SEUP Ensemble  305 

To evaluate the snow estimates from the SEUP ensemble, three available reference 306 

products (described in Section 2.4.2) are used. Figure 2 shows maps of average Ensemble Rank 307 

(ER) and average Continuous Rank Probability Score (CRPS) (see Section 2.4.1) for the SEUP 308 

ensemble compared to three reference datasets during the time period of 2009 to 2017. The 309 

examination of ER indicates that in general the SEUP ensemble encompasses the three reference 310 

measurements. In the SNODAS comparison, ER values larger than 12 can be seen in regions 311 

with larger snowpacks, such as the Rockies, indicating that over these areas the SEUP ensemble 312 

may be biased low. The ER patterns are similar in both SNODAS and UA comparisons, though 313 

the UA comparison shows more spatial variability across different latitudes. Over the high 314 

latitude regions in the CMC comparisons, the low end of the SEUP ensemble envelops the CMC 315 

data, whereas over the other parts of Canada, the reference data is matched by the middle to 316 

higher end of the ensemble.  317 

The CRPS comparison provides a measure of the discrepancies between the SEUP 318 

ensemble and the reference datasets. Over most of the domain, including the northeast/midwest 319 

U.S. and high plains, the CRPS values are low, indicating a small ensemble spread that agrees 320 

with SNODAS and UA data. As expected, the largest CRPS values are observed over locations 321 
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with deep snowpacks, such as the Rocky and Pacific coastal mountains, where the SEUP 322 

ensemble spread is greatest. Similar, but more muted patterns of disagreement are seen with the 323 

CMC data compared to SNODAS and UA over mountainous regions, indicating that the SEUP 324 

simulations are more consistent with CMC in those areas. In the CMC comparison, larger errors 325 

are also observed at high latitudes, which are likely caused by a combination of larger 326 

uncertainties in the boundary conditions and model formulations. Relatively good agreement of 327 

SEUP with SNODAS and UA in the ER and CRPS-based assessments is particularly 328 

encouraging, as it provides a measure of confidence that the ensemble encompasses reality.  329 

3.2 SWE Uncertainty Analysis 330 

3.2.1 Spatial variability of SWE 331 

An overall assessment of the SWE results is shown in Figure 3, which presents the spatial 332 

distributions of ensemble mean SWE, the coefficient of variation of ensemble mean SWE, and 333 

the range of ensemble mean SWE. Because the seasonal timing of the greatest SWE, as we will 334 

show in Section 3.2.2 and the largest uncertainty in SWE differ substantially across the North 335 

American study domain, we first consider a simple annual mean averaged SWE across the entire 336 

time period. Seasonal timing of when the greatest uncertainty occurs is deferred to Section 3.2.2. 337 

For each pixel, the period-, annual-, ensemble mean SWE is computed by taking an average of 3-338 

hourly SWE from 12 ensemble members over the entire study time period. We limit the range of 339 

coefficient of variation displayed from 0 to 1 (including no-snow time periods in the calculation) 340 

for reasons of visual clarity. 341 

The largest spread in ensemble mean SWE is found in regions with the deepest snow (see 342 

Figure 3a and 3c), particularly along the northern Pacific coastline. Eastern Canada along the 343 

northern Atlantic coastline and northern Rocky Mountains also show a high spread of SWE 344 
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between ensemble members. These highly complex terrains have relatively high snowfall 345 

precipitation, and the large spread is likely due to different rain/snow partitioning schemes in 346 

each LSM. Similarly, the spatial distribution of the coefficient of variation shows larger values in 347 

areas with the higher ensemble mean SWE and ensemble spread. This indicates that the larger 348 

spread is not only due to the larger mean SWE in these areas. In addition, Figure 3b also shows 349 

significant variability across the middle of North America, mostly collocated with boreal forest 350 

regions containing denser vegetation, indicating the handling of vegetation on SWE simulations 351 

as another source of dissimilarity among the SEUP ensemble members.   352 

3.2.2 Seasonal variability of SWE 353 

Figure 4 shows spatial maps of the peak SWE (panel a) and the highest SWE spread 354 

(panel b) along with characterizations of the seasonality of the SWE uncertainty (panels c and d). 355 

A measure of the spatial variability on the date of the highest SWE uncertainty is determined by 356 

computing the day of year (DOY) in each water year with the highest ensemble spread and then 357 

averaging DOY across the years to identify the times of high and low uncertainty in SWE over 358 

North America. This average DOY of highest spread is compared with the average DOY of the 359 

peak SWE to determine when the largest variability in the SWE spread occurs within the snow 360 

season. The DOY with the greatest SWE spread ranges from Dec-Apr time frame in the lower 361 

latitudes to May-June months in the high latitudes (Figure 4c). In addition, the seasonality of the 362 

greatest SWE uncertainty at higher elevations, such as over the Rocky Mountains and the Pacific 363 

coastline, is shifted later in the season as compared to the lower elevation areas at the same 364 

latitude.  365 

The largest SWE spread is along the northern Pacific coastline and eastern Canada along 366 

the northern Atlantic coastline (Figure 4a). If the average DOY with the highest SWE spread 367 
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matches that of the peak SWE, it suggests that the largest modeling uncertainty occurs in the 368 

peak winter time period. From Figure 4d, we find that DOYs with the highest SWE spread and 369 

peak SWE are very close to each other in the U.S.. Over Canada, the highest SWE spread has a 370 

later DOY than that from the peak SWE, indicating that the largest disagreements in the model 371 

estimates are during the melt season.  One reason for this could be that the input meteorology has 372 

larger differences over high latitudes, whereas over the continental U.S., they are better 373 

constrained due to the greater availability of ground and radar measurements, resulting in better 374 

agreement in the determination of snow melt regimes.  375 

3.2.3 Interannual variability of SWE  376 

We compare the time series of domain-averaged daily mean SWE for each ensemble to 377 

examine the temporal variability among the ensemble members (Figure 5). Interestingly, the 378 

interannual variability in the peak SWE across the ensemble is small (see Figure 5), indicating 379 

that the simulated total snow water storage in North America as a whole did not change 380 

significantly year by year during this time period. Larger spread in the years of 2010 and 2011 381 

are seen when comparing with other years. At a domain averaged scale, the largest spread in 382 

climatological SWE among the ensemble members is seen during the months of Feb to Apr and 383 

varies by as much as ~60%. In Figure 5, variability due to model differences (e.g., between solid 384 

lines) is generally larger than variability due to forcing data (e.g., between blue lines), consistent 385 

with Broxton et al. (2016).   386 

3.2.4 Impact between different LSMs and forcing data on SWE uncertainty 387 

We further examine the influence of models and forcing data on SWE variability by 388 

comparing each ensemble grouped by LSMs and forcing data. Figure 6 shows the distribution of 389 

domain-averaged, annual mean SWE and indicates that there are smaller differences in SWE 390 
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across the forcing datasets when driven with a common LSM, whereas larger differences are 391 

seen across the LSMs when driven with a common forcing data. This finding, from both 392 

temporal and spatial analyses, indicates that within our ensemble set, the dominant factor driving 393 

uncertainty in SEUP SWE estimates over North America is from the LSM. This result is 394 

consistent with that from Mudryk et al. (2015) using an analogous but more limited ensemble of 395 

gridded snow products (cf. Figure 12 in that paper). Note that both conclusions are based on 396 

analysis at the continental or hemispheric scale, and there could be differences at smaller scales 397 

and/or in topographically complex regions such as mountainous areas. For example, Raleigh et al. 398 

(2016) and Günther et al. (2019) showed the forcing data to be the primary driver of SWE 399 

uncertainty in their study, which focused on a limited number of relatively small sites mostly in 400 

mountainous terrains. Similarly, Yoon et al. (2019) recently showed that the forcing data drove 401 

the uncertainty of model simulated estimates (i.e., precipitation, evaporation, and runoff) over 402 

High Mountain Asia, because of significant differences in the quality of reliable reference 403 

measurements over the domain. Future efforts should focus on evaluating model 404 

parameterizations and snow physics schemes such as sublimation, blowing and drifting snow, 405 

and snow-vegetation interactions to identify how representations of snow physical processes are 406 

driving spread. 407 

3.2.5 Observational needs 408 

The above results are used to motivate recommendations about the spatial and temporal 409 

extent to which snow observations should be collected. For example, from Section 3.2.1 and 410 

3.2.2, the usefulness of observations for reducing SWE uncertainty will be higher during the melt 411 

season in the high latitudes and western mountainous terrain, whereas having observations in the 412 

peak winter is generally more beneficial in the mid-latitudes. Similarly, the timing of snow 413 
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observations for collecting peak SWE changes with latitude. Finally, the results from Section 414 

3.2.4 point to the need for reliable SWE observations, rather than observations of boundary 415 

conditions (such as precipitation) to mitigate the uncertainties in the current state of snow 416 

modeling. 417 

3.3 Uncertainty Analysis for Different Land Classifications 418 

In this section, we further explore the uncertainty in North American SWE estimates 419 

based on different land and snow classifications (described in Section 2.4.2). 420 

3.3.1 Uncertainty Analysis on Different Topography 421 

We first evaluate the spatial variability of ensemble mean SWE within each mountain 422 

range. In Figure 7a, box plots #12 and #13 represent the spatial variability of mean SWE for total 423 

mountain areas and non-mountain areas, respectively. Total mountain areas are computed by 424 

combining the 11 individual mountain domains, and all remaining areas are considered as non-425 

mountain areas. Across the entire continent, the mountain areas show higher spatial variability of 426 

SWE and higher median SWE than in non-mountain areas (median SWE: 50.17mm vs. 23.03mm, 427 

~118% higher in mountain areas). Figure 7a highlights that SWE and its spatial variability differ 428 

from range to range. For example, most coastal mountain ranges (Coast, Alaska, and Torngat) 429 

have higher SWE with greater spatial variability than that of continental ranges (Appalachian, 430 

Brooks, Great Basin, Mackenzie, and U.S. Rockies), excluding the Canadian Rockies. 431 

Comparisons of SWS in each mountain range (Figure 7b) show that ~50% of all mountain snow 432 

in North America is located in the Coast Range and Canadian Rockies, which is consistent with 433 

the findings of Wrzesien et al. (2018).  434 

The variability in the SEUP ensemble spread (i.e., among 12 ensemble members) of SWE 435 

and SWS across different mountain ranges is examined in Figure 7c and 7d. Similar to the spatial 436 
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variability in SWE (Figure 7a), the Coast and Alaska ranges have higher uncertainties in SWE 437 

among ensemble members, followed by the Cascades, Torngat, and Canadian Rockies. Note that 438 

the second highest SWS uncertainty is found in the Canadian Rockies once integrated across the 439 

entirety of the mountain range.  440 

To investigate the temporal variability of SWE over different mountain domains, we 441 

compared the mean seasonal cycle of SWE and SWS.  Figure 8a and 8b show the time series of 442 

daily ensemble mean SWE and SWS for each mountain range, averaged for a water year. From 443 

both comparisons of SWE and SWS, it can be noted that there is significant variability in the 444 

timing of peak (and melt) SWE and SWS across the mountain ranges. The northern mountain 445 

ranges (e.g., Alaska, Brooks, Mackenzie, and Torngat) tend to have later dates of peak SWE and 446 

SWS, from early April to early May, while peak SWE in lower latitude mountain ranges occurs 447 

between February to March. When exploring the time series of SWE and SWS for each 448 

ensemble, we find that JULES simulates non-seasonal snow in the Alaska and Coast mountains 449 

(even after the glacier exclusions, not shown), while other LSMs do not. These different 450 

estimations are likely due to the different snow physics and parameterizations used in each LSM 451 

(see Table S1). The snow simulated in the summer season could explain the higher spread of 452 

SWE seen in Alaska and Coast mountains. 453 

Finally, we use the ensemble-mean seasonal cycle of SWE and SWS to evaluate 454 

differences between mountain areas and non-mountain areas of North America. In Figure 8c and 455 

8d, we find that the daily mean SWE is greater in mountain areas than in non-mountain areas, 456 

while the total daily SWS is greater in non-mountain areas than mountain areas. This contrast is 457 

due to the significant difference in total area between the mountain regions and the non-mountain 458 

regions: non-mountainous areas cover approximately five times more space than mountainous 459 
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areas. For total mountain areas, the maximum SWE is 202 mm and the maximum SWS is 460 

616 𝑘𝑚3. Alternatively, total non-mountain areas have 79 mm of maximum SWE and 988 𝑘𝑚3 461 

of maximum SWS i.e. mountain areas have deeper snow, whereas more snow is stored in non-462 

mountainous areas.  463 

 Compared with previous mountain snow studies over North America, the SEUP peak 464 

mountain SWS is 1.8 times the estimate of 342 𝑘𝑚3 from the Canadian Sea Ice and Snow 465 

Evolution Network (CanSISE) data ensemble of Mudryk et al. (2015) and 0.6 times the estimate 466 

of 1,006 𝑘𝑚3 in Wrzesien et al. (2018). For non-mountain areas, the SEUP peak SWS is ~1.5 467 

times the estimate of 678 𝑘𝑚3 of CanSISE data product. The estimated peak SWS over all of 468 

North America from SEUP is 1,604 𝑘𝑚3, which is 47.6% more than the previous CanSISE 469 

estimate (1,087 𝑘𝑚3) and 4.8% less than the Wrzesien et al. (2018) estimate (1,684 𝑘𝑚3). When 470 

compared with our simulation results, most strikingly, these studies find lower estimation of 471 

SWS even in the non-mountain areas, though additional analysis is needed to determine if this is 472 

due to resolution differences or some other influence. The CanSISE SWE estimate is produced 473 

using a somewhat similar ensemble mean approach of SEUP, by combining observations and 474 

model estimates at 1° spatial resolution. Therefore, the lower estimate of SWS in the CanSISE 475 

data product might be explained by their coarser spatial resolution compared to the simulation 476 

resolution of this study (i.e., at 5km). Studies such as Broxton et al. (2016) have highlighted the 477 

systematic underestimation of SWE from global reanalyses and continental scale LDASs as a 478 

key issue.  Previous studies also highlighted the limitations of coarse-resolution models, 479 

particularly in capturing snow accumulation in mountain areas, and suggested using a resolution 480 

of <10 𝑘𝑚 (Ikeda et al., 2010; Kapnick & Delworth, 2013; Pavelsky et al., 2011; Wrzesien et al., 481 

2017).  482 
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Despite similar identical total North American SWS estimation between SEUP and 483 

Wrzesien et al. (2018), there are significant differences in the partitioning between mountain and 484 

non-mountain SWS. SEUP estimates that 60% of all continental snow is located in non-485 

mountains, while Wrzesien et al. (2018) gave an estimation of 60% of all continental snow in 486 

mountains. The CanSISE results suggested that ~75% of all continental snow is located in non-487 

mountains, though as noted above, CanSISE estimates may be underestimated due to the coarse 488 

modeling resolution, especially in mountain areas. Since Wrzesien et al. (2018) used CanSISE 489 

for non-mountain SWS estimates, it is possible that their partitioning of mountain versus non-490 

mountain snow are overestimated. In addition, while SEUP employs ensemble model 491 

simulations over an 8-year time period, Wrzesien et al. (2018) simulated the mountain snowpack 492 

using a single regional climate model (i.e., the Weather Research and Forecasting, WRF version 493 

3.6 (Skamarock et al., 2008), coupled to the Noah-MP3.6 (Niu et al., 2011)) forced by ERA-494 

Interim for a “representative year” (i.e., different single year for each mountain range). This 495 

proposed “representative climatology” was used at spatial resolutions of 27 and 9𝑘𝑚 for the 496 

outer and inner domains, respectively. One possible reason for their higher SWS estimates in 497 

mountain areas (~63% greater than SEUP) is that their “representative year” had more snow 498 

compared with our average climatology approach over the entire study period, which included 499 

low snow (drought) years. Another reason why Wrzesien et al. (2018) had more snow in the 500 

mountain is because they used a high-resolution (9km) atmospheric model. The coarser 501 

resolution atmospheric models generally do not simulate enough snowfall in the mountains due 502 

to their inability to resolve the steepness of the topography (Lundquist et al., 2019). The use of a 503 

different glacier mask is another possible explanation for this discrepancy. In addition, it is 504 

possible that this single model simulation approach, rather than using an ensemble method, is 505 
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biased in mountain areas, though a comparison with the Gravity Recovery and Climate 506 

Experiment (GRACE; Syed et al. (2009); Tapley et al. (2004); Wahr et al. (2004)) total terrestrial 507 

water storage (TWS) anomaly observations showed reasonable results (not shown). Note that 508 

any change in TWS from GRACE data is not solely due to snow accumulation or melt. We also 509 

compare the variability of SWS among different LSM simulations (not shown) and find that the 510 

highest mountain SWS (812 𝑘𝑚3) was estimated from Noah-MP3.6 simulations while Wrzesien 511 

et al. (2018) showed the SWS estimate of 1,006 𝑘𝑚3 from their simulation of WRF 3.6 using 512 

Noah-MP. Note that the Noah-MP3.6 is the most recent and advanced model among SEUP 513 

LSMs and has been shown to perform better in previous studies (e.g. Wrzesien et al. 2015). 514 

Overall, the analysis of SWE uncertainty over different topographical regimes confirms 515 

that mountain ranges have greater SWE variability among ensemble members than non-516 

mountain regions, likely due to the methods used by the models to resolve the complex and 517 

spatially variable processes over such terrain, and the ability of forcing data to capture 518 

orographic effects. These limitations should be addressed through further evaluation of the 519 

differences and capabilities of LSMs to simulate of mountain snow, and may also benefit from 520 

observational data at high spatio-temporal resolution over such areas. Further, as noted above, 521 

there are still significant disagreements in the current understanding of the basic partition of 522 

SWE and SWS between mountainous and non-mountainous regions, caused by a variety of 523 

factors which are not easy to resolve.  524 

3.3.2 Uncertainty Analysis Stratified by Snow Classes 525 

The distribution of ensemble mean SWE and SWS (Figure 9a and 9b) were computed 526 

over the entire time period using the snow class definitions shown in Figure 1. Across the entire 527 

continent, the Ice region shows the highest estimate of SWE with the highest spatial variability, 528 
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followed by Tundra, Taiga, Maritime, Warm Forest, Prairie, and Ephemeral regions. Higher 529 

latitudes tend to have higher estimates of SWE and greater spatial variability. Non-seasonal snow 530 

was estimated in the Ice region, even though glaciers were excluded, which may explain the 531 

highest SWE and its variability (as discussed earlier in Section 3.3.1). However, the SWS in the 532 

Ice regions makes up less than 2.6% of the total over North America. Most strikingly, we find 533 

that more than 50% of all continental snow is located in the Tundra region (SWS: 281 𝑘𝑚3 with 534 

median SWE: 54 mm).  535 

To evaluate SWE uncertainty by different snow regimes, we compare the ensemble 536 

spread of mean SWE and SWS for each snow class. Figure 9c and 9d show the spread of mean 537 

SWE and SWS for all 12 ensemble members as a function of different snow classes. Both our 538 

spatial variability analysis and uncertainty analysis among ensemble members of SWE and SWS 539 

estimates provide new insights on the relative importance of different snow classes; the Tundra 540 

region has the greatest total SWS and large ensemble spread in those estimates between models; 541 

Taiga and Maritime regions also have a significant fraction of the total North American SWS 542 

and show high variability in SWE estimates likely due to LSM handling of vegetation impacts, 543 

such as canopy interception and sublimation. The SEUP results indicate that SWE estimates in 544 

the Tundra region are more consistent between ensemble members, likely because vegetation is 545 

sparse there; however, given the large areal extent, accurate SWE estimates are especially critical 546 

in estimating total SWS in the Tundra region. Further, we note that the Tundra region is subject 547 

to snow erosion and sublimation losses, two processes that the LSMs used in this study do not 548 

explicitly simulate. These results point to the need for high accuracy in shallow snow 549 

observations that cover large regions, such as Tundra or Prairie, while high spatial resolution in 550 
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these areas may be less important; the high resolution of SWE observation is more suitable for 551 

vegetated areas such as Taiga and Maritime.   552 

3.3.3 Influence of Vegetation on SWE Uncertainty 553 

An assessment of snow estimation uncertainty as a function of vegetation is presented in 554 

this section. Here we focus primarily on the differences in snow simulations over forested and 555 

non-forested areas, since forest snow processes are a model feature that is handled differently 556 

between models (Rutter et al., 2009).  The forest category includes the evergreen forest, 557 

deciduous forest, and mixed forest landcover classes, whereas the non-forest category captures 558 

the rest of the landcover categories of Figure 1d. The spatial variations in ensemble mean SWE 559 

as well as the ensemble mean SWS for forested and non-forested areas are shown in Figure 10a 560 

and 10b, respectively. Figure 10a indicates that the non-forested regions have the larger spatial 561 

variability than the forested areas. The larger spatial variability in SWE over the non-forested 562 

regions is likely explained by the differences in the areal coverage of forests and non-forests 563 

(Figure 1d). The bar plot in Figure 10b shows that 66% of snow in North America is located in 564 

the non-forested regions. 565 

Figure 10c and 10d show the uncertainty in SWE and SWS among the 12 ensembles for 566 

forests and non-forests. For both SWE and SWS, the higher spread is seen in the forested regions. 567 

This finding is consistent with previous studies that showed the larger spread of snow estimates 568 

from model simulations in forested regions (Chen et al., 2014; Essery et al., 2009; Feng et al., 569 

2008; Kim et al., 2019; Rutter et al., 2009). Therefore, these results indicate that future 570 

observational efforts should, in part, focus on forested areas and further highlights the need for 571 

better understanding the effect of forests on snow simulations. 572 
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3.4 Uncertainties in the Runoff Estimation 573 

Since runoff (𝑅) estimation, in particular, is significantly influenced by snow evolution, 574 

here we examine the impact of uncertainty in SWE estimation on the 𝑅 estimates and their 575 

uncertainty across North America. Similar to Figure 4, seasonality of 𝑅 estimates and their 576 

uncertainty are evaluated during each winter season and over the entire time period and 577 

quantified by computing the average DOY with the highest ensemble spread and peak 𝑅. Figure 578 

11 shows the average DOY with the highest spread in order to identify the: (a) times of high 579 

uncertainty in 𝑅, (b) average DOY with the peak 𝑅, (c) highest R ensemble spread, and (d) 580 

magnitude of the peak 𝑅. Variability in the date of the peak 𝑅 uncertainty and peak 𝑅 ranges 581 

from Jun-Aug in the high latitudes, whereas at lower latitudes the dates can be outside this range. 582 

Similar to the patterns in Figure 4c and 4d, the largest spread and peak 𝑅 amounts are seen along 583 

the northern Pacific coastline and in eastern Canada along the northern Atlantic coastline 584 

(excluding the mid-Atlantic and southeastern U.S.).  Figures 11a and 11b indicate that the 585 

seasonality in the highest 𝑅 spread and highest 𝑅 values are generally matched. In other words, 586 

the largest uncertainty in 𝑅 occurs at the same time as the peak 𝑅, which is different from the 587 

patterns shown in Figure 4 where the largest SWE uncertainty is generally during the melt 588 

season after peak SWE was achieved.  589 

Overall, both Figure 4 and Figure 11 show the strong influence of SWE on 𝑅 over most 590 

of North America, and in particular, during the snow melt season. In order to further examine 591 

this, we explore the difference between average DOY of peak SWE and its spread and average 592 

DOY of peak 𝑅 and its spread. Figure 11e shows this date difference of average DOY of highest 593 

uncertainty (DOY of peak spread in 𝑅 minus the DOY of peak spread in SWE) and provides a 594 

measure of the spatio-temporal dependence of SWE uncertainty to 𝑅 uncertainty. Figure 11f 595 
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shows the date difference between the average DOY of highest SWE and highest 𝑅, which 596 

provides a measure of temporal dependence of highest SWE on the highest 𝑅. If this difference 597 

is negative, it likely indicates that SWE is not a primary driver of runoff. On the other hand, if 598 

this difference is positive, it suggests that SWE has an influence on the runoff regime. The 599 

magnitude of this (positive) difference also provides a measure of the timescale over which they 600 

are correlated.  601 

We find, from both figures (11e and 11f), that the times of peak 𝑅 and uncertainty in 602 

peak R occur later in the year than those of peak SWE and uncertainty in peak SWE over most of 603 

the domain. Further, the places where we have the negative values in both Figures are the 604 

locations dominated by non-snow 𝑅 in the lower latitudes. Over the Tundra and Taiga regions, 605 

the differences in the average DOY regimes of SWE and 𝑅 is about 20-40 days, whereas this lag 606 

increases to more than two months over the Prairie regions. Over the mountainous terrain, 𝑅 607 

uncertainty is more closely timed with the SWE uncertainty (~20 days).  608 

This analysis reconfirms that there is generally explicit snow runoff signal during the melt 609 

season and increased uncertainty in R appears related to uncertainty in preceding SWE estimates. 610 

Figures 11e and 11f also provide a measure of the spatio-temporal utility of SWE measurements 611 

when considering the objective of improving 𝑅 estimation. For example, these figures suggest 612 

that SWE estimates approximately 60-80 days prior to the peak flow are likely to provide most 613 

utility to 𝑅 estimation over the Prairie regions. Since the DOY differences are smaller over the 614 

Tundra region, the optimal times for SWE measurements (20 days prior to the peak flow) are 615 

less offset relative to the time of peak 𝑅. Investigation into the utility of SWE observations to 616 

reduce SWE uncertainty, and thereby runoff uncertainty, will be the focus of future efforts. 617 
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4 Summary and Conclusions  618 

This study employs an ensemble modeling approach to quantify the spatial and temporal 619 

uncertainties in SWE over North America, as estimated by operational LSMs and forcing data.  620 

Specifically, the study quantifies how uncertainty in SWE varies with key land surface 621 

characteristics such as topography, vegetation and snow climate, and evaluates the spatio-622 

temporal dependence of significant SWE uncertainty on runoff estimation. A primary goal of this 623 

study is to establish a baseline assessment of current operational capabilities and identify 624 

potential opportunities where improvements or SWE observations could inform both science and 625 

application needs. 626 

The SEUP simulated snow estimates are compared against a number of spatially 627 

distributed reference snow products, which show a good match over the majority of the modeling 628 

domain, with an underestimation over the mountainous regions. The evaluation metrics provide 629 

confirmation that the SEUP ensemble provides a reasonable representation of the snow 630 

uncertainty in macroscale snow modeling. Over the entire North American domain, the analysis 631 

of the SEUP ensemble indicates that the uncertainty in SWE within this ensemble is driven more 632 

by the LSM differences than the choice of forcing data. This suggests that improvements in 633 

model physics or increased observations of SWE (ground or remote sensing) rather than 634 

improvement in meteorological boundary conditions at this macroscale, are likely to provide 635 

more benefit in reducing snow assessment uncertainty. Though given the underestimation of 636 

SWE in mountains by all ensemble members, and high SWE uncertainty found in areas with the 637 

deepest snow, particularly the Pacific coastline, higher resolution atmospheric models may be 638 

needed to resolve topography and orographic effects in these regions.  639 
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Our analysis indicates that there is substantial uncertainty, both SWE and SWS, within 640 

forested regions. The Taiga and Maritime regions have a significant fraction of the total North 641 

American SWS while also exhibiting high variability in SWE estimation due to the influence of 642 

vegetation. The high spread in SWE and SWS seen over the forested areas suggests the need for 643 

improved measurements and modeling of snow in these areas. While these results suggest the 644 

need for additional observational constraints to reduce the uncertainty within the models, deep 645 

snow and forests also present difficult challenges for remote sensing. These areas continue to be 646 

the greatest gaps for global SWE estimation. 647 

The greatest SWS uncertainty is seen in the non-mountainous areas. There are 648 

disagreements in the existing literature as to the relative attribution of snow storage over the 649 

mountainous and non-mountainous regions in North America. Though the mountain SWS 650 

estimates from SEUP are similar to those generated in prior studies, we conclude that the current 651 

partitioning of SWE and SWS between mountainous and non-mountainous areas merits further 652 

investigation. Our results provide new insights on the relative importance of the Tundra snow 653 

regions where the greatest total SWS is found, and where snowmelt can have important 654 

implications on permafrost, arctic ecosystems and global circulation models. Accurate SWE 655 

estimates in shallow snow environments (i.e. tundra and prairie) are critical developing an 656 

accurate estimate of global snow partitioning and reducing SWS uncertainty over these regions.   657 

There is significant variability in the seasonality of SWE uncertainty and the uncertainty 658 

in peak SWE. At mid-latitudes, the average DOY containing peak SWE and the largest SWE 659 

uncertainty occurs in the Dec-Apr time frame. At high latitudes, particularly in Tundra and Taiga 660 

regions, the uncertainty in SWE is largest during May-June, after the peak SWE. These results 661 

suggest that SWE measurements collected during the melt season are likely to provide more 662 
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benefit in reducing SWE uncertainty at high latitudes and in some western mountainous terrain, 663 

whereas observations at (or near) peak SWE accumulation are valuable over the mid-latitudes.  664 

This study also examines the influence of SWE on runoff. The first-order control of SWE 665 

on snowmelt runoff over most of North America is highlighted in this study, which points to the 666 

importance of improved SWE estimates to inform water supply and management applications.  667 

Overall, this study provides a valuable benchmark on the uncertainties in macroscale snow 668 

modeling, which can serve as a guide for prioritizing model improvement needs and developing 669 

observational requirements. Additional work is needed to understand the specific drivers of 670 

uncertainty within model physics, better characterize the snow storage over mountain and non-671 

mountainous regions, and quantify the regional influence of SWE uncertainty on water 672 

availability.  673 
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Figure 1. Snow Ensemble Uncertainty Project (SEUP) domain: (a) domain with terrain elevation. 1054 

Grey areas indicate the excluded glacier regions, (b) individual mountain domains, (c) individual 1055 

snow class domains, and (d) land cover classification used in this study. 1056 
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 1065 

Figure 2. Maps of average ensemble rank (left column) and Continuous Rank Probability Score 1066 

(CRPS (mm); right column) from the SEUP ensemble compared to SNODAS (top row), UA 1067 

(middle row), and CMC (bottom row). SWE is used for SNODAS and UA comparisons, whereas 1068 

snow depth is used for CMC comparison. Ensemble rank represents the rank of the reference 1069 

data within the SEUP ensemble, whereas CRPS, which is the extension of mean absolute error to 1070 

ensemble evaluation, provides a measure of the degree of agreement between the SEUP 1071 

ensemble and the reference data.  1072 
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Figure 3. (a) Spatial distributions of ensemble mean SWE, (b) the coefficient of variation of 1109 

ensemble mean SWE, and (c) the range of ensemble mean SWE. The ensemble mean SWE is 1110 

computed by taking an average of 3 hourly SWE from 12 ensembles over the entire study time 1111 

period (from 2009 to 2017). 1112 
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Figure 4. Spatial distributions of (a) the peak SWE amount, (b) the highest SWE spread amount, 1156 

(c) the average day of year (DOY) with the highest ensemble SWE spread, and (d) the difference 1157 

of average DOY between the highest ensemble SWE spread and the peak SWE (we are only 1158 

showing/examining places where the DOY difference exist). 1159 
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Figure 5. Time series of domain-averaged mean SWE. Different colors and line style were used 1182 

to represent each ensemble; a bold black solid line represents the domain-averaged ensemble 1183 

mean; the units are mm. 1184 
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Figure 6. Distribution of North America mean annual average of SWE (i.e., interannual 1204 

variability), grouped by the LSMs and forcing datasets (e.g., the box of Noah-MP3.6 represents 1205 

the distribution of mean SWE, averaged from Noah-MP3.6 runs with all forcing datasets; the box 1206 

of MERRA2 represents the distribution of mean SWE, averaged from all LSM runs with 1207 

MERRA2 forcing data). The red line indicates SWE median; top and bottom of box are the 75
th

 1208 

and 25
th

 percentiles, and top and bottom of whiskers represent the maximum and minimum SWE 1209 

without outliers. 1210 
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Figure 7. (a) Spatial variability of ensemble mean SWE (in millimeters) within each mountain 1262 

range. Red line indicates SWE median; top and bottom of box are the 75
th

 and 25
th

 percentiles 1263 

and top and bottom of whiskers represent max and min SWE without outliers. (b) Total snow 1264 

water storage (SWS; in cubic kilometers) within each mountain range, computed from average of 1265 

ensemble mean SWE over entire time period. The spread of ensembles for (c) domain and time 1266 

averaged SWE and (d) time averaged SWS for different mountain range. 1267 
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Figure 8. (a) Climatological SWE (in millimeters) within each mountain range, computed from 1309 

domain ensemble mean SWE over a water year. (b) Total snow water storage (SWS; in cubic 1310 

kilometers) climatology within each mountain range, computed from domain ensemble mean 1311 

SWS over a water year. The mean seasonal cycle of domain averaged SWE (c) and SWS (d) for 1312 

mountain areas, non-mountain areas, and North America. 1313 
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Figure 9. Same as Figure 7, but for each snow class.  1350 
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Figure 10. Same as Figure 7, but for vegetation.  1384 
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Figure 11. Spatial distributions of (a) the average day of year (DOY) with the highest ensemble 1445 

𝑅 spread, (b) the average DOY with the peak 𝑅, (c) the highest 𝑅 spread amount, (d) the peak 𝑅 1446 

amount, (e) the difference of average DOY between the highest 𝑅 spread and the highest SWE 1447 

spread, and (f) the difference of average DOY between the peak 𝑅 and the peak SWE.  1448 
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