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Abstract
Irrigation is the largest human intervention in the water cycle that can mod-
ulate climate extremes, yet global irrigation water use (IWU) remains largely
unknown. Microwave remote sensing offers a practical way to quantify IWU
by monitoring changes in soil moisture caused by irrigation. However, high-
resolution satellite soil moisture data is typically infrequent (e.g., 6 -12 days)
and thus may miss irrigation events. This study evaluates the ability to quan-
tify IWU by assimilating high-resolution (1km) SMAP-Sentinel 1 (SMAP-S1)
remotely sensed soil moisture with a physically-based land surface model (LSM)
using a particle batch smoother (PBS). A suite of synthetic experiments is
devised to evaluate different error sources. Results from the synthetic exper-
imentation show that unbiased simulations with known irrigation timing can
produce an accurate irrigation estimate with a mean annual bias of 0.45% and
the mean R2 of 96.5%, relative to observed IWU. Unknown irrigation timing
can significantly deteriorate the model performance by increasing the mean an-
nual bias to 23% and decreasing the mean R2 to 36%. Adding random noise to
synthetic observations does not significantly decrease model performance except
for the experiments with low observation frequency (>12 days). In real-world
experiments, the PBS data assimilation approach provides a mean bias of -
18.6% when the timing of irrigation water use is known. This underestimation
is possibly attributable to missing part of the irrigation signal. Yet, significantly
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higher irrigation was estimated over the irrigated pixels compared to the non-
irrigated pixels, indicating that data assimilation can skillfully convey irrigation
signals to LSMs. LSM calibration provides a 10% improvement to soil moistrue
RMSE relative to the open-loop simulation. PBS data assimilation provides
an additional 50% improvement to simulated soil moisture RMSE by correct-
ing the model state and superimposing the optimal (unmodeled) irrigation on
precipitation forcing.

Keywords: Irrigation water use, high-resolution soil moisture, Particle batch
smoother, SMAP, Sentinel 1, data assimilation

Highlights
• Complex human irrigation decisions can be modeled using the PBS ap-

proach

• Irrigation can be estimated accurately by assimilating a weekly high-
resolution SM data containing the irrigation signal

• Instead of using an irrigation module in the LSM, PBS can be used to
account for irrigation

Introduction
Agricultural production is projected to require a 70% expansion by 2050 as a
result of population growth, climate change, and dietary shifts towards water
intensive products associated with increasing incomes (FAO, 2009, Tilman et
al., 2015). Food production is mainly sustained by irrigation (Jägermeyr et
al., 2015), which is by far the largest consumer of freshwater resources globally
(Döll & Siebert, 2002). However, the planetary limit for freshwater withdrawal is
quickly approaching (or already exceeded) in many parts of the world (Steffen
et al., 2015). Moreover, it is expected that part of the irrigation agriculture
water be re-allocated to higher productivity sectors in the near future (World
Bank, 2020). Thus, authorities seek to limit agricultural water consumption
globally. However, a key requirement to enforce any regulation is monitoring the
water withdrawn by the farmers (Foster et al., 2020). Monitoring groundwater
storage changes through GRACE satellite observations has revealed significant
depletion in major aquifers across the globe (Scanlon et al., 2012, Joodaki et
al., 2014, Frappart at al., 2018), mainly due to unsustainable water withdrawal
(consuming more water than received from rainfall) for agriculture (Doll et al.,
2015). Thus, quantifying Irrigation water use (IWU) is a valuable component for
optimal management of depleting surface and groundwater resources to sustain
crop production (Abbot et al., 2019).

Despite the importance of monitoring agricultural water use, much of the water
withdrawn for irrigation is unmetered due to the high installation and mainte-
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nance costs of required ground sensors (Wells, 2015). For instance, in the US
less than 36% of wells are equipped with a flowmeter (Foster et al., 2020) and
the fraction is much less in the developing countries where smallholder agricul-
ture is the common practice (Wester et al., 2009; Shah, 2014). Even when an
in-situ metering network is in place, there is usually a large gap between the
formal policies and the local practices. Farmers are reported to adopt tactics to
circumvent existing limitations such as illegal surface water diversion, drilling
unlicensed wells, or tampering with meters installed on legal wells (al Naber &
Molle, 2017; Balasubramanya & Stifel, 2020).

Satellite observations provide a unique opportunity to monitor irrigation and ad-
dress many of the above-mentioned issues with in-situ measurements. Thermal
and optical sensors can measure evapotranspiration (ET) using crop coefficients
obtained from satellite-based vegetation indices (Allen et al., 2005; Farg et al.,
2012) or surface energy balance that is highly correlated with irrigation (Allen
et al., 2007; Karimi et al., 2013; Bastiaanssen et al., 2014; Javadian et al., 2019;
Filippelli et al., 2022). However, ET only measures consumptive water use
which is generally less than the amount of irrigation applied to the field.

The irrigation water requirement can be estimated through a soil water deficit
model that assumes irrigation is only triggered when soil moisture is below a
certain threshold and will be continued until the soil moisture reaches the field
capacity (FC) or where the transpiration stress is removed (Chai et al., 2016).
Bretreger et al., (2022), used a constellation of Landsat data to estimate crop
growth stage and crop coefficient and later used this coefficient in a water deficit
model to quantify the IWU. A conceptually similar approach was adopted by
Sadri et al. (2022) to predict the soil water deficit (needed irrigation) with
up to a 14-day lead time using several near-real-time satellite observations and
precipitation prediction in a hybrid physical-statistical machine learning model
(FarmCan). However, in practice, a farmer’s decision to start or end the irriga-
tion, does not necessarily follow the soil moisture status. For instance, a recent
USDA survey in 2017 showed that 75% of farmers irrigated their fields based
on a rule of thumb procedure, such as crop calendar, visual observations, and
“what are neighbors doing!” (Zhang et al., 2021). Another study showed that
the farmers that have experienced loss due to water shortages in the past are
more likely to irrigate more frequently (Balasubramanya et al., 2022). Thus, it
is quite common for an agricultural plot to be over-or under irrigated.

Soil moisture (SM) measurements are needed to account for over- or under-
irrigation. Microwave (MW) remote sensing can measure soil moisture effec-
tively under all weather conditions and is proven to carry irrigation signals
(Lawston, Santanello, et al., 2017; Jalilvand et al., 2021). Brocca et al. (2018)
and Jalilvand et al. (2019) have used satellite SM data with an SM-based
inversion model (SM2RAIN model) to quantify irrigation water use. They re-
laxed some of the assumptions in the soil water deficit model to account for
over-irrigation by allowing deep percolation to the lower soil layer and under-
irrigation by adding a more sophisticated evapotranspiration module that allows
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water-limited evapotranspiration. They quantify the irrigation water use based
on the changes in the MW satellite soil moisture data from ASCAT and AMSR2.
The results were consistent with in-situ observations over a large and intensely
irrigated area, but failed over small agricultural practices, mainly due to spatial
mismatch between coarse-scale MW products (> 25 km) and smallholder agri-
cultural plots (<1km). Despite the promising results from SM2RAIN obtained
from these studies, the SM data itself remains a major challenge to this model,
in that a higher resolution SM product is needed to detect the irrigation signal
(Jalilvand et al., 2019; Zaussinger et al., 2019; Dari et al., 2020; Foster et al.,
2020; Massari et al., 2021; Modanesi et al., 2022), while, increasing the spatial
resolution corresponds with narrower sensor swath width and less frequent re-
trievals (Das et al., 2019). Dari et al. (2020 and 2022) resolved the low temporal
resolution issue by downscaling the coarse spatial but high temporal resolution
data (e.g., SMAP Enhanced 9km product) using methods such as DiSPATCh.
However, as the downscaled soil moisture product uses the thermal observations
from MODIS platform that are affected by clouds and sense only the surface
skin temperature, it might not capture the correct local SM dynamics in deeper
than skin, which is one of the most important factor in the success of SM-based
inverted water balance models such as the SM2RAIN. Therefore, the model
might have a good mean performance at seasonal scale (e.g., due to compen-
satory effect of under-estimation during irrigation period and over-estimation
during the non-irrigated period) but has difficulties in simulating the irrigation
at shorter time steps.

Synergistic use of land surface model (LSM) and satellite data can address the
issue of low frequency high-resolution SM observations. LSMs physically model
land surface fluxes and state variables, including SM, by simultaneously solv-
ing the water and energy balance equations. LSMs may include an irrigation
module to account for irrigation in the land surface processes (Ozdogan et al.,
2010; Y. Pokhrel et al., 2012; Leng et al., 2014, 2017). However, the simplifying
assumptions in the physics of the model and the errors in the input data can
create large errors in the LSM simulation (Modanesi et al., 2021). In situ and
satellite-based data assimilation (DA) can help reduce part of the random errors
in the model simulation and correct the model state based on the observations.
For example, Felfelani et al. (2018) assimilated SMAP SM observations (using
a 1-D Kalman filter) to constrain the target SM in the Community Land Model
(CLM) irrigation module and significantly reduced the irrigation water require-
ment error over an intensely irrigated area in the US. Modanesi et al., (2022)
used an Ensemble Kalman Filter (EnKF) DA to directly assimilate Sentinel 1
backscatter in co- and cross-polarization into the Noah MP LSM with an ir-
rigation scheme. They showed that assimilating Sentinel 1 backscatter in the
VH polarization (that contains LAI information) can slightly improve irrigation
simulations. Still, poor parametrization of the Noah-MP irrigation module does
not allow the DA to improve the irrigation simulation significantly. Indeed, the
irrigation module in most LSMs use a demand-driven formulation that works
similar to the water deficit model and triggers irrigation when the root zone SM
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(RZSM) drops below a certain threshold and continues irrigating until reaching
a target RZSM (Haddeland et al., 2006; Lawston,; Sorooshian et al., 2011; Y.
Pokhrel et al., 2012; Y. N. Pokhrel et al., 2016; Santanello Jr., et al., 2017;
Felfelani et al., 2018). However, these models need information with a high
level of uncertainty such as soil texture, crop type, and fractional irrigated area.
Moreover, they do not explicitly account for the human choices in irrigation
scheduling and amount.

Abolafia‐Rosenzweig et al. (2019) shows that irrigation can be quantified using
a Particle DA method such as a particle batch smoother (PBS). In this method,
the LSM is forced with precipitation superimposed with a range of irrigation,
then the satellite SM data is assimilated with an ensemble of model simulations
(particles) in a defined length of time (window) and particles are weighted based
on the proximity to all the SM observation in that window. These weights can
then be traced to the forcing to obtain the best estimate of water input (irriga-
tion + precipitation) and by subtracting precipitation the amount of irrigation
can be calculated. The main advantage of the PBS over EnKF is that all model
states are corrected in a physically consistent way rather than just updating one
or two assimilated parameters and the weights from the analysis update can be
used to update forcing as well. Moreover, as the SM is assimilated in a batch,
even a 9-day interval between two satellite observations would lead to an R2

larger than 85% relative to a known amount of irrigation (Abolafia‐Rosenzweig
et al., 2019).

In this study, we assimilate SMAP-Sentinel 1 (SMAP-S1) 1km SM data—that
is proven to have the irrigation signal in both the first and second moments of
SM time series (Jalilvand et al., 2021)—with the Variable Infiltration Capacity
(VIC) model using a PBS DA approach. The main objectives of the study are:

1. Remove systematic biases between the LSM and the satellite observations
prior to the data assimilation (Section  2.2)

2. Conduct a series of synthetic studies to evaluate the impact of system
characteristics such as the frequency of the observations, knowledge of ir-
rigation timing, and presence of noise in the observations on the irrigation
estimation (Sections  2.3 and  4.1)

3. Quantify the irrigation water use over multiple irrigated and non-irrigated
1km pixels and evaluate the model performance against in-situ observed
irrigation data (Sections  2.4 and  4.2)

The article is organized as follow: Section  2 describes the PBS method imple-
mentation (Section  2.1), the model calibration prior to the data assimilation
(Section  2.2), the suite of synthetic experiments to evaluate the impact of differ-
ent error sources on the DA system (Section  2.3), and the real-world experiments
(Section  2.4). Section  3 introduces the study area (Section  3.1) and all the in-
put data to the VIC LSM plus satellite SM data used for assimilation and in
situ irrigation observations (Section  3.2). The results of the synthetic and real-
world experiments are presented in Sections  4.1 and  4.2, respectively. Section
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 5 discusses the possible shortcomings and improvements in the PBS method
by pointing to future satellite missions. Section  6 provides conclusions and the
future prospective.

Methodology
A particle batch smoother (PBS) data assimilation approach is used to quantify
the irrigation water use (IWU). Following Abolafia‐Rosenzweig et al. (2019),
we assimilate SMAP-S1 1km SM observations—that is proven to have irriga-
tion signals (Jalilvand et al., 2021) over the study region—with VIC (version:
4.2d) LSM. We conduct a suite of synthetic experiments in an identical twin
setup (Kumar et al., 2015; Abolafia‐Rosenzweig et al., 2019), where truth SM
is created by forcing VIC with precipitation plus a known amount of irrigation,
and then evaluate the model performance under different system characteristics
such as known or unknown irrigation timing, different frequency of observation,
and various noise levels. For optimum DA performance, the systematic bias
between the model and observations must be addressed (Kumar et al., 2012).
We choose an a priori bias correction strategy by calibrating the model against
observations (as opposed to scaling the observations to the model climatology).
Finally, SMAP-S1 SM data are assimilated over multiple irrigated and non-
irrigated pixels and simulated irrigation using the PBS method is evaluated
against in-situ irrigation observations.

Particle Batch Smoother
We use a particle batch smoother (PBS) algorithm to assimilate SMAP-S1 SM
observations with the VIC LSM. PBS is a non-sequential extension of a par-
ticle filter (PF) in which a series of observations within a window of time is
assimilated in a batch to correct the model state. It is shown that using the
same observation data, PBS yields better results compared to the PF (Dong et
al., 2015). The main distinctions of PBS compared to the widely used ensem-
ble Kalman Smoother (EnKS) is that: 1) the model simulation weight can be
traced to the corresponding input forcing (here, precipitation plus irrigation) to
form the posterior probability distribution function (PDF) of the forcing, and
2) PBS maintains mass & energy balance of ensemble members.

Here we describe the PBS implementation. Readers are referred to (Abo-
lafia‐Rosenzweig et al., 2019; Dong et al., 2015) for the detailed presentation of
the method.

The precipitation forcing is created by superimposing a random irrigation value
during the irrigation season.

𝑃 𝑖
particle = 𝑃obs + 𝐼𝑅𝑅𝐺𝑖(𝑟) (1)
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Where 𝑃 𝑖
particle shows the precipitation forcing for each particle, IRR𝐺𝑖(𝑟) is a

random sample from a uniform distribution of irrigation. Since here we choose to
have 99 particles, 𝑃particle would be a 99×1 vector. The range of irrigation (r) is
chosen to be between 0 to 12 mm /day during the irrigation season (May-August
inclusive) and zero elsewhere. We use two scenarios for adding the irrigation:
1) we assumed that we know the irrigation timing or, 2) the irrigation timing
is unknown, and the irrigation is applied continuously. An ensemble of model
states evolves in parallel using a forward model.

𝑥𝑖
𝑡 = 𝑓 (𝑥𝑖

𝑡−1, 𝑢𝑖
𝑡, 𝑏𝑖) + 𝑤𝑖

𝑡 (2)

Where 𝑥𝑖
𝑡 is the model state for particle 𝑖 at time step 𝑡, 𝑢𝑖

𝑡 is the forcing dataset,
𝑏𝑖 is a vector of time-invariant model parameters, 𝑤𝑖

𝑡 is the model error, which
is assumed to be normally distributed and, 𝑓 is the forward model (VIC 4.2d).

The likelihood of observed, y, given particle estimate of, x, is calculated based
on all observations within the window of length L.

𝑝 (𝑦𝑡−𝐿+1∶𝑡 ∣ 𝑥𝑖
𝑡−𝐿+1∶𝑡) = ∏𝑡

𝑗=𝑡−𝐿+1
1

(2𝜋) 𝑛
2 ×det(𝐶𝑣)( 1

2 ) 𝑒−0.5(𝑦𝑗−𝑥𝑖
𝑗)𝑇 𝐶−1

𝑉 (𝑦𝑗−𝑥𝑖
𝑗) (3)

Where 𝑡 − 𝐿 + 1 ∶ 𝑡 represents the window, 𝑛 represents the number of states
or the fluxes that are assimilated (here only SM is assimilated thus, 𝑛 = 1), 𝐶𝑣
is the observation error covariance. We used the SMAP-S1 prescribed error for
Cv. When the window length is 𝐿 = 1 then the observations are assimilated
sequentially otherwise they are assimilated in a single batch in each window.
The weight for each particle (𝑤𝑖

𝑡) in each window is calculated by normalizing
the likelihood of each particle:

𝑤𝑖
𝑡 = 𝑝(𝑦𝑡−𝐿+1∶𝑡 ∣𝑥𝑖

𝑡−𝐿+1∶𝑡)
∑𝑁

𝑖=1 𝑝(𝑦𝑡−𝐿+1∶𝑡 ∣𝑥𝑖
𝑡−𝐿+1∶𝑡) (4)

It is recommended to resample the weights at the beginning of each window to
avoid weight degeneration (a situation where a negligible weight is assigned to
most of the particles) (Moradkhani et al., 2005). We used sequential weights
resampling to resample particles based on the weights in the previous window
(Gordon et al., 1993; Weerts & el Serafy, 2006). This method gives particles
with higher weights a greater chance of propagating their state into the next
window as an initial condition (Dong et al., 2015).

Finally, the expected time series of precipitation plus irrigation (𝐴𝑃𝐵𝑆,𝑡) will be
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𝐴𝑃𝐵𝑆,𝑡 = ∑𝑁
𝑖=1 𝑤𝑖

𝑡 𝑃 𝑖
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑡 (3)

Where 𝑁 is the number of particles (here 𝑁 = 99) and 𝑃 𝑖
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑡 is the particle

𝑖 forcing at time 𝑡. The best-simulated irrigation time series is estimated by
subtracting observed precipitation (𝑃obs) from the 𝐴𝑃𝐵𝑆,𝑡.

A Priori bias correction
Systematic biases between the model and the satellite observations (from SMAP-
S1) must be addressed prior to the analysis step within data assimilation. We
acknowledge that both the SMAP-S1 and the model SM values are different
indices of soil wetness, but here we assume that SMAP-S1 has observability
relative to the in situ measurements. To remove biases, either observations are
scaled to conform to the model’s climatology (e.g., through CDF matching), or
the model is calibrated against observation climatology. The key consideration
is that the bias correction approach should preserve observed irrigation signals
while removing biases between simulated and observed SM (excluding biases
imposed by unmodeled irrigation). The problem with rescaling methods such as
CDF-matching (REF) is that it might remove unmodeled human-induced signals
in SM observations, such as irrigation (Kumar et al., 2015). Therefore, we use
the model calibration approach in a batch mode, as suggested by Kumar et al.
(2012), where a set of observations are used to estimate the model parameters
by minimizing the difference between the model and observations. We choose to
only calibrate the model during the rainy season to avoid erasing the unmodeled
irrigation process. The objective function for model calibration is minimizing
the absolute mean bias between the modeled and the observed SMAP-S1 SM
during the rainy season. According to the sensitivity analysis carried out by
Zhou et al. (2020), the two main parameters that strongly change the first
and second moment of the simulated SM are BLKDN (bulk density) and EXPT
(the exponent in the Campbell’s equation for soil hydraulic properties (Campbell,
1974)). We choose to fit the BLKDN (variation range from 1200 to 1400 [kg/m3])
and EXPT (variation range from 3 to 20 [-]) for SM model calibration. The
ranges are chosen based on the soil physical properties of the case study obtained
from SoilGrid 250 m (www.openlandmap.org) data (Hengl et al., 2017).

Synthetic experiment sensitivity analysis
We use a suite of synthetic experiments to evaluate the sensitivity of the DA
model to the different error sources. The model was evaluated by introducing
sources of error sequentially and combined as shown in Table 1. The synthetic
truth was created by forcing the VIC model with a known amount of irrigation
plus precipitation. Synthetic observations were generated by sampling the truth
simulation at daily, SMAP-S1 frequency, and every 12 days (SMAP-Sentinel 1
A only). To evaluate the impact of noise in the satellite retrievals we run ex-
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periments by imposing random 0-mean Gaussian noise to the synthetic SM
retrievals with a standard error of 0.05 𝑚3/𝑚3 (unbiased root mean square er-
ror (ubRMSE) of SMAP-S1, as mentioned in Das et al., 2019). We run each of
these experiments (EXP No 7-12 in Table 1), 20 times (20 data assimilation ex-
periments with unique sets of random noise imposed on synthetic observations)
and report the mean irrigation of 20 realizations as the final simulated irriga-
tion of that experiment. We further seek to evaluate DA performance when
irrigation timing is known or unknown. In the case of unknown irrigation, we
applied irrigation continuously (all day, every day) throughout the irrigation
season (May-August inclusive). As the range of plausible irrigation applications
is varying based on the climate, crop type, and human choices, we evaluate the
sensitivity of DA performance to changing the range of superimposed irrigation
during the irrigation season.

Real world experiment
We perform real-world data assimilation experiments over multiple irrigated (IR)
and non-irrigated (nIR) pixels in our study region. According to our previous
study (Jalilvand et al., 2021) a high mean absolute deviation (MAD) in the
SMAP-S1 SM time series during the irrigation season is an indicator of irrigation
signal being captured by the satellite observations. Therefore, 4 irrigated pixels
with a high MAD value that are covering an irrigation channel (for which in situ
irrigation data is available) are selected as the IR pixels. Simulated irrigation
depth is divided by the fraction of irrigated area in each pixel that is obtained
from the landuse map of the region (Mousivand et al., 2020). We run the
model over nIR pixels to estimate the amount of false irrigation over the non-
irrigated area. Thereby, 7 nIR pixels located nearby the irrigated area (within
36 km SMAP radiometer footprint that also covers irrigated pixels) all with low
MAD value and landuse/landcover type of range land or rainfed agricultural
are chosen as the nIR pixels (nIR 01). To test the impact of possible irrigation
signal leakage from the IR pixels to the neighboring nIR pixels we choose to run
the model over 4 other nIR pixels that are located far away from the irrigated
pixels (outside of the 36 km base SMAP radiometer footprint that covers the
irrigated area) (nIR 02). All the location of the pixel, underlying MAD value,
and the location of irrigated channels are shown in Figure 1.
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Figure 1 Overview of the study area. Irrigated (IR) and the non-irrigated (nIR)
pixels are chosen based on the SM MAD value (higher MAD for the IR and
lower MAD for the nIR) according to a) location of the irrigated cropland area
b) irrigated pixels (IR) covering one of the irrigated channels for which in situ
data is available c) non-irrigated pixels within the 36km of irrigated pixels (nIR
01) d) non-irrigated pixels (nIR 02) farther down the irrigated area (outside of
the 36 km base SMAP radiometer footprint that covers the irrigated area)

The LSM (VIC) simulation forced with the precipitation only is termed the
open-loop (OL) run, the VIC simulation calibrated against SMAP-S1 SM ob-
servations and forced with precipitation is used as the calibrated simulation
(CAL). The weighted average of simulations forced with precipitation plus a
random amount of irrigation used as the particles is termed the PBS. PBS sim-
ulations are compared with the observed irrigation (Section  3.2.2). Simulated
irrigation over the irrigated and non-irrigated pixels are tested for the difference
of medians using the Wilcoxon right-tale rank-sum test.

Data and the study area
Study area
Urmia lake has experienced a rapid decline of water volume in the past two
decades due to anthropogenic activities and climate change. On the human part,
most of the drying is blamed on the expansion of irrigated agriculture around all
the tributaries to the lake (AghaKouchak et al., 2015; Parsinejad et al., 2022).
Indeed, the agricultural water demand is more than all the surface water input to
the lake combined (Schulz et al., 2020). To stop the drying of the lake different
measures have been taken by the Urmia Lake Restoration Program (ULRP)
including a 40% reduction in irrigation water use that specifically targeted the
agricultural sector (Sima et al., 2021). Later studies show that a 10% more
reduction is needed to buffer the impact of climate change (Schulz et al., 2020).
60% of lake Urmia’s surface water is coming from four southern rivers (Zarineh
rood, Simineh Rood, Mahabad, and Gadarchay) that pass through three major
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irrigated agricultural regions (Miandoab, Mahabad, and Naghadeh). Mahabad
has a fully established irrigation network downstream of the Mahabad Dam and
gravity irrigation is the common irrigation practice in the region (Shadkam et
al., 2016). The main crops cultivated in Mahabad are wheat, barley, and alfalfa,
which are usually irrigated between May to the end of August (Zaman et al.,
2016).

Data
VIC model

Variable Infiltration Capacity (VIC) is a distributed hydrological model (Liang
et al., 1994) that simultaneously solves the water and energy balance equation
on each grid cell independently. We choose to work with VIC 4.2d version that
has the ability to simulate partial vegetation cover and photosynthesis and can
input time-varying vegetation parameters. We run the model at EASE-GRID
2.0, 1 km2 grid (Brodzik et al., 2012) and hourly time steps. Three soil layers
are considered in the model implementation with 0.1 m, 0.9 m, and 1.976 m
depth from the top to the bottom. The first soil layer depth is chosen to be
equal to SMAP nominal sensing depth (10 cm) which according to the recent
study by Feldman et al. (2022) proved to be deeper than 5 cm.

The atmospheric forcing inputs are hourly precipitation, minimum and maxi-
mum temperature, and wind speed. The vegetation forcing including vegeta-
tion fraction, Leaf Area index (LAI), and Albedo, and the soil parameter file
are created based on the 5 km soil data from soil grid 250 m (Hengl et al., 2017).

Atmospheric Forcing

Daily Integrated Multi-satellitE Retrievals for GPM (IMERG) final run V06
product (Huffman et al., 2019) at 0.1° resolution is used as the precipitation
forcing. Wind speed and maximum and minimum air temperature data are
obtained from the GLDAS Noah Land Surface Model L4 3-hourly 0.25° V2.1
(GLDAS_NOAH025_3H) (Rodell et al., 2004). Following Abolafia‐Rosenzweig
et al. (2019), the wind and the precipitation datasets are bicubically resampled
while the temperature dataset is disaggregated bilinearly to the EASE-GRID
2.0, 1 km2 grid. Hourly disaggregation of daily precipitation is performed by
equally dividing the daily precipitation throughout the 24 hours and the hourly
wind and air temperature are created by replicating the same value for each
3-hour interval. We acknowledge that downscaling wind and temperature data
is an error prone process and can play a role in simulated errors at the 1km
resolution, but to the authors’ knowledge, the GLDAS data was the best option
available in this region. Furthermore, our case study is located in an area of
low topographic complexity which tends to have lesser spatial heterogeneity
in temperature and wind. We use the finer resolution product (IMERG) for
precipitation—which is the primary driver of SM variations—to reduce these
errors.
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Vegetation Forcing

Vegetation forcing variables—LAI, Albedo, and vegetation fraction—are
from MODIS products. 8-Day, 500 m MODIS combined Leaf Area Index
(MCD15A2H, V006) is used for the LAI forcing, daily 500 m MODIS combined
Albedo (MCD43A3, V006) is used for the Albedo forcing, and 16-Day, 500 m
EVI (MYD13A1, V006) is used to calculate the vegetation fraction.

Soil Parameters

VIC Soil parameters are generated from the 250 m SoilGrid data (Hengl et al.,
2017) using soil empirical equations (Saxton & Rawls, 2006) at 5 km2 spatial
resolution. This data is upscaled to the model grid using the drop-in-the-bucket
aggregation approach.

SMAP-Sentinel 1

We use an updated version of SMAP-S1 1km SM (Das et al., 2019; Das et al.,
2020) with dynamic vegetation water content that proves to have the irrigation
signal in both the first and second moment of the SM time series (Jalilvand
et al., 2021). The Sentinel 1A AM pass is exclusively merged with either the
same day morning or the previous day afternoon SMAP crossing to ensure the
stability of SM content between two successive radiometer and radar retrievals.
The data is further filtered on pixel level based on time differences between the
Sentinel 1A and SMAP retrievals.

In situ irrigation data

Since 2020, ULRP has installed multiple flowmeters on a number of third-order
channel in the Mahabad irrigation network. Each of the flowmeters measures
the water allotment of roughly 3 km2 of the irrigation cropland. The volume of
the water, the area that is irrigated, and the start and the end of each irrigation
event are recorded. The depth of irrigation (mm/hour) at each irrigation event is
obtained by dividing the volumetric irrigation by the area irrigated and number
of irrigation hours.

Result
Synthetic experiment
The results from the synthetic experiments (summarized in Table 1) show that
prior knowledge of irrigation timing has a significant impact on the accuracy of
estimated irrigation, and assuming continuous irrigation tends to cause overes-
timates. Indeed, in most of the simulations with known irrigation timing, we
obtain a bias of less than 1%, while when the irrigation schedule is unknown, the
average bias between simulated and observed irrigation increases to 22% and
RMSE increases by 5-10 times. Moreover, when irrigation timing is unknown,

12



the model fails to capture the temporal pattern of irrigation (R2 at hourly time-
series drop to less than 40%). Imposing noise on synthetic observations resulted
in less accurate irrigation; although, more frequent observations can help re-
duce the noise impact as they provide more irrigation signal rather than noise
(Abolafia‐Rosenzweig et al., 2019). The uncertainty in synthetic observations is
shown by the red band in the irrigation plots in Figure 2 which are anticorrelated
to the frequency of the observations in each window. This means the possible
range of estimated irrigation can significantly increase (model uncertainty in-
creases) when the temporal resolution of the observations, for example, satellite
SM, is low. This error can also propagate to the next window as potentially
inaccurate particles with high weights have a high probability of propagating to
the next window in the resampling process.

In the zero-noise experiments, the bias is persistently positive (irrigation is over-
estimated) in both known or unknown irrigation timing scenarios, whereas;
when random noise is imposed and irrigation timing is known (EXP No 7, 9
and 11) the bias is nearly zero or negative (irrigation is underestimated). This
is likely partially attributable to missing some irrigation events due to lower
observation frequency.

Table 1- summary of the synthetic experiment results

@ >p(- 12) * >p(- 12) * >p(- 12) * >p(- 12) * >p(- 12) * >p(- 12) *
>p(- 12) * @ Exp No & Noise & Observation frequency & Irrigation timing &
Accumulated irrigation Bias (%) & Irrigation RMSE (mm/hr) & Irrigation R2

&

No noise

& Daily & known & +0.51 & 0.014 & 0.993
2 & & & continuous & +16.67 & 0.141 & 0.394
3 & & SMAP-S1/NISAR frequency & known & +0.41 & 0.026 & 0.977
4 & & & continuous & +22.93 & 0.143 & 0.394
5 & & 12 days

(Sentinel 1A-only) & known & +0.712 & 0.029 & 0.9735
6 & & & continuous & +26.42 & 0.154 & 0.318
7 &

With Noise

20 realization mean

& Daily & known & +0.09 & 0.017 & 0.990
8 & & & continuous & +18.25 & 0.143 & 0.381
9 & & SMAP-S1/NISAR

frequency & known & -3.05 & 0.043 & 0.943
10 & & & continuous & +24.93 & 0.150 & 0.341
11 & & 12 days
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(Sentinel 1A-only) & known & -7.43 & 0.043 & 0.953
12 & & & continuous & +25.71 & 0.161 & 0.254
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Figure 2 Synthetic experiment shows that knowing irrigation timing and having
more frequent SM retrievals significantly improves simulated irrigation. The
left-side plots show the particles (SMparticles) for one model realization that
are colored based on closeness to the synthetic truth SM (SMtruth) shown as a
dashed black line and yellow circles, and the dashed blue line shows the weighted
average of all particles (SMPBS). The right-side plots show the corresponding
irrigation time series where the best irrigation simulation is shown as the dashed
red line (average of 10 realizations when random noise is added) and observed
irrigation is the solid black line, the light red band showing one standard devia-
tion of 10 simulations with random noise. Synthetic experiments are conducted
with different assumptions: (a) EXP No 1: ideal situation; synthetic truth at
daily timesteps, without adding noise and knowing the irrigation timing, (b)
EXP No 7: synthetic truth at daily timestep with random noise added and not
knowing the irrigation timing, (c) EXP No 10: synthetic truth resampled at the
SMAP-S1 frequency, with random noise added and not knowing the irrigation
timing and, (d) EXP No 12: synthetic truth resampled at the SMAP-Sentinel
1 A only frequency (every 12 days), with random noise added and not knowing
the irrigation timing.

Real-world experiment
The model underestimates seasonal cumulative irrigation at the irrigated pix-
els by -18.6% (average of 4 IR pixels) when irrigation timing is known and
overestimates irrigation by 5.5% when the irrigation timing is unknown (Figure
3). The underestimation in the known irrigation simulation is higher for the
real-world experiment than in the corresponding synthetic experiment (Table
1). This might be due to losing part of the irrigation signal in the SMAP-S1A
SM retrievals because of 7-day overpass interval. The coarse spatial resolution
of SMAP-S1 1km observations relative to plot scale agriculture, imperfect LSM
physics, and uncertainty in LSM input data are among the factors contributing
to the prediction errors. On the other hand, mean irrigation efficiency for the en-
tire Urmia Lake basin is less than 40% (Shadkam et al., 2016). Mahabad plain
though, has an established lined irrigation network and might have a higher
efficiency; however, a portion of water is inevitably lost in the delivery system
after the measuring station. Moreover, there are reports of illegal surface water
extraction from the irrigation channels in the region. Thus, in practice, the
amount of water that is used for irrigation is lower and can explain a part of
underestimation by PBS.

Simulations using unknown irrigation timing result in more accurate accumu-
lated irrigation relative to the corresponding synthetic experiment, but this is
attributable to compensatory errors (i.e., the right answer for the wrong rea-
son). In the continuous simulation, we still mostly underestimate irrigation
during the irrigation season (especially from June to the end of the irrigation
season), but the estimation of some irrigation amount during the gap in the
irrigation application compensates for underestimation in the irrigation period.
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The magenta and the green dashed line in the SM plots of Figure 3 (a and c)
show the OL and CAL runs that demonstrate how model calibration removes the
systematic bias at the beginning of the simulation and how PBS DA introduce
the unmodeled irrigation process and improves the simulated SM relative to
SMAP-S1 observations.

Figure 3 Assimilating SMAP-S1 SM data using a PBS approach over irrigated
pixels leads to an underestimation of irrigation. (a) SM timeseries of 99 parti-
cles colored by the weights assigned based on the proximity to SMAP-S1A SM
observations (dashed-black line and yellow dots) and the best-simulated SM
(dashed blue line) when irrigation timing is known, and (c) when it is unknown.
The dashed magenta and green line in the SM time series shows the calibrated
and OL runs. (b) The corresponding time series of IRR particles constructed
by tracing the weights to the particle forcing and the best estimate of irriga-
tion (dashed magenta line) when irrigation timing is known and (d) when it is
unknown.

We estimate nearly zero irrigation in non-irrigated pixels (Figure 4) far away
from the irrigated pixels (outside of the 36 km radiometer base SMAP prod-
uct footprint covering the irrigated area). The estimated irrigation in the nIR
pixels that are located within the same base radiometer SMAP product as the
irrigated pixels is significantly higher than the nIR pixels far away from the IR
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pixels, which can be due to the possible leakage of the irrigation signal from the
IR pixels to the nearby nIR pixels and indicate room for improvement in the
downscaling approach. Yet the amount of irrigation at these neighboring nIR
pixels (nIR01) is significantly lower than the IR pixels (Figure 5).

Figure 4 Nearly zero irrigation is estimated over a non-irrigated pixel far away
from the irrigated area. (a) SM time series of 99 particles colored by the weights
derived from the proximity to the SMAP-S1A SM data (black dashed-(yellow)
dotted line) and the best estimate of SM (dashed blue line) over a non-irrigated
pixel. The dashed-magenta and green line in (a) show the CAL and OL run,
respectively. (b) The corresponding time series of IRR constructed by tracing
the weights to the particle forcing and the best estimate of irrigation (dashed
magenta line).
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Figure 5 Significantly higher irrigation is obtained over the IR pixels (green)
compared to nIR pixels close to the irrigated area (red) and nIR pixels far away
from the irrigated area (blue), (a) during the irrigation season and, (b) during
each month of the irrigation season.

Calibration theoretically remove systematic biases between LSM and observed
SM, excluding differences caused by unmodeled processes such as irrigation.
Figure 6 shows that calibration alone improves simulated SM RMSE relative to
SMAP-S1 SM observations over the irrigated pixels (by nearly 10% on average)
compared to the OL run during the irrigation season. The PBS DA accounts
for the remaining 50% improvement in RMSE by introducing the unmodeled
irrigation forcing and contributing to the reduction of random noise.
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Figure 6 Improvement in SM RMSE against SMAP-S1 observations relative to
OL run after model calibration (red bar) and after both calibration and data
assimilation (red and green bar) during the irrigation season

Discussion
The impact of less frequent retrieval on the estimated irri-
gation
The impact of less frequent SM retrievals on the SM estimation is two-fold: 1) it
is most likely that an irrigation event is missed especially over the arid and semi-
arid areas where the SM memory is low (McColl, Alemohammad, et al., 2017;
McColl, Wang, et al., 2017). This favors significant underestimation of irrigation.
2) Having multiple retrievals in one smoothing window can average out an outlier
observation, however having an outlier (e.g., a very noisy observation) in a
sparse SM time series at either end of the SM spectrum (saturated or residual
SM) can lead to choosing the wettest or the driest particle in that window and
consecutively over-or underestimation of the irrigation, respectively.
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Possible problems with an unknown superimposed irriga-
tion range
The maximum superimposed irrigation value can be among the unknowns in
many regions. When SM observations are close to saturation, the PBS model
will favor the wettest particles. Therefore, if 10 mm irrigation results in the
soil saturation in one window, choosing a 40 mm/day as the maximum of the
supplement irrigation can result in a 4 times higher irrigation estimation in that
window as SM cannot increase beyond saturation. A similar situation can be
seen in the first window of Figure 3, where a saturated observation resulted in
the selection of the wettest particle and the overestimation of irrigation in that
window. Hence, this methodology is not appropriate for irrigation quantification
over regions that maintain saturated soils via irrigation.

Posterior bias correction
The false irrigation estimate at non-irrigated pixels can be treated as the model’s
positive bias and be removed from the irrigation estimation over the irrigated
pixels. However, irrigation should be the only difference between the IR and
the nIR pixels, otherwise the posterior bias correction might remove the true
irrigation signal. Jalilvand et al. (2019) argued that choosing an adjacent nIR
pixel for the posterior bias correction can maximize the climate similarity as the
estimated irrigation at the nIR pixel may exclusively cause by the model bias
rather than a different precipitation pattern. Brombacher et al. (2022) used
a hydrological similarity concept (van Eekelen et al., 2015) to compare actual
evapotranspiration (𝐸𝑇act) of an IR pixel with an average 𝐸𝑇act of natural
(nIR) pixels to calculate the 𝐸𝑇act caused by the irrigation (incremental ET).
They define hydrological similarity based on a set of features derived from soil
texture, DEM, reference ET, and precipitation datasets. The same concept
can be adopted in future studies for the posterior bias correction of irrigation
estimated by the PBS method.

Moving forward and future consideration
Upcoming high-resolution satellite missions

Future satellite missions such as the NASA-ISRO SAR mission (NISAR) with
200 m spatial resolution (Figure 7) and retrieval frequency of 6 days can signifi-
cantly improve the irrigation simulation and quantification as it can observe SM
changes at the scale relevant to the most smallholder plots globally. Indeed, the
non-irrigated area within the 1 km2 SMAP-S1 pixel can contribute to the SM
retrieval and alleviate the irrigation signal. This fact is confirmed by estimating
significantly higher irrigation in the synthetic experiment (where it is assumed
that the satellite SM product backs out the entire irrigation signal), compared
to the corresponding real-world experiment.
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Figure 7 The future NISAR high-resolution SM data can significantly improve
the irrigation simulation at the plot scale using the PBS approach.

Smart particles

Particles can be designed to not superimpose irrigation unless an irrigation
event in an irrigated pixel is detected by the satellite. In our previous study
(Jalilvand et al., 2021), we demonstrate that the IR pixels show a significantly
higher variation (MAD value) in the SM during the irrigation season compared
to the nIR pixels. Thus, the satellite SM MAD value can be used to filter
non-irrigated pixels prior to the DA. Furthermore, irrigation can be added to
the precipitation forcing of the IR pixels when a positive increment in the SM,
which is not caused by precipitation, is observed. This is especially applicable
when more frequent observations, for example, daily, are available from high-
resolution (<1km) satellite SM data.

Conclusion
Irrigation is the largest human-engineered modification in the global water bud-
get that is largely unknown and poorly represented in the land surface and hy-
drological models. Irrigation can directly change the SM which can be detected
through microwave (MW) remote sensing. In this study, we used a particle
batch smoother (PBS) approach to assimilate the SMAP-S1 1km SM data with
the VIC (4.2d) land surface model to quantify the irrigation water use. The
main findings are:

1. By calibrating the model against SMAP-S1 observations during the rainy
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season we reduced systematic biases between the LSM and satellite ob-
served SM. Unlike commonly used rescaling approaches such as CDF-
matching, this bias correction strategy allows for preserving and incor-
porating observed irrigation signals through data assimilation.

2. We evaluate the impact of known error sources by conducting a suite of
synthetic experiments. Results showed that the knowledge of the irrigation
timing can significantly improve the irrigation simulation. Moreover, the
frequency of observations can help reduce the impact of random noise in
the observations.

3. The method is applied to multiple irrigated pixels for which in-situ irri-
gation data was available. We underestimate the irrigation by an average
of 18.6% which can be due to losing part of the irrigation signal in the
SMAP-S1 1km SM retrievals. The presence of non-irrigated areas in 1km
SMAP-S1 SM data can also alleviate the irrigation signal from smallholder
plots.

4. We obtain significantly lower irrigation over the non-irrigated pixels com-
pared to the irrigated pixels. The false irrigation estimated at the nIR
pixels within the same SMAP 36km base pixel as the IR pixels, was sig-
nificantly higher than the far away nIR pixels outside of the 36km SMAP
base footprint. This may be evidence of irrigation signal leakage from
irrigated pixels to nearby non-irrigated pixels.

5. Calibration of the model resulted in an average 10% improvement in the
RMSE while assimilation of SMAP-S1 SM and superimposing the unmod-
eled irrigation forcing with the PBS approach was responsible for an ad-
ditional 50% improvement in the RMSE over the irrigated pixels during
the irrigation season.

6. If the farmers provide their irrigation schedule (i.e., start and end of each
irrigation event), we can theoretically quantify the amount of seasonal
irrigation with 3% accuracy and ~95% correlation (Table 1, EXP No. 9)
using a weekly remotely sensed SM product that maintains the majority
of irrigation signals (potentially NISAR 200m SM data).

7. Improved High-resolution and accurate observations possibly through the
future satellite missions (e.g., NISAR) would reduce the impact of leakage
errors and can help to circumvent the issue of unknown irrigation schedules
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