A statistical model for earthquake and rainfall triggering landslides
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Abstract

The risk associated with coseismic and rainfall-triggered landslides can be apportioned including the spatio-temporal overlapping ot both trigeering events to estimate separate and joint effects. This helps understanding the interactions between primary events triggering a
single secondary hazard type, crucial for generally applicable multi-hazard methods. The proposed is a discrete approximation to a multi-hierarchical point process, providing a building block in a general framework with the potential to be extended to other chains of events.
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Daily landslides are modelled as a non-homogeneous point process at
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Y 1 Figure 7: Expected vs. Observed landslides, against rainfall and earthquake events over time.
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The values A = 150, w = 0.98 produced the best fit to the data. K e ;
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Figure 2: Landslides 1981-2015

Figure 4: Rainfall 1981-2015
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Time precision Jeconds Days Day/Month Multiplicative model: Duration * Intensity * Shaking & S
Location Precision Epicentre Town Town Additive model: Duration 4 Intensity + Shaking o o2 o4 o8 oa o oz o4 oo oa 1 o oz o4 0o os 1
Magnitude My mm /day | number/day Mixture model: (Duration®Intensity) + (Duration™Shaking)
Number of data 4330 1764054 17087 The equations of the three models can be found in block 9. Figure 8: Plots of components vs. components

Table 1: Meta Data

2. "First day" problem 4. ZIP model

6. Information gained

Landslide occurrence times are given to daily precision but there ap- (057 landslides in 12783 days and 138 towns: more than 987 of zero 28— | e
pears to be a problem. . counts at day-location. A standard Poisson model can’t cope, so we ° - Point processes were used to model the triggering influence of
- add an atom of probability at 0 to get a Zero-Inflated Poisson model. | .0 multiple factors in different configurations.
= The probability of n landslides at location z and day ¢ is: _ o - The methodology allows for a spectrum of behavior from
£ = - Got + (1 — qug)exp (—p(z, 1)), n =0 ;;‘?’1_5 - ‘?0 ) "increased probability' |Gill and Malamud, 2014] (an event
g = Pr(N,;=n)= i (4) = ol occurrence increases the chances for a secondary one), to direct
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2 - B T S SR ap— For the Zero Inflated model, the best explanation of excess zeros is g peld T - The additive model was preferred, and the lack of long-term
e the following, which includes the duration component: L £ o . rainfall exerted a strong effect on the likelihood of no landslides
v(x,t) = vy + nCrlz, t) (5) P (Rossi et al. [2010] and Peruccacci et al. [2017]).
Figure 5: Proportion of landslides per day of a month ’ ’ S, o N . . h 1N £ dow d . hauak
| - physically, 15 should be negative, so that long dry periods increase the oo » Next step: examine the possiblity of slow decay 1n earthquake
The problem is not season-related, as it is spread throughout all probability of no landslides. Number of obsarved Iandsldes at location x effects.
months:
S 5. Results Figure 9: Estimated location susceptibilities against number of observed landslides 9.Equations

O other day

E 5 Multiplicative Additive Mixture Figures 7 and 8 show the effect of rainfall on landslides, but also some Additive Model
ig- 111 (Short-term rain) 7.417 5341 6.139 possible seismic overlapping. In figure 9 each dot is a location. A
o iii ii 1> (Long-term rain) 6.147 0 469 0769 model without explanatory power would show a straight line, as each pl,t) = po(x) exp (Cri(e, t) + pCra(z,t) + psCp(z,t))  (6)
o I iiiﬁii 15 (Earthquake) A% 106 6104  5%x10~F (o would be proportional to the number of landslides per location. Multiplicative Model:
A v (ZIP) 109.12 11.798  11.464 p(x,t) = po(z) (exp (mCri(@,t)) + exp (u2Cra(, 1)) )
Figure 6: Proportion of 'first day"' landslides per month V2 (ZIP) 39.02 -22.095 -22.567 References + exp (MSCE(% t)) (7)
Log-likelihood -41045 -39889 -40101

Solution: suppose that for days other than day 1 the true number
of landslides is the recorded number plus some mis-recorded on day
1. We use the Bayes Theorem and the EM algorithm to reallocate

first-day events across the entire month.

Table 2: Parameter estimates and loglikelihoods.

All models have the same number of parameters, so the best model is
the additive model, which has a negative v, term.
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