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Abstract

The risk associated with coseismic and rainfall-triggered landslides can be apportioned including the spatio-temporal overlapping of both triggering events to estimate separate and joint effects. This helps understanding the interactions between primary events triggering a
single secondary hazard type, crucial for generally applicable multi-hazard methods. The proposed is a discrete approximation to a multi-hierarchical point process, providing a building block in a general framework with the potential to be extended to other chains of events.

1. Region and Data sets

Figure 1: Emilia-Romagna

Figure 2: Landslides 1981-2015

Figure 3: Earthquakes 1981-2015

Figure 4: Rainfall 1981-2015

Earthquakes Rainfall Landslides
Time precision Seconds Days Day/Month
Location Precision Epicentre Town Town
Magnitude MW mm/day number/day
Number of data 4330 1764054 7087

Table 1: Meta Data
2. "First day" problem

Landslide occurrence times are given to daily precision but there ap-
pears to be a problem...

Figure 5: Proportion of landslides per day of a month

The problem is not season-related, as it is spread throughout all
months:

Figure 6: Proportion of "first day" landslides per month

Solution: suppose that for days other than day 1 the true number
of landslides is the recorded number plus some mis-recorded on day
1. We use the Bayes Theorem and the EM algorithm to reallocate
first-day events across the entire month.

3. The Model

Daily landslides are modelled as a non-homogeneous point process at
each location. The expected number of landslides is expressed as a
location susceptibility multiplied by a function combining rainfall and
seismic components in various ways.
Shaking: The moment magnitude (m) directly affect the landslide
triggering; the distance from the epicentre (r) has an inverse effect.

CE(x, t) = ∑
t≤tk<t+1

101.5(mk−3)

rβx,k
(1)

Rainfall Intensity: The last two days rainfall average is the best esti-
mate for intensity.

CR1(x, t) = 1
2

t∑
k=t−1

P (x, t) (2)

Rainfall Duration: An exponentially weighted average of the last ∆
days.

CR2(x, t) = 1
∆

∆∑
δ=1

ωδ−1P (x, t− δ − 1), (3)

The values ∆ = 150, ω = 0.98 produced the best fit to the data.

Three models for interaction

Multiplicative model: Duration * Intensity * Shaking
Additive model: Duration + Intensity + Shaking
Mixture model: (Duration*Intensity) + (Duration*Shaking)
The equations of the three models can be found in block 9.

4. ZIP model

7087 landslides in 12783 days and 138 towns: more than 98% of zero
counts at day-location. A standard Poisson model can’t cope, so we
add an atom of probability at 0 to get a Zero-Inflated Poisson model.
The probability of n landslides at location x and day t is:

Pr (Nx,t = n) =



qx,t + (1 − qx,t) exp (−µ(x, t)) , n = 0

(1 − qx,t)exp(− ∑
x µ(x,t))(∑

x µ(x,t))n
n! , n > 0.

(4)

For the Zero Inflated model, the best explanation of excess zeros is
the following, which includes the duration component:

ν(x, t) = ν0 + ν2CR2(x, t) (5)
physically, ν2 should be negative, so that long dry periods increase the
probability of no landslides.

5. Results
Multiplicative Additive Mixture

µ1 (Short-term rain) 7.417 5.341 6.139
µ2 (Long-term rain) 6.147 9.462 9.769
µ3 (Earthquake) 4×10−6 6×10−4 5×10−6

ν0 (ZIP) 109.12 11.798 11.464
ν2 (ZIP) 39.02 -22.095 -22.567
Log-likelihood -41045 -39889 -40101

Table 2: Parameter estimates and loglikelihoods.
All models have the same number of parameters, so the best model is
the additive model, which has a negative ν2 term.

Figure 7: Expected vs. Observed landslides, against rainfall and earthquake events over time.

Figure 8: Plots of components vs. components

6. Information gained

Figure 9: Estimated location susceptibilities against number of observed landslides

Figures 7 and 8 show the effect of rainfall on landslides, but also some
possible seismic overlapping. In figure 9 each dot is a location. A
model without explanatory power would show a straight line, as each
µ0 would be proportional to the number of landslides per location.
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7.Conclusions

• Point processes were used to model the triggering influence of
multiple factors in different configurations.

• The methodology allows for a spectrum of behavior from
"increased probability" [Gill and Malamud, 2014] (an event
occurrence increases the chances for a secondary one), to direct
triggering.

• The additive model was preferred, and the lack of long-term
rainfall exerted a strong effect on the likelihood of no landslides
(Rossi et al. [2010] and Peruccacci et al. [2017]).

• Next step: examine the possiblity of slow decay in earthquake
effects.

9.Equations

Additive Model:
µ(x, t) = µ0(x) exp (µ1CR1(x, t) + µ2CR2(x, t) + µ3CE(x, t)) (6)

Multiplicative Model:
µ(x, t) = µ0(x) (exp (µ1CR1(x, t)) + exp (µ2CR2(x, t)) .)

+ exp (µ3CE(x, t))
(7)

Mixture Model:
µ(x, t) = µ0(x) (exp (µ1CR1(x, t) + µ2CR2(x, t)) +

exp (µ2CR2(x, t) + µ3CE(x, t)) (8)


