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Abstract 15 

Stirring of water by mesoscale currents (“eddies”) leads to large-scale transport of many 16 

important oceanic properties (“tracers”). These eddy-induced transports can be related to the 17 

large-scale tracer gradients, using the concept of turbulent diffusion. The concept is widely used 18 

to describe these transports in the real ocean and to represent them in climate models. This study 19 

focuses on the inherent complexity of the corresponding eddy diffusivity tensor, defined here in 20 

all its spatio-temporal complexity. Results demonstrate that this comprehensive diffusivity tensor 21 

is space-, time-, direction- and tracer-dependent. Using numerical simulations with both 22 

idealized and comprehensive models of the Atlantic circulation, we show that these properties 23 

lead to upgradient eddy fluxes and the potential importance of all tensor components. 24 

Implications of all this complexity for the development of eddy parameterization schemes in 25 

climate models and diffusivity estimates are discussed. 26 

Plain Language Summary 27 

Mesoscale eddies, loosely defined as ocean currents on the spatial scales of tens to hundreds of 28 

kilometers, are ubiquitous in the World Ocean. Relentless stirring of water by these eddies leads 29 

to large-scale transport and redistribution of many dynamically and climatically important 30 

oceanic properties. The efficiency of this process has been conventionally quantified by turbulent 31 

(“eddy”) diffusion. Our study focuses on the inherent complexity of the corresponding eddy 32 

diffusivity tensor, defined here in all its spatio-temporal complexity, without any space and/or 33 

time averaging. Results from this study demonstrate that this diffusivity tensor is space-34 

dependent (inhomogeneous), time-dependent (non-stationary) and direction-dependent 35 

(anisotropic). Using numerical simulations with both idealized (quasigeostrophic) and 36 

comprehensive (primitive-equation) models of the North Atlantic circulation, we show that these 37 

properties lead to upgradient eddy fluxes, that is, to negative eigenvalues of the diffusivity 38 

tensor. We also show that all components of the comprehensive tensor are potentially important 39 

for tracer distributions, and, therefore, cannot be generally neglected. Our results further 40 

demonstrate that the comprehensive diffusivity tensor is tracer-dependent and, therefore, non-41 

unique. Implications of all this complexity for the development of eddy parameterization 42 

schemes and diffusivity estimates are discussed.  43 
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1 Introduction 44 

Mesoscale eddies, loosely defined as ocean currents on the spatial scales of tens to hundreds of 45 

kilometers, are ubiquitous in the World Ocean (Chelton et al., 2007). Relentless stirring of water 46 

by these eddies leads to large-scale transport and redistribution of many dynamically and 47 

climatically important oceanic properties (“tracers”), including heat, salinity and anthropogenic 48 

carbon. As a result, mesoscale eddies play a key role in determining the current and future states 49 

of the World Ocean and Earth Climate, as manifested by strong sensitivity of ocean and climate 50 

simulations to the magnitude and distribution of eddy transports (Gnanadesikan et al., 2013; 51 

McWilliams, 2008; Wiebe & Weaver, 1999).  At the same time, vast majority of ocean 52 

component in modern climate models either completely miss the eddies or only partially resolve 53 

them (Delworth et al., 2012; Williams et al., 2015). The eddy-induced transports in these models 54 

need to be expressed (“parameterized”) in terms of known large-scale properties. This task 55 

requires a thorough study of eddy transport properties and their significance for tracer 56 

distributions. This study reports several new properties of the eddy transport, using the 57 

framework of turbulent eddy diffusivity, which is defined next. 58 

By analogy between this turbulent transport and molecular diffusion, the corresponding flux 59 

F(x,y,z,t) of a tracer c can be written as a linear function of the large-scale tracer 60 

gradient(Prandtl, 1925; Taylor, 1921; Vallis, 2017): 61 

𝑭 = −𝑲𝛻⟨𝑐⟩                                                                              (1)                 62 

where K is the eddy diffusivity tensor and the angle brackets denote the large-scale component 63 

of a field. This eddy diffusivity, with some common simplifications, has been traditionally used 64 

in numerical models to represent (“parameterize”) turbulent fluxes due to the important 65 

unresolved part of the flow. The divergence of the eddy flux enters the tracer equation, along 66 

with advection by the large-scale flow: 67 

𝜕𝑐

𝜕𝑡
+ ∇ ∙ (〈𝒖〉〈𝑐〉) = −∇ ∙ 𝑭, where 𝑭 =  〈𝒖〉𝑐′ + 𝒖′〈𝑐〉 + 𝒖′𝑐′                          (2) 

The eddy flux divergence ∇ ∙ 𝑭 can play a key role in determining tracer evolution and steady 68 

state. For simplicity, we assume that the tracer is conservative, thus ignoring sources and sinks, 69 

and focus only on dynamically passive tracers, thus assuming that the ocean currents are not 70 

affected by c.  71 
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Because of the joint effect of planetary rotation and ocean stratification, the stirring of water by 72 

mesoscale eddies is primarily along surfaces of constant density (isopycnals) in the interior 73 

ocean. Therefore, the main focus here is on the lateral material transport. The general eddy 74 

diffusivity tensor K in a 2D flow can be written as a 2×2 matrix: 75 

𝑲(𝑥, 𝑦, 𝑡) = (
𝐾𝑥𝑥 𝐾𝑥𝑦

𝐾𝑦𝑥 𝐾𝑦𝑦
),                                                             (3) 

where the conventional Cartesian coordinates are used for convenience. Note that a pair of 76 

tracers is needed for a solution of Equation 1, and for that pair the solution is exact and unique. 77 

The seeming simplicity of the flux-gradient relation (Equation 1) hides incredible complexity of 78 

the diffusivity tensor K. Only in purely homogeneous, stationary and isotropic turbulence are the 79 

off-diagonal tensor zero (Kxy=Kyx=0) and the diagonal tensor elements equal to each other 80 

(Kxx=Kyy). In realistic oceanic flows, all K-tensor elements are generally non-zero, distinct (i.e., 81 

the diffusivity is anisotropic) and vary in space and time (i.e., the diffusivity is inhomogeneous 82 

and non-stationary). Observation- and model-based estimates of the simplified eddy diffusivity 83 

exhibit strong dependence on depth, geographical location (Abernathey & Marshall, 2013; 84 

Canuto et al., 2019; Cole et al., 2015; Griesel et al., 2010; Lumpkin et al., 2002; Marshall et al., 85 

2006) and time (Busecke & Abernathey, 2019; Haigh et al., 2020). These estimates usually 86 

involve some spatio-temporal averaging and can be based on either drifter (“particle”) 87 

trajectories or tracer distributions. Both particle-based statistics (Griesel et al., 2010; 88 

Kamenkovich et al., 2009; Kamenkovich et al., 2015; McClean et al., 2002; O'Dwyer et al., 89 

2000; Rypina et al., 2012; Sallee et al., 2008) and tracer-based estimates (Bachman et al., 2020; 90 

Bachman et al., 2017; Eden, 2007; Haigh et al., 2020) also exhibit significant anisotropy. This 91 

anisotropy is important in the typical oceanic case of strong eddies embedded in relatively weak 92 

large-scale circulation (Kamenkovich et al., 2015).   93 

The diffusion approach (Equation 1) is built on an inherent assumption that the K-tensor is 94 

unique for any given turbulent flow. However, some model estimates report significant 95 

sensitivity of a simplified K-tensor to the tracer field (Bachman et al., 2015; 2020; Eden & 96 

Greatbatch, 2009; Haigh et al., 2020). This sensitivity complicates interpretation of K-tensor, 97 

because even the exact solution of (1) for one particular pair of tracers will lead to biases in F for 98 

another set.  99 
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The other serious complication is that F contains some large non-divergent ("rotational") 100 

component (Haigh et al., 2020; Jayne & Marotzke, 2002; Marshall & Shutts, 1981) that does not 101 

affect tracer distribution, but influences K in the flux-gradient relation (1). The rotational flux 102 

can be expected to be tracer-dependent (Bachman et al., 2015) and can lead to negative 103 

diffusivities (Marshall & Shutts, 1981). The separation of F into rotational and divergent 104 

components via the Helmholtz decomposition is, unfortunately, not unique and depends on the 105 

boundary conditions (Jayne & Marotzke, 2002; Maddison et al., 2015; Roberts & Marshall, 106 

2000), which are usually known for the total F but not for its rotational and divergent 107 

components, separately. 108 

2 Numerical Simulations 109 

Two types of simulations are used in this study. The first type is the idealized quasigeostrophic 110 

(QG) double-gyre flow. This flow contains all essential elements of the mid-latitude North 111 

Atlantic or North Pacific: large-scale subpolar and subtropical gyres, separated by a coherent 112 

meandering jet, representing eastward extensions of the Gulf Stream and Kuroshio currents, and 113 

an ambient eddy field. The model is formulated in a square-box flat-bottom ocean basin, which 114 

is a classical idealization that facilitates the analysis and numerical simulations(Haigh et al., 115 

2020). The numerics employs the CABARET scheme (Karabasov et al., 2009) on a uniform 116 

Cartesian grid with 1025 by 1025 grid points and the grid spacing ∆𝑥 = ∆𝑦 = 3.5 km. The 117 

model has 3 vertical layers. The length of the tracer simulations is 180 days. 118 

The second model is a comprehensive, general circulation model (GCM) of the entire Atlantic, 119 

used in the “offline” regime, which means that tracers are simulated using previously computed 120 

physical fields, thus, making the model computationally very efficient (Kamenkovich et al., 121 

2017).  The physical variables used in offline models are calculated in a separate “online” 122 

simulation with the HYbrid Coordinate Ocean Model (HYCOM) (Bleck, 2002; Chassignet et al., 123 

2003), which uses isopycnal coordinates in the open ocean and below the mixed layer. 124 

HYCOM's coordinate system dynamically transitions to other coordinate types (sigma- and z-125 

coordinates) to provide optimal resolution in the surface mixed layer, in high-latitude unstratified 126 

regions, and near coasts. The online simulation has a global domain with 1/12
o
 spatial resolution; 127 

the horizontal grid is rectilinear south of 47
o
N followed by an Arctic bipolar patch. The vertical 128 

grid has 41 hybrid layers. Both model solutions are initialized with 2D tracer configurations 129 
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which initially are vertically uniform but have different horizontal profiles. The QG model is 130 

integrated for 180 days, while the GCM is used for 14 overlapping segments, 110 days each.  131 

3 Tensor calculation and basic properties 132 

The definition of the mean circulation and large-scale tracer field is not unique, and the resulting 133 

K-tensor depends significantly on it. The mesoscale is not clearly separated from the large-scale 134 

in ocean models and observations(McWilliams, 2008), and an unambiguous definition of the 135 

eddies is missing. The large scales are often defined as long-term time mean (Vallis, 2017), 136 

although the utility of this definition is far from clear for transient tracers. Thus, a fundamental 137 

uncertainty in defining the eddies leads to uncertainty in defining the eddy diffusivity. This study 138 

defines mesoscale using spatial filtering, which is relevant to the issue of spatial resolution of 139 

essies in numerical models. For example, the QG analysis in this study employs the low-pass 140 

spatial filtering <…> intended to remove scales shorter than 112.5 km and does not use time 141 

averaging, while the GCM analysis uses a square filter width of approximately 2 degrees 142 

longitude and a 5-year mean for the time averaging. 143 

The flux-gradient relation can be solved exactly for any pair of independent tracers. We use 6 144 

linear and 6 nonlinear tracers (15 independent pairs in each set). The linear tracers are linear 145 

functions of x and y (constant gradient) with a constant added, which means that solving (1) 146 

must produce a unique diffusivity tensor if the rotational component is properly removed (Sun, 147 

2020). This is because that any linear tracer can be expressed as a linear combination of only two 148 

independent tracers. In the GCM simulations, we use 4 independent tracers (6 tracer pairs). Each 149 

of these tracers decreases exponentially southward from 31
o
S and northward from the grid point 150 

1800 to 1954 (latitude varies due to curvilinear coordinates used in HYCOM).  151 

The rotational component is removed from each tracer flux, using the Helmholtz decomposition 152 

(Lau & Wallace, 1979): 153 

∇ ∙ 𝑭 = ∇2Φ,   ∇ × 𝑭 = ∇2Ψ, 

𝑭 = 𝑭𝒅𝒊𝒗 + 𝑭𝒓𝒐𝒕,                                                                        (4) 

𝑭𝒅𝒊𝒗 = ∇Φ,   𝑭𝒓𝒐𝒕 = ∇ × Ψ. 

In the QG simulations, we adopt the approach of Maddison et al. (2015) and set Φ = 0 at the 154 

lateral boundaries, which minimizes the magnitude of 𝑭𝒅𝒊𝒗. GCM simulations have open 155 
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boundaries in the north and south, and a different approach is used. We chose to use the 156 

optimization technique with Tikhonov regularization (Li et al., 2006), which minimizes the 157 

opposing non-rotational and non-divergent in 𝑭𝑑𝑖𝑣 and (𝑭 − 𝑭𝑑𝑖𝑣). Note that ∇ ∙ 𝑭𝑑𝑖𝑣 = ∇ ∙ 𝑭 158 

regardless of the boundary conditions used in the Helmholtz decomposition, although the 159 

diffusivity tensor K is derived from 𝑭𝒅𝒊𝒗 and, thus, is highly sensitive to the choice of the 160 

boundary conditions. 161 

The diffusivity tensor K can be decomposed into the symmetric and anti-symmetric components: 162 

𝑲 = 𝑲𝒔 + 𝑲𝒂 = (
𝐾𝑥𝑥 S12

S12 𝐾𝑦𝑦
) + (

0 A12

−A12 0
) , S12 =

1

2
(𝐾𝑥𝑦 + 𝐾𝑦𝑥),

A12

=
1

2
(𝐾𝑥𝑦 − 𝐾𝑦𝑥).                                                                                                     (5) 

When the diffusivity is isotropic and inhomogeneous, these two components of the full tensor 163 

correspond to the divergent (zero curl and non-zero divergence) and rotational (zero divergence 164 

and non-zero curl) components, −𝑲𝒔𝜵⟨𝑐⟩ and −𝑲𝒂𝜵⟨𝑐⟩, respectively. It is, however, easy to see 165 

that the curl of the symmetric part is non-zero, ∇ × 𝑲𝒔𝜵⟨𝑐⟩ ≠ 0, if 𝑲𝒔 is anisotropic (𝐾𝑥𝑥 ≠ 𝐾𝑦𝑦) 166 

or inhomogeneous. Because the rotational component is exactly zero in the full 𝑭𝒅𝒊𝒗, the 167 

rotational components in symmetric and antisymmetric parts cancel each other. Similarly, the 168 

antisymmetric part has non-zero divergence for the inhomogeneous tensor: ∇ ∙ 𝑲𝒂𝜵⟨𝑐⟩ =169 

𝐽(𝐴, ⟨𝑐⟩) ≠ 0. For example, our QG estimates show that the r.m.s. of the divergence of 𝑲𝑠∇〈𝑐〉 170 

and 𝑲𝑎∇〈𝑐〉 are both 2.5x10
-9

 s
-1

 (tracer is unitless), and the curl of these components is 6.5x10
3 

171 

s
-1

 and 6.7x10
3
 s

-1
, respectively. 172 

The symmetric (“diffusive”) part of the that tensor can be conveniently diagonalized by rotating 173 

the local coordinate through an angle θ (Kamenkovich et al., 2015; Rypina et al., 2012): 174 

𝑲𝑠 = (
𝜆1 0
0 𝜆2

)                                                                              (6) 

The angle θ defines the direction of the maximal tracer spreading, and the first eigenvalue is the 175 

spreading rate in this direction. The second eigenvalue corresponds to the spreading rate in the 176 

direction perpendicular to the maximal one. Both eigenvalues are real. 177 
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4.1 Polarity and time dependence 178 

An intriguing new feature of the comprehensive K-tensor is the persistence of pairs of positive 179 

and negative eigenvalues 𝜆1 and 𝜆2 (Figs. 1-2), which we will refer to as “polarity”. Many 180 

previous studies excluded negative diffusivities, either by using asymptotic estimates based on 181 

particle trajectories (Kamenkovich et al., 2015; Rypina et al., 2012) or by explicitly neglecting 182 

negative eigenvalues in the diffusivity tensor (Bachman et al., 2020). Polar eigenvalues imply 183 

that the tracer concentration anomalies are being stretched in one direction and squeezed in the 184 

direction normal to that, leading to transient filamentation of the tracer field. Moreover, the 185 

polarity, which is ubiquitous in both QG and GCM solutions, is a robust feature of the 186 

instantaneous flow and is observed regardless of whether and how the rotational component of 𝑭 187 

is removed.  188 

All components of the comprehensive tensor have significant time dependence, with the standard 189 

deviations comparable with and exceeding the corresponding time-mean values (Fig.3). The 190 

uncovered time dependence has important implications not only for transient tracer behavior, but 191 

also for time-mean tracer structure. The latter point can be illustrated by the time-average eddy 192 

flux 𝑭𝑑𝑖𝑣
̅̅ ̅̅ ̅̅ . To see this, we can write the time average of (1) in two different ways: 193 

𝑭𝑑𝑖𝑣
̅̅ ̅̅ ̅̅ = −𝑲̅𝜵⟨𝑐⟩̅̅ ̅̅ − 𝑲′𝛁〈𝑐′〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,   𝑲′ = 𝑲 − 𝑲̅,   𝑐′ = 𝑐 − 𝑐̅    or    𝑭𝑑𝑖𝑣

̅̅ ̅̅ ̅̅ = −𝑲̃𝜵⟨𝑐⟩̅̅ ̅̅ .           (4) 

The above relation implies that (i) 𝑲′ is at least as important as 𝑲̅; and (ii) 𝑲̃ is different from 𝑲̅. 194 

Both properties are confirmed by our calculations. The most practical approach for the 195 

parametrization is then unclear. If time-dependent K(x,y,t) is used, 𝑭𝑑𝑖𝑣
̅̅ ̅̅ ̅̅  will depend on the 196 

accuracy of simulating tracer variance, whereas using 𝑲̃ can distort the important variability in 197 

𝑭𝑑𝑖𝑣. 198 

Due to the non-stationary nature of the K-tensor, the sign of its eigenvalues and the 199 

corresponding angle θ both change in time. Although the polarity is reduced in 𝑲̅ and 𝑲̃, it 200 

continues to be observed even in these fields (not shown), which implies that eddies lead to 201 

persistent filamentation. As the sharpening of tracer gradients cannot continue forever, the 202 

effects of eddies have to be eventually balanced by the large-scale advection and small-scale 203 

diffusion. Persistent upgradient eddy potential vorticity fluxes (negative diffusivity) have indeed 204 

been reported in the eastward extensions of the Kuroshio (Waterman et al., 2011; Waterman & 205 
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Jayne, 2011) and Gulf Stream (Shevchenko & Berloff, 2015); these studies, however, did not 206 

report the diffusivity tensor and the sign of the along-flow diffusivity. Another possibility is that 207 

negative eigenvalues are associated with non-divergent, rotational component of 𝑲𝑠∇〈𝑐〉. 208 

Regardless of the origin and interpretation of the polarity, neglecting the negative values can 209 

potentially lead to serious biases in the eddy fluxes and tracer distributions. 210 

4.3 Dependence on tracers 211 

Another unexpected property of the comprehensive K-tensor is the dependence of its symmetric 212 

(“diffusive”) component on the tracer field (Sun, 2020), which implies that Ks(x,y,t) is not 213 

uniquely determined by the flow and exists for each tracer pair separately; see also Bachman et 214 

al. (2020). As the manifestation of this property, the ensemble standard deviation for the first 215 

eigenvalue 𝜆1 of the symmetric tensor 𝑲𝒔, calculated for among various pairs of tracers exceeds 216 

the ensemble mean in most of the domain (Figs. 4 and 5). Even more significantly, the spread in 217 

the values of the diffusive-flux divergence ∇ ∙ 𝑲𝒔∇〈𝑐〉 is large (not shown).  218 

The rotational component can be naturally suspected of being the cause of the above non-219 

uniqueness of the K-tensor. Nevertheless, our results demonstrate that the non-uniqueness is not 220 

significantly reduced when the rotational component is removed for a general set of tracers: the 221 

non-uniqueness is similar in magnitude for 𝑭 and 𝑭𝑑𝑖𝑣 in both the QG and GCM simulations 222 

(Fig. 4c-f). On the other hand, any pair of initially linear (constant gradient) tracers must lead to 223 

the same diffusivity from 𝑭𝑑𝑖𝑣 (see Methods), which can conveniently serve as a test of how well 224 

the rotational component is removed. Indeed, in this case the ensemble spread is reduced 225 

dramatically (Fig.4a-b). 226 

5 Implications for eddy parameterization and diffusivity estimates 227 

Using the exact solution for K(x,y,t) from (1) would lead to an accurate representation of the 228 

eddy-flux divergence for the given tracer pair, regardless of how and whether the rotational 229 

component is removed. An ultimate goal of the diffusion-based description of the eddy-induced 230 

transports is, however, parameterization of K(x,y,t) in terms of large-scale currents and 231 

stratification, that is, arrival at some generalized “turbulence closure”. The corresponding 232 

approximate tensor 𝑲𝒑 ≈ 𝑲(𝑥, 𝑦, 𝑡) is intended to reproduce the most important effects of eddies 233 

on the large-scale tracer fields, without explicitly resolving the mesoscale. The uncovered 234 
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complexity of the diffusivity tensor implies that the parameterized eddy flux divergence −∇ ∙235 

𝑲𝒑𝛻⟨𝑐⟩ will inevitably contain biases with respect to 𝛁 ∙ 𝑭, but the significance of these biases 236 

for tracer distribution remains to be studied. These biases can be particularly hard to control, 237 

since the diffusive flux will have a large rotational component which affects the K-tensor 238 

estimates, according to our analysis. Since an exact match between Kp and K is practically 239 

impossible, it is important to estimate what properties of the diffusivity tensor are the most 240 

important for tracer distribution. This study describes several examples of such properties. 241 

K-tensor depends on the flow decomposition (definition of the large-scale <…>), which is 242 

loosely defined in most cases. This study defines mesoscale based on spatial rather than temporal 243 

scales, which is more directly relevant to the issue of its parameterization in numerical models. 244 

The spatial filter characteristics cannot, however, be easily derived from model resolution alone, 245 

since it is unclear to what extent different dynamical scales are actually resolved.  K-tensor is 246 

also non-stationary, and a meaningful definition of Kp will depend on the time scales of large-247 

scale tracer variability. The analysis of the dominant spatial and temporal scales will need to be 248 

carried out in each particular case. Negative eigenvalues in the tensor and the potential 249 

importance of all tensor components dramatically complicates the definition of the closure. 250 

These negative diffusivities are, however, transient, and the corresponding direction of spreading 251 

constantly changes in time. The importance of this variability needs to be assessed. In addition, 252 

the effects of negative eigenvalues can be fully compensated by the skew part of the diffusivity 253 

tensor, which is divergent and, thus, also plays a role in tracer distribution. Observation-based 254 

estimates, on the other hand, present additional challenges.  Given the discovered complexity, 255 

obtaining accurate estimates of K from drifter and float trajectories (Lagrangian observations) 256 

appears highly problematic, because these asymptotic and spatially nonlocal methods will not be 257 

able to accurately capture the spatial and temporal variability of the K-tensor. 258 

Finally, the comprehensive diffusivity tensor is a function of the tracer field, formally violating 259 

assumptions of the classical, tracer-independent flux-gradient relation. A practical approach to 260 

this problem is to use multi-tracer ensemble-averaged estimates of K (Bachman et al., 2020; 261 

Bachman et al., 2017), but the corresponding and unavoidable biases for each given tracer pair 262 

remain to be assessed and understood. An alternative solution is to expand the traditional flux-263 

gradient representation of the eddy flux by adding new, non-diffusive terms. Such expansion can 264 
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involve terms that explicitly depend on either the tracer concentration or its curvature, as well as 265 

purely stochastic components. Note that the latter stochastic component can be expected to be 266 

effectively removed by using the multi-tracer method.  267 

Since the most important properties and aspects of Kp remain to be identified, we do not yet 268 

know to what extent they are affected by the full tensor properties described in this study. 269 

Although it is tempting to conclude that the only the direct resolution of the mesoscale can lead 270 

to accurate tracer simulations, we must realize that the task of its parameterization will remain 271 

relevant for some time. 272 
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 284 
 285 

Figure 1: Results of the QG simulations at day 183: (a) tracer anomaly c’=c(x,y,t)-c(x,y,0); (b) 286 

divergence of the tracer flux (tracer units times 10
-6

 s
-1

); (c)-(d) eigenvalues and (e)-(f) off-287 

diagonal terms of the diffusivity tensor (units are 10
4
 m

2
s

-1
). 288 

  289 
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 290 

 291 
 292 

 293 

Figure 2: Results of the GCM simulations, layer 17 (depth of approximately 300-600 m): (a) 294 

tracer anomaly c’=c(x,y,t)-c(x,y,0) (tracer is unitless); (b) divergence of the tracer flux (units are 295 

s
-1

) averaged over days 341-350 of year 1; (c)-(d) eigenvalues and (e)-(f) off-diagonal terms of 296 

the diffusivity tensor (units are m
2
s

-1
), derived from the eddy fluxes and tracer gradients 297 

averaged over days 341-350 of year 1. Note large values in the tropics due to weak tracer 298 

gradients and, possibly, long Rossby deformation radius. Regions near the open boundaries, 299 

where the tracer concentrations are initially set to zero are masked. 300 

301 
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 302 
 303 

 304 

 305 

Figure 3: Time-dependence in the eigenvalues 𝜆1and 𝜆2 of the diffusivity tensor in the QG 306 

simulations over the period of 183 days. Panels (a-b) show the time-mean values, panels (c-d) – 307 

standard deviations. Time-means of eigenvalues over 183 days.  308 

  309 



manuscript submitted to Geophysical Research Letters 

 

 310 
 311 

 312 

Figure 4: Non-uniqueness of the K-tensor (tracer dependence) in the QG simulations (day 183), 313 

for the ensemble of 15 tracer pairs. It is shown as the ensemble standard deviation divided by the 314 

ensemble mean for the first eigenvalue 𝜆1, calculated for Fdiv (left column) and F (right column): 315 

(a-b) Linear tracers in the QG model; (c-d) Nonlinear tracers in the QG model.  316 
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 318 
Figure 5: Non-uniqueness (tracer dependence) of the K-tensor in the HYCOM simulations, for 319 

the ensemble of 6 tracer pairs. It is shown as the ensemble standard deviation divided by the 320 

ensemble mean for the first eigenvalue 𝜆1, calculated for Fdiv (left column) and F (right column). 321 

The tensor is derived from the eddy fluxes and tracer gradients averaged over days 341-350 of 322 

year 1 323 

 324 
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