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Abstract15

The monthly depositional fluxes of three natural radionuclides (7Be, 210Pb and 40K) were16

measured at a Mediterranean coastal station (Malaga, Southern Spain) over a 14-year17

period from 2005 to 2018, corresponding to 168 monthly samples. The study of these18

radionuclides provides valuable information on the atmospheric air circulation, transporta-19

tion and erosion processes as well as a control of the environmental radioactivity. In this20

work, the depositional fluxes of these radionuclides are investigated and their relations21

with several atmospheric variables, such as air temperature, pressure or precipitations,22

have been studied by applying two popular machine learning methods: Random Forest23

and Neural Network algorithms. We extensively test different configurations of these al-24

gorithms and demonstrate their predictive ability for reproducing depositional fluxes of25

7Be, 210Pb and 40K. We use the Pearson-R correlation coefficient and the mean aver-26

age error to evaluate the predictions of the developed models, revealing that the mod-27

els derived with Neural Networks achieve slightly better results, in average, although sim-28

ilar, having into account the uncertainties. The mean Pearson-R coefficients, evaluated29

with a k-fold cross-validation method, are around 0.85 for the three radionuclides using30

Neural Network models, while they go down to 0.83, 0.79 and 0.8 for 7Be, 210Pb and 40K,31

respectively, for the Random Forest models. Additionally, applying the Recursive Fea-32

ture Elimination technique we determine the variables more correlated with the depo-33

sitional fluxes of these radionuclides, which elucidates the main dependencies of their tem-34

poral variability.35

1 Introduction36

The use of natural radionuclides as markers for studying the atmospheric circula-37

tion provides valuable information about the complex mechanisms involved. It is com-38

mon to employ different natural radionuclides as tracers and chronometers in aquatic and39

atmospheric systems (Wogman et al., 1968; Martell, 1970; Schuler et al., 1991) and they40

have demonstrated to be very useful in studies dedicated to understand the mechanisms41

and rates of removal of aerosols (Baskaran et al., 1993). In this work, we aim at the study42

of a predictive model for the depositions of fallout radionuclides 7Be, 210Pb, and 40K,43

whose different origins allow us to infer important features of the atmospheric circula-44

tion, erosion processes, transportation and deposition of soils and sediments from episodic45

to long-term timescales.46

7Be is a cosmogenic radionuclide originated by spallation reactions of cosmic rays47

with light atmospheric nuclei, such as nitrogen and oxygen (Lal et al., 1958) that has48

a decay half-live of T1/2 = 53 day. Thus, this nuclide is mostly produced in the strato-49

sphere and reach the troposphere in periods of air exchange between these two layers.50

This is why the production of 7Be is dependent on altitude, latitude and solar cycle but51

has negligible dependence on longitude (Baskaran et al., 1993; Dueñas et al., 2017).52

In contrast, 210Pb, with a decay half-live of T1/2 = 22.3 yr, is produced from the53

radioactive decay of 222Rn, the only gaseous decay product of 238U series. Therefore, 210Pb54

is found in larger concentrations near the ground and with important dependence on the55

distribution of land and seas (Moore et al., 1973; Wilkening et al., 1975; Preiss et al.,56

1996; Garcia-Orellana et al., 2006)57

The atmospheric 40K (T1/2 = 1.3·109 yr) is related to a crustal origin, from most58

kinds of soil, which is usually found in association with other re-suspended materials,59

as PM10 (particulate matter with diameter 10 µm) from the African continent (Karlsson60

et al., 2008; Dueñas et al., 2011).61

Several works in the past have been dedicated to study the relations between the62

concentrations or depositional fluxes of these radionuclides with different environmen-63

tal variables for different latitudes and longitudes. In this work, we employ a large dataset64
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Figure 1. Physical map showing the location of the study area. The zoomed window shows

the exact position of study area, in Málaga.

(168 monthly measurements, from January 2005 to December 2018) of environmental65

variables and the fluxes of 7Be, 210Pb, and 40K radioactivity in the Mediterranean coastal66

region of Málaga (Southern Spain). Similar studies were carried out in the same zone67

in the past and reported some important results, such as correlations with particulate68

material (PM10 levels) or with other environmental variables included in this work (Dueñas69

et al., 2004, 2009, 2011, 2017).70

Here, we are exploring new methods of studying the complex relations between the71

depositional flux of these radionuclides and atmospheric variables, using machine learn-72

ing algorithms. Machine learning (ML) techniques (Carbonell et al., 1983) provide a promis-73

ing tool in the prediction of any magnitude which depends on a large number of vari-74

ables and exhibits complex relations with them. Particularly, we are focused here on the75

implementation of these methods for the prediction of depositional fluxes of the men-76

tioned radionuclides. These models allow us to identify subtle long-term relationships77

between the temporal variability of the depositional fluxes and other environmental cy-78

cles, like the Solar cycle or atmospheric cycles. Additionally, reproducing these fluxes79

allow us discern the real agents affecting the depositions of these radionuclides and could80

provide another tracer of anomalous (artificial) radiation episodes. In addition, we ar-81

gue that these kind of models could be extended to different zones, always that measure-82

ments are available, to study relations with other variables not yet taken into account.83

2 Materials and measurements84

2.1 Study area85

Málaga (4◦ 28’ 8” W; 36◦ 43’ 40”N), is the major coastal city in the Andalusian86

region situated in the south-east of Spain (see Figure 1), on the Mediterranean coast and,87

therefore, has a climate influenced by continental and maritime air masses. The predom-88

inant winds are easterly (SE) and westerly (NW). The climate is temperate, with con-89

trasting wet (approximately October–April) and dry (approximately May–September)90

periods (Dueñas et al., 2012). The city is almost surrounded by mountains, which cause91

a special wind regime. Due to its geographical proximity to the African continent, our92

study area is frequently affected by intrusions of air masses with high concentrations of93

atmospheric particulate matter (Escudero et al., 2005). The sampling point is located94

on the flat roof of the Central Research Services (SCAI) building at the University of95

Málaga, at a height of 10 m above the ground and approximately at 5 km from the coast-96

line, near the airport and surrounded by roads with traffic exhaust.97
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2.2 Data extraction98

Bulk deposition samples were collected from January 2005 to December 2018. Sam-99

ples were collected monthly using a collector that it is slightly tilted stainless steel tray100

1 m2 in area and a polyethylene vessel of 60 L capacity for rainwater sample reservoir.101

A volume of 6 L of the bulk deposition (the sum of wet deposition flux and the gravi-102

tational sedimentation fraction of the dry deposition) was reduced via evaporation to ap-103

proximately 1 L and transferred to a Marinelli geometry container for gamma counting.104

The method and processing procedures were described previously (Dueñas et al., 2011).105

The atmospheric fluxes were calculated using the expression:106

F = A/St (Bq m−2 month−1), (1)

where A is the activity in the sample obtained from the gamma spectra, S is the sur-107

face area of the collector and t is the duration of sampling time. Additionally, aerosol108

samples were collected weekly in cellulose filters of 0.8µm pore size and 47 mm diam-109

eter with an air sampler (Radeco, mod AVS-28A) at a flow rate of 40 l/min. A monthly110

composite sample containing 4 or 5 filters (depending on the number of weeks each month)111

was formed for the gamma analysis.112

Radiometric measurements were performed by low-level gamma spectrometry with113

a coaxial-type germanium detector (Canberra Industries Inc., USA), with a relative ef-114

ficiency of 20% and it was calibrated using certified reference gamma ray cocktail. Each115

sample was measured for 172, 0000 s. Gamma spectra analyses were performed with the116

Genie2K spectrometry software version 2.0 (Canberra Industries Inc., USA). The char-117

acteristic gamma peaks selected for the determination of the different radionuclides were:118

477.6 keV for 7Be, 1460.81 keV for 40K and 46.5 keV for 210Pb. To validate the meth-119

ods, our lab routinely participates in interlaboratory comparisons to measure gamma-120

emitting radionuclides, in different types of samples, organized by the International Atomic121

Energy Agency (IAEA), the Joint Research Centre (JRC), and the Spanish Nuclear Safety122

Council (CSN). Further details of the low-background gamma-ray detection system have123

been previously described by refs. Dueñas et al. (1999, 2004).124

The meteorological data (temperature, relative humidity, distance travelled monthly125

by the wind and precipitation) used in this study were obtained from the nearest sta-126

tion network of the Spanish Meteorological Agency (AEMET) (500 m away from the sam-127

pling site). Days affected by African dust outbreaks have been obtained from CALIMA128

project (www.calima.es). The monthly sunspots number were obtained from NOAA’s129

Space Weather Prediction Center (SWPC).130

Additionally, data of daily concentrations of particulate matter fraction PM10 were131

obtained from Carranque (36º 43’ 40” N; 4º 28’ 4” W), a monitoring station belonging132

to the regional Atmospheric Pollution Monitoring network managed by the Environmen-133

tal Health Service of the Andalusian Government.134

3 Methods: description of the algorithms applied and cross-validation135

framework136

ML techniques have demonstrated their predictive power in a variety of fields, from137

medicine (e.g. (Lapedes et al., 1988)) to astrophysics (e.g. (Schaefer, C. et al., 2018), (Graff138

et al., 2014)), used for both classification (as in (Williams et al., 2006)) and numerical139

forecasting (see, for example, refs. Sarkar et al. (2009); vStencl and Stastny (2011)). Gen-140

erally, ML methods are used to find the relation between a set of input variables and an141

output variable one is interested in. These variables are usually called features and la-142

bels, respectively. In the present study, the labels are the monthly depositional fluxes143

collected from 2005 to 2018 and the features are the atmospheric variables gathered in144

the same period. Earlier studies have demonstrated that it is possible to find linear re-145

lations between atmospheric variables and the depositional fluxes of these radionuclides,146
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although the uncertainties related to this determination become too large to have ac-147

curate predictions. Using these methods we aim at obtaining more precise predictions148

on the depositional fluxes that could be used, e.g., to reliably detect the emission of ar-149

tificial radiation or other non-expected radiation sources.150

The relation between features and labels is progressively adjusted by iterating over151

the amount of data samples given to the algorithm, therefore the larger the amount of152

samples used to feed (or train) the algorithm the better the predictions become. The data153

sample used to adjust the algorithm is called training dataset and this adjustment pro-154

cess is known as the training phase, which basically consists on tuning some training pa-155

rameters in order to predict the correct labels given. The algorithm adjusts itself in each156

iteration by comparing its predicted label with the correct label. Then, in order to eval-157

uate the performance of the model one must provide it with new input data (i.e. these158

features must be different from the training data to ensure unbiased or over-fitted eval-159

uations of the algorithm effectiveness). In this way, we can “grade” or “score” the model160

performance by comparing the predicted outputs with the real labels in what is called161

the test phase. The new set of data used in this phase is called test data.162

Two different supervised algorithms have been implemented in this study; Neural163

Networks and Random Forest techniques, and their ability to predict depositional fluxes164

has been extensively tested for different configurations and for the depositional fluxes165

of the 7Be, 210Pb and 40K radionuclides. Very few works have been published using ML166

techniques to predict depositional fluxes and none of them systematically analyzing their167

performance. An example of these studies can be found in ref. Chham et al. (2018), but168

a deeper research on the efficiency of these techniques is necessary.169

The most popular ML algorithm is the Artificial Neural Network (ANN) model.170

Neural networks can learn complex patterns using layers of neurons which mathemat-171

ically transform the data. The layers between the input and output are referred to as172

“hidden layers”. A Neural Network can learn relationships between the features that other173

algorithms cannot easily discover, including also complex non-linear relations.174

Moreover, we used an alternative and less demanding (in terms of resources) tech-175

nique, the Random Forest algorithm 1, which, in turn, is not able to consider non-linear176

features in the relations between the features. This algorithm relies in an ensemble of177

decision trees which are combined to get averaged predictions. Each tree uses a sub-sample178

of the full data set, randomly selected, and progressively divides it into different nodes179

(or leaves) depending on certain quantitative (or qualitative, in case the tree is applied180

for a classification problem) criteria decided by the algorithm.181

We have divided our collected data set into a training set, containing the 80-85%182

of the full data set, and a test set that allows us to quantify the performance of out pre-183

dictions. The list of features (meteorological or atmospheric variables) employed is based184

on monthly averages (or monthly accumulated) and it consists of: Air temperature (in185

ºC), relative humidity level (%) number of days affected by African dust outbreaks (in-186

trusions), distance travelled monthly by the wind (in km), pressure (hPa), sunspot num-187

ber, amount of rainfall (dm3), PM10 level (µg/m3), seasonal factor (from 1, for winter,188

to 4, for spring), monthly factor (from 1, for January, to 12, for December), total rain-189

fall duration (min), humid days, dry days and time between rains (in days). For both190

algorithms, the labels (depositional fluxes) are normalized, since this allows a better per-191

formance of the algorithm.192

A Neural Network in which the input features first result into 8 units (1st hidden193

layer) and then into 4 units (second hidden layer) have been found to be the most ad-194

equate, as it is depicted in the Appendix A. The implementation of the Neural Network195

1 Specifically the method RandomForestRegressor given by the package of sklearn.ensemble
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7Be 210Pb 40K

Learning rate 2.1e-3 2.1e-3 2.2e-3
Decay rate 5.e-6 5.e-5 2.4e-6

Table 1. Main hyperparameters (i.e. the values needed to control the learning process in ML

algorithms) used in the Adam optimizer, adjusted for each of the radionuclides studied.

has been achieved by using the Python Keras (Chollet, 2015) library. The connections196

between the input features and the first hidden layer, as well as between the first and197

second hidden layers use the Rectified Linear Unit (ReLU) as activation function and198

the connections from the second hidden layer and the output units are calculated with199

a linear activation function.200

The model performance was optimized including a step of batch normalization and201

dropout (finding the best results adjusting it to the 10% of the sample) after each of the202

hidden layers. In addition, the adaptive moment estimation optimizer, or Adam opti-203

mizer2, was found to get the best performance for every one of the radionuclides. On top204

of this, the best results were found when taking the natural logarithm of the values for205

the features, as expected, and setting the mean absolute error metrics as the loss func-206

tion.207

Different configurations of the neural networks models and the hyperparameters208

involved (i.e. the values needed to control the learning process in ML algorithms) were209

refined by applying a simple random search method (i.e. probing different hyperparam-210

eters in an equally spaced grid of values) (Bergstra & Bengio, 2012). The optimization211

of the combination of these hyperparameters is left for a next work. In table 3, we show212

the main hyperparameters tuned for the Adam optimizer for each radionuclide. The rest213

of hyperparameters needed by the optimizer were set to their default values given by the214

keras method.215

For the Random Forest algorithm, it was found that using the features values nor-216

malized, instead of their natural logarithm, gave better results. Then, the main hyper-217

parameters were adjusted for each of the nuclides, setting the mean absolute error (MAE)218

as criterion for splitting the nodes and a minimum number of samples required to split219

an internal node (min samples split) to 3. The number of decision trees (also known as220

number of estimators) used in the model was set to be 680 for 7Be and 210Pb and 280221

for 40K.222

The results from both algorithms and for the three radionuclides are shown and223

compared in the next section, in which we fully demonstrate their ability for reproduc-224

ing the data and systematically explore the statistical errors around these predictions225

as well as the main features involved.226

4 Results: predictive power of the algorithms227

As a first step before running our models, we randomly shuffle the features and la-228

bels and, then, they are divided into a training and a test sets. Once the model is trained,229

we rate its performance by comparing the predictions with the test labels, correspond-230

ing to a 15-20% of the full data sample, using the mean percentage error and the Pearson-231

2 https://keras.io/api/optimizers/
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R index value. While the former is an indicator of the quantitative differences between232

test labels and predictions, the latter is a good indicator of the trend similarities between233

the two sets.234

In order to compare these results with a reference model, we applied the same kind235

of evaluation as applied for the ML algorithms to the model found in the linear regres-236

sion analysis presented in ref. Dueñas et al. (2017) for the 7Be radionuclide. This anal-237

ysis yields a linear relation between the depositional flux of 7Be and the amount of rain-238

fall (the variable which shows the largest correlation with the depositional flux of every239

radionuclide) of:240

FluxBe = 6.33 + 2.6× rainfall (2)

Then, the evaluation is carried out by using a portion of 25 randomly selected mea-241

surements (similar to the amount of samples in the test sets used for the ML algorithms242

applied) of 7Be and amount of rainfall (corresponding to the same date) and measured243

the Pearson-R index and mean error of the predictions obtained with this reference model.244

In order to have a robust idea on the value of these metrics, we repeated this for 100 times245

(analogous to what is done in section 4.1), with different randomly selected samples of246

25 measurements, and computed the average value. These metrics result in a mean R247

index of ∼ 0.45± 0.4 and a maximum R index of 0.95, while the mean percentage er-248

rors were of 103±150%. Having these reference metric values is necessary to compare249

to the quantitative results of the Random Forest and Neural Network algorithms stud-250

ied here. In Figure B1 (Appendix B), we display the comparison between the predictions251

from the reference model and the depositional flux measurements for one of these sam-252

ples.253

In comparison, in Figure 2, we show some of the best results acquired from the Neu-254

ral Network and Random Forest algorithms for all the studied radionuclides, which demon-255

strates that these algorithms can allow us to significantly improve our predictions on de-256

positional fluxes with respect to traditional methods. Here, we highlight that these are257

predictions obtained from their corresponding atmospheric variables, and remark the im-258

portance of evaluating these predictions with data not used for the training phase, since259

this highly biases our evaluation. As we can see by the Pearson-R value, these predic-260

tions are able to suitably reproduce the labels trend with respect to the atmospheric vari-261

ables. In addition, we find mean absolute errors of the order 50% usually, which are well262

below the error levels found using linear regressions (as shown above) and are similar to263

the experimental uncertainties in the determination of these fluxes, which can be O(10%),264

as shown in refs. Herranz et al. (2008); Heydorn (2004). In this case, it has been observed265

that high-flux values are difficult to be matched, which may be related to periods of anoma-266

lous radiation doses. Nevertheless, this requires a dedicated study of those points and267

their temporal behaviour, which is beyond the scope of this paper. Further sources of268

uncertainty in these comparisons mainly come from the statistical uncertainties related269

to the measurement of the atmospheric variables and variables not included in the model.270

Surprisingly, the models make good predictions also for the 40K nuclide, even with271

a considerably smaller number of samples available for it. On top of this, we found that272

the absolute percentage errors follow a similar distribution for each radionuclide and both273

algorithms. They are well described with a Gamma probability distribution, which ex-274

hibits a slightly negative mode and a slightly positive median. This is likely due to the275

fact that the distribution of depositional fluxes is also be very well reproduced with a276

Gamma function. A representative example of these distributions for the Neural Net-277

work and Random Forest algorithms is shown in Figure 3 for the 7Be radionuclide af-278

ter gathering several repetitions for different test sets used. The fact that these errors279

follow such distribution can be used to statistically diagnose anomalous episodes of ra-280

diation doses. We noticed that the Random Forest models produce slightly larger me-281
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Figure 2. Example of the results of the predictions found from the Neural Network (left pan-

els) and Random Forest (right panels) models. These predictions are limited to the test sample,

which is chosen to be around a 20% of the full data set. We also include the values of the met-

rics used to evaluate the predictive ability of these methods, which are the Pearson-R correlation

coefficient and the mean absolute error and its standard deviation. The root mean square error

(RMSE), in units of Bq m−2 month−1, is also included for completeness.

dian values and mode values more deviated from 0, but no significant differences between282

same algorithms for different nuclides was detected.283

Nevertheless, the evaluation of the models is highly dependent on the data set used.284

From one side, the larger the test set, the more reliable is the model performance eval-285

uation, but at the cost of reducing the number of samples used in the training set. On286

the other side, if the test set is too short, the model performance evaluation will be very287

uncertain. In this case, we observed that using around 20% of the full data set allowed288

–8–



manuscript submitted to Journal of Geophysical Research: Atmospheres

100 0 100 200 300 400
Percent. error [(prediction-data)/data]×100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Pr
ob

ab
ili

ty
 d

en
si

ty

Absolute percentage error pdf - NN analysis
Gamma pdf
MAPE pdf
Median: 2.09%
Mode: -24.48%

200 100 0 100 200 300 400 500 600
Percent. Error [(prediction-data)/data]×100

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Pr
ob

ab
ili

ty
 d

en
si

ty

Absolute percentage error pdf - RF analysis
Gamma pdf
MAPE pdf
Median: 19.64%
Mode: -16.47%

Figure 3. Probability distribution for the percentage errors found for various evaluations with

(around 20) different tests sets. The left plot shows the results of these evaluations for the Neural

Network algorithm and the right plot those for the Random Forest algorithm.

us to make consistent evaluations. Even though, they are still short enough to make our289

evaluation very dependent on the data test used. This issue is well known by the ML290

community and there are many possible strategies to deal with it to have an unbiased291

evaluation of our model (Raschka, 2018) and its predictions uncertainties, as it is explored292

in the next section.293

4.1 Statistical evaluation294

To prevent from biasing our model evaluation by the small amount of test data used295

and have into account the full uncertainty involved, we evaluate the algorithms by means296

of a k-fold procedure. In this process the data set is divided into k subsets. Each time,297

one of the k subsets is used as test set and the other k-1 subsets form the training set.298

Then, we statistically combine the results to get solid conclusions.299

At this point, another difference between the Neural Network and the Random For-300

est algorithms should be taken into account to correctly manage the full uncertainties301

involved: while the training process exactly results in the same model for the Random302

Forest algorithm, this is subject to further fluctuations in the Neural Network algorithm.303

This is due to the optimization procedure necessary for finding the minimum error or304

loss when evaluating the examples in the training dataset. The main problems usually305

faced are: getting stacked in local minimal or local optima (i.e. regions where the loss306

is relatively low but it is not the lowest), saddle or flat points (regions where adjustments307

of the training weights do not lead to an appreciable change in the loss) and other is-308

sues more related with the loss function, gradients and the dimensionality involved. More309

precise information about these problems can be found, e.g., in ref. Bengio (2012). There-310

fore, each time the Neural Network is trained, specially when the number of samples is311

not large enough, it is subject to small variations in the model predictions. For this rea-312

son, a good evaluation of the uncertainties involved in the predictions of the Neural Net-313

work model requires to add these fluctuations.314

In particular, we repeated the training and test phase for 5 times with the same315

test and training datasets. Then, we perform the evaluations with 20 different randomly-316

selected test sub-datasets following the k-fold procedure. This means that we carry out317

a total of 100 training and evaluation steps to determine the Pearson-R value and the318

mean percentage error of our predictions with respect to the experimental data, as well319

as the uncertainties related to these determinations for the Neural Network model. In320

turn, as the Random Forest algorithm does not suffer from those training fluctuations,321
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we performed 60 evaluations of the model, employing a different test and training sub-322

sets, accordingly, in each evaluation.323

These results are shown in Figure 4, where we represent the mean Pearson-R in-324

dex values and the 1σ uncertainty related to its determination for both, the Neural Net-325

works and Random Forest algorithms and for the three nuclides with respect to the num-326

ber of iterations employed in the training phase. In general, we observe that the mean327

Pearson-R index values are larger for the 7Be and 210Pb radionuclides, while 40K shows328

the opposite, due to the smaller number of samples available. In addition, the uncertain-329

ties related to the determination of the R index value from the Random Forest algorithm330

is slightly larger than that from the NN algorithm. The mean Pearson-R index values331

obtained are between 0.75-0.88 for 7Be and 210Pb, but around 0.7-0.8 for 40K, although332

the errors are still high for every radionuclide. In particular, the determination of 7Be333

seems to be the most accurate in general, showing a 1σ uncertainty in the determina-334

tion of the R index value around ±0.065 for the NN algorithm and ±0.08 for the RF al-335

gorithm. A maximum mean R index value of around 0.87 and 0.88 are found for 7Be and336

210Pb, respectively, at 1400 and 1300 iterations. The maximum mean R index value ob-337

tained for 40K is slightly above 0.8, found with the RF algorithm.338

As expected, the performance of these methods in reproducing depositional fluxes339

improves when having more samples, obtaining larger Pearson-R index values and lower340

uncertainties related. Nevertheless, we observed that the NN algorithm seems to accuse341

more the smaller number of samples with respect to the RF technique.342

4.2 Selecting the main variables343

To fully exploit the capability of ML techniques in improving our predictions in the344

depositional fluxes, we determined which are the most important features using the re-345

cursive feature elimination algorithm (RFE), which allows us to reduce the complexity346

and needed cpu time of the Neural Network and Random Forest algorithms and prevents347

from over-fitting our results. In addition, we compared the results obtained with these348

features with those obtained when using all the features. Specifically, we used the RFECV349

method from the sklearn.featureselection python package. The RFE algorithm is a fea-350

ture selection method that allows a model to progressively eliminate the weakest features351

and find the best scoring combination of features.352

In Figure 5 we show the optimal important features found by the RFE algorithm,353

along with their relative importance. As expected, the rainfall duration and rainfall vol-354

ume are selected by the three radionuclides. Then, we observe that other atmospheric355

variables are present, as the number of humid or dry days, the average monthly pres-356

sure or the mean air temperature. On the other hand, the PM10 level and sunspot num-357

ber are selected as important for the 40K nuclide.358

The fact that the sunspot number arises as one of the most important variables de-359

scribing the depositional fluxes of 210Pb and 40K is unexpected. In principle, this vari-360

able is expected to be relevant for the production of 7Be since it is related with the so-361

lar activity (this is, the Sun’s magnetic field), which plays an important role on the flux362

of cosmic rays reaching the atmosphere (Yoshimori et al., 2003). This fact is probably363

due to the mild correlations between sunspot number and other atmospheric variables,364

but more data samples are needed to get a solid conclusion, since the sunspot number365

follows cycles of 11 and 22 years, following the solar magnetic cycles (E.W., 2015). This366

could be explained by the fact that there are other correlations found between the so-367

lar cycle and other atmospheric variables, as the atmospheric temperature (Qu et al.,368

2012) and correlations with the cosmic-ray intensity at Earth, which is known to be re-369

lated to climate and involved in processes of cloud formation (Veretenenko et al., 2018;370

Svensmark et al., 2013; Marsh & Svensmark, 2000).371
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Figure 4. Results from the k-fold evaluation of the Pearson-R correlation coefficient for the

Neural Network and Random Forest algorithms for the depositional fluxes of 7Be (upper panel),
210Pb (middle panel) and 40K (lower panel). The results obtained from the NN algorithm are

shown in green while the results from the RF algorithm are shown in blue.

Once these features have been selected, we proceed to compare the NN and RF al-372

gorithms explored in this work using all the features and using just the important fea-373

tures, as displayed in Figure 6. From this figure, we can see that the NN models for 40K374

have significantly improved, restricting our features to be just the important ones. This375

means that some of the eliminated features were over-fitting the model. This can be re-376

lated to the fact that this radionuclide actually comes from African zones and reach coastal377

zones of Southern Spain after it is transported by winds in the correct direction. There-378

fore, some of the atmospheric variables measured in the zone of Malaga could not be suit-379

able to describe its amount and depositions in Malaga. Even though, the amount of rain-380

fall should still be crucial to make the African dust to definitely fall in the study region.381

Furthermore, the presence of the sunspot number as an important feature have not been382

pointed out in the past, which may mean that there are other atmospheric variables with383

a considerable role in the amount and depositional flux of 40K found in the Mediterranean384

coastal zone of the Southern Spain.385

On the other hand, we see that for 7Be and 210Pb the results remain very similar386

to the case with all the features, which is quite remarkable given the number of variables387
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Figure 5. Histograms with the important features found with the implemented recursive fea-

ture elimination algorithm for the depositional fluxes of 7Be (upper panel), 210Pb (middle panel)

and 40K (lower panel) with their relative importance.

needed. In addition, the uncertainties related to the determination of the Pearson-R cor-388

relation coefficient have been considerably reduced in the NN models for 40K, while they389

seem to be almost identical for all other cases.390

In general, these results are consistent with other previously found, but the use of391

these ML methods allow our predictions to be more complex and better adapt to the vari-392

ability related to the depositional fluxes of different radionuclides.393

5 Conclusions394

Modern computer algorithms allow us to refine our measurements and model pre-395

dictions via new statistical tools or artificial intelligence. In this work, we have made use396

of two common machine learning algorithms, Neural Networks and Random Forests, in397

order to predict and analyse the depositional fluxes of 7Be and 210Pb and 40K. This work398

has shown, first, that these methods can be successfully applied to study the depositional399

fluxes of different radionuclides from atmospheric variables as the amount of rainfall, pres-400

sure or air temperatures. Second, we have evaluated the performance of these models401

using a k-fold method and the Pearson-R coefficient and mean absolute error as metrics402

finding that these techniques can significantly improve old predictions made from mul-403

tivariate linear regression analyses.404

As expected, the performance of these methods in reproducing depositional fluxes405

improves when having more samples, obtaining larger Pearson-R index values and lower406
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Figure 6. Same as in Figure 4, but comparing now the results obtained using the main vari-

ables obtained from the RFE algorithm and those obtained from the models trained with all the

available variables in the data set.

uncertainties related. This, in fact, confirms the prospects on future models, with a larger407

number of samples measured. This is mainly related to the long times involved in the408

natural cycles of atmospheric variables, as, for example, the sunspot number, which is409

known to follow 11 or 22-years periods (solar magnetic cycles). Nonetheless, we have demon-410

strated that the algorithms employed here are able to reproduce the experimental de-411

positional fluxes using monthly-averaged variables and that these predictions can help412

identifying periods of anomalous radiation doses. Interestingly, we found that both, the413

depositional fluxes of 210Pb and 40K, seem to be correlated with the Sunspot number.414

The Neural Network models seem to reach higher mean Pearson-R index values,415

calculated using a k-fold cross-validation treatment, almost reaching 0.9, although the416

uncertainties are still quite high. Furthermore, the use of a Recursive Feature Elimina-417

tion algorithm has been used to find the variables that perform the best predictions and418

allow us to reduce to 4, 5 and 6 the number of variables used for predicting the depo-419

sitional fluxes of 7Be, 210Pb and 40K, respectively. The training of the Neural Network420
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and Random Forest models with these variables resulted into a negligible difference in421

the Pearson-R index values and the uncertainties related to its determination except for422

the 40K nuclide in the Neural Network model, which showed a significant improvement.423

Even with this reduced number of variables used for training our methods, we were able424

to obtain mean values for the Pearson-R index value above 0.80 for all the three nuclides425

and both algorithms. A maximum mean R index value around 0.87 is found for 7Be, 210Pb426

and 40K, respectively, at 1400, 1300 and 1200 iterations for the Neural Network method.427

For the Random Forest method, the maximum mean R index value of sim0.81 is found428

around 500 and 600 iterations for 210Pb and 40K and of almost 0.85 for the 7Be radionu-429

clide.430

In conclusion, we demonstrate that Random Forest and Neural Networks methods431

are able to improve our current knowledge and predictions on the depositional fluxes of432

radionuclides in the Mediterranean coastal zone of Malaga and these models can be ex-433

tended to other zones too, in order to build a more complex ensemble that could refine434

the existent knowledge on deposition of different radionuclides. Thus, this work consti-435

tutes the first step into the study of a large-scale (in terms of geographical areas) model436

able to make predictions on depositional fluxes for different geographical zones thanks437

to the adaptability of these algorithms. The implementation of a recurrent neural net-438

work applied to the prediction of depositional fluxes can improve these models and will439

be also investigated in a next work.440
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Appendix A Sketches of Neural Network and Random Forest struc-598

tures599

In this appendix, we show a sketch of the general structure of the Neural Network600

model employed and an example of a branch of a decision tree from the Random For-601

est algorithm investigated in this work.602

a) b)

Figure A1. a): Sketch of the Neural Network model used, where there are two hidden layers

that use the ReLU activation function and an output unit that linearly combines the nodes of the

last hidden layer. b): Example of a decision tree used as part of a Random Forest model.
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Appendix B Sketches of Neural Network and Random Forest struc-603

tures604

This appendix shows a comparison between the predictions from the reference model605

and the depositional flux measurements for one of these samples. It is crucial to have606

a reference model evaluated in the same way as for the ML algorithms studied in the pa-607

per, since this kind of evaluation is rather peculiar from ML algorithms. As we see, tra-608

ditional models, based in linear regressions, are unable to reproduce the depositional fluxes609

behaviour, because of the complex relationships between variables.610
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Figure B1. Predictions found from the reference linear model on one of the 25-length data

samples, using the same evaluation as for the Random Forest and Neural Network algorithms

studied in this work. Units of RMSE are of Bq m−2 month−1.
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