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Introduction 

 This supporting information contains the algorithmic foundation of the 
Fortran code used in the model (Text S1) and a derivation of Equation 
5 (alpha particle escape efficiency from spherical grains) used in the 
paper (Text S2, supported by Figures S1–S3).

Text S1.
PROGRAM Alpha_escape
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  USE Shared
  IMPLICIT NONE
  CALL INIT_RANDOM_SEED()
  PRINT *, " "
  OPEN(Alpha_escape_txt, file='Alpha_escape.txt', 
access='sequential', status='unknown', action='write', 
asynchronous='yes')
  WRITE(Alpha_escape_txt, '(a9, 3a21)') "r (μm)", "n_alpha", 
"E_g", "%diff" !columns
  complete = 5
  radius = MICRON !initialize radius
  ALLOCATE(percent_diff(INT(MAX_RADIUS / MICRON)))
  many_radii: DO

IF (INT((radius / MAX_RADIUS) * 100.0_dp) == complete) 
THEN !keep user apprised of progress
  WRITE(6, '(i5, a1)') complete, "%"
  complete = complete + 5 !next 5% checkpoint

END IF
n_alpha = 0 !initialize sum for averaging this radius
many_alphas: DO number = 1, NUMBER_MAX

  CALL RANDOM_NUMBER(random)
  r_1 = radius * CBRT1(random) !select a random DECAY point 
along this radius
  CALL RANDOM_NUMBER(random)
  theta_1 = 2.0_dp * PI * random !select a random azimuthal 
DECAY angle
  CALL RANDOM_NUMBER(random)
  IF (radius < S / CM_TO_UM * 1.5_dp) THEN !select a random 
polar DECAY angle
    phi_1 = ACOS(2.0_dp * random - 1.0_dp)
  ELSE
    phi_1 = 2.0_dp * PI * random
  END IF
  x_1 = r_1 * COS(theta_1) * SIN(phi_1) !x-coordinate DECAY
  y_1 = r_1 * SIN(theta_1) * SIN(phi_1) !y-coordinate DECAY
  z_1 = r_1 * COS(phi_1) !z-coordinate DECAY
  CALL RANDOM_NUMBER(random)
  theta_2 = 2.0_dp * PI * random !select a random azimuthal 
EXIT angle
  CALL RANDOM_NUMBER(random)
  IF (radius < S / CM_TO_UM * 1.4_dp) THEN !select a random 
polar EXIT angle
    phi_2 = ACOS(2.0_dp * random - 1.0_dp)
  ELSE
    phi_2 = 2.0_dp * PI * random
  END IF
  r_2 = 0.0_dp !my EXIT vector, also at the origin, but add 
tip-to-tail later

1 x_2 = r_2 * COS(theta_1 + theta_2) * SIN(phi_1 + phi_2)
  y_2 = r_2 * SIN(theta_1 + theta_2) * SIN(phi_1 + phi_2)
  z_2 = r_2 * COS(phi_1 + phi_2)
  x_3 = x_1 + x_2 !add x-components
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  y_3 = y_1 + y_2 !add y-components
  z_3 = z_1 + z_2 !add z-components
  r_3 = SQRT(x_3**2 + y_3**2 + z_3**2) !find resultant vector,
should be the EXIT point on my sphere
  IF (r_3 > radius) THEN
    depth = r_2 !mission accomplished, actual depth of SiO2 to 
be traversed before escaping from the SiO2 grain
  ELSE !extend DEPTH vector and repeat
    r_2 = r_2 + DX !looking for an r_3 that looks like the 
radius of my sphere
    GO TO 1 !try again
  END IF
  x = 0.0_dp !start at the beginning
  E_i = 4.92991712862015_dp !MeV
  stopping_power_alpha: DO
    IF (dEdx_alpha(E_i) < 0.0_dp) EXIT !check for good stopping 
power
    E_f = E_i - (dEdx_alpha(E_i) * DENSITY * DX) !kinetic energy
decreases in MeV while accounting for the density of the absorber
    IF (E_f < 0.0_dp) EXIT !check for good final energy
    IF (x > depth .AND. E_f > 0.0_dp) THEN !ALPHA has escaped 
the SiO2 grain
      n_alpha = n_alpha + 1
      EXIT !out-of-bounds, nothing more to do
    END IF
    E_i = E_f !pass for next iteration
    x = x + DX !advance in cm
  END DO stopping_power_alpha

END DO many_alphas
theta = 2.0_dp * radius * CM_TO_UM !grain size is diameter 

in μm
E_g = (3.0_dp * S) / (2.0_dp * theta) - (S * S * S) / 

(2.0_dp * theta * theta * theta) !McMahon
percent_diff(NINT(radius * CM_TO_UM)) = 

ABS((FLOAT(n_alpha) / FLOAT(NUMBER_MAX)) - E_g) * 100.0_dp
WRITE(Alpha_escape_txt, '(i8, 3f21.15)') NINT(radius * 

CM_TO_UM), (FLOAT(n_alpha) / FLOAT(NUMBER_MAX)) * 100.0_dp,      
&

  E_g * 100.0_dp, percent_diff(NINT(radius * CM_TO_UM))
IF (radius > MAX_RADIUS) EXIT !cm
radius = radius + MICRON

  END DO many_radii
  PRINT *, " "
  PRINT *, "Average percent difference:", 
SUM(percent_diff(10:SIZE(percent_diff))) / SIZE(percent_diff)
  DEALLOCATE(percent_diff)
  CLOSE(Alpha_escape_txt)
  PRINT *, " "
END PROGRAM Alpha_escape
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Text S2.
For particles with stopping distance s emitted in random directions and 
originating at random points inside a spherical grain of diameter Ө, the 
proportion of these particles that exit the grain rather than terminating within
it can be estimated as follows.

Figure S1. Alpha particle emission by sediment grains. (a) When the stopping distance 
exceeds the grain diameter, all alpha particles escape. (b) When the grain diameter exceeds 
the stopping distance, some alpha particles are trapped. (c) Alpha particles are emitted 
throughout each grain and travel in random directions.

If the grain diameter is less than the stopping distance, all particles emitted 
from anywhere in the grain will be able to escape, since the longest distance 
that any particle has to travel before escaping is Ө (Figure S1a). However, if
Ө > s, then some of the particles (e.g., those emitted inwards from near the 
grain edge) will be stopped (Figure S1b) while others will escape (e.g., those
emitted outwards from the same point).

Figure S2. (Left) When the stopping distance of an alpha particle is less than the radius of 
the grain (i.e., y > s; Ө > 2s), there is a "core" region such that particles emitted from this core
cannot escape from the grain. Of those particles generated in the rest of the grain (the 
"mantle"), some escape and others are trapped, depending on their trajectories. (Right) When
the stopping distance of the alpha particle is greater than the radius of the grain (i.e., y < s; Ө 
> 2s), there is a core region from which all particles escape, and a mantle from which some 
are trapped.

Referring to Figure S2, let y be Ө – s. Furthermore, let Eg be the fraction of 
particles emitted in the grain that escapes, which is 1 – Tg, the fraction 
trapped. The case where y > s (i.e., Ө > 2s) is considered first. In this case, 
the radius of the grain is longer than the stopping distance of the particle. 
There is a core region of the grain from which all particles emitted are 
trapped (Figure S2, left).
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Figure S3. Alpha particles are emitted from a point (star) in a spherical grain (dark grey). (a) 
The possible trajectories of the alpha particles are indicated by the light grey sphere, whose 
radius is the stopping distance. Part of the surface of this sphere lies inside the grain; the area 
of this surface (i.e., a spherical cap) divided by the total area of the sphere gives the 
proportion of particles emitted from this point that would be trapped within the grain. Panels 
(b) and (c) show constructions used in the derivation.

This core region has diameter y – s and volume Vc. The remainder of the grain
is a mantle with volume Vm. Of those particles emitted inside this mantle, a 
certain proportion escape, and a certain proportion Tm are trapped because 
they have to travel a distance s into the grain (Figure S3). If ρ is the number
of particles emitted per unit volume, then

T g=
ρV c+ρV mT m

ρV g
, (S1)

where ρ naturally cancels.

The mantle is regarded as the sum of concentric spherical shells of radius z 
and infinitesimal thickness dz. Each shell emits a different number of 
particles, a fraction of which are trapped. This fraction TP,z is equal to the 
number of particles trapped divided by the number emitted from any 
individual point P in the shell, i.e., at distance z from the centre of the grain. 
TP,z is equal to the proportion of the surface area of a sphere of diameter s, 
centred at P, that lies inside the grain. If the surface area of the sphere is 
4πs2, then a partial area trapped within the grain (a spherical cap) is given by
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2πsh, where h is the distance between the outer edge of the sphere and the 
plane where it intersects the grain (the trace of this plane appears as a 
vertical line in Figure S3b). The distance h was found using the 
constructions shown in Figure S3b-c.

The trigonometry in Figure S3b gives

cos (P )=
s−h
s

(S2)

Applying the law of cosines to Figure S3c gives

cos (P )=

s2+z2−
(s+ y)
4

2

2 sz

(S3)

Equating Equations S2 and S3 gives

h=s−
s2+z2−

(s+ y )
4

2

2 z

(S4)

Normalizing Equation S4 appropriately gives

T P, z=
2πs
4 π s2

(s− s
2
+z2−

(s+ y)
4

2

2 z
) (S5)

Simplifying Equation S5 gives a more manageable polynomial:

T P, z=
1
2
+

(s+ y )
2
−4 s2

16 s
z−1−

1
4 s
z (S6)

To find VmTm, the volumes of the infinitesimal shells of thickness dz that make
up the mantle were multiplied by TP,z (the fraction of trapped particles from 
each shell) and integrated over the range of z in the mantle. The volume of 
each shell is naturally equal to 4πz2dz. The limits of integration are (y – s)/2 at
the inner edge of the mantle and (s + y)/2 at the surface of the grain. 
Therefore,

V mTm=4 π ∫
z=
y−s
2

z= s+ y
2

❑z2(12 +
(s+ y )

2
−4 s2

16 s
z−1−

1
4 s
z)dz (S7)

Integrating as usual gives

V mTm=4 π [ ( s+ y )
2
−4 s2

32 s
z2+

1
6
z3−

1
16 s

z4]z= y−s
2

z= s+ y
2

(S8)
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Applying the limits of integration and simplifying gives V mTm=
π
12

¿). Recalling 

Equation S1 and substituting the expressions for Vg , Vc and VmTm gives

T g=
( ( y−s )

2 )
3

+
1
16

(2 s3−6 s2 y+9 s y2 )

( ( s+ y )

2 )
3 (S9)

After some simplification we have

T g=
y2(3 s+2 y)

2 ( s+ y )
3 (S10)

Since s + y is equal to the grain diameter Ө, we arrive at the result:

T g=
s3

2Ө3
−
3 s
2Ө

+1 (S11)

If Ө > s, then Eg = 1 – Tg, or

Eg(θ)=
3 s
2Ө

−
s3

2Ө3
(S12)

Analytically, the proportion of escaped alpha particles is given by Equation 
S12 as a function of grain size Ө for a given stopping distance s. In the case 
where y < s, or Ө > 2s, there is a core region from which all particles escape 
(Figure S2, right); a derivation analogous to that above also produces 
Equation S12, which in any case provides a way to validate the geometry of 
the Monte Carlo method.
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