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Abstract  

Probabilistic volcanic hazard assessments require (1) an identification of the hazardous 

volcanic source; (2) estimation of the magnitude-frequency relationship for the volcanic 
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process; (3) quantification of the dependence of hazard intensity on magnitude and external 

conditions; and (4) estimation of hazard exceedance from the magnitude-frequency and 

hazard intensity relationship. For volcanic mass flows, quantification of the hazard intensity 

is typically undertaken through the use of computationally expensive mass flow simulators. 

However, this computational expense restricts the number of samples that can be used to 

produce a probabilistic assessment and limits the ability to rapidly update hazard assessments 

in response to (e.g.) changing source probabilities. We develop an alternate approach to 

defining hazard intensity through a surrogate model that provides a continuous estimate of 

simulation outputs at negligible computational expense, demonstrated through a probabilistic 

hazard assessment of dome collapse (block-and-ash) flows at Taranaki volcano, New 

Zealand. A Gaussian Process emulator trained on a database of simulations is used as the 

surrogate model of hazard intensity across the input space of possible dome collapse volumes 

and configurations, which is then sampled using a volume-frequency relationship of dome 

collapse flows. The demonstrated technique is a tractable solution to the problem of 

probabilistic volcanic hazard assessment, with the surrogates providing a good approximation 

of the simulator at very limited computational expense, and is generally applicable to 

volcanic hazard and geo-hazard assessments that are limited by the demands of numerical 

simulations. 
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1 Introduction 

Volcanic mass flows such as pyroclastic density currents, lahars, and debris avalanches are 

amongst the most hazardous volcanic phenomena generated by volcanic eruptions and unrest 

(Brown et al. 2017). Appropriate management and mitigation of risks to infrastructure and 



population from volcanic activity therefore requires, as one component of risk, an estimation 

of the hazard posed by these phenomena (Brown et al. 2015; Magill and Blong 2005; Pareschi 

2000). Hazard estimates that are quantitative and probabilistic are preferred for the purposes of 

decision support tools (e.g. cost/benefit analyses), measuring or ranking risks, and as an 

objective measure for (e.g.) asset or land-use planning (Marzocchi et al. 2012; Sandri et al. 

2012). However, the specific hazard posed by each process can range from minimal to 

catastrophic depending on eruption magnitude, style, intensity, and environmental interactions 

(i.e. with the landscape for mass flows, with the atmosphere for tephra fall Hill et al. 2009). 

The large input space created by these eruption properties that can span several orders of 

magnitude, and many potential states of eruption style and environmental conditions form a 

critical obstacle to quantitative hazard assessment (Stirling et al. 2017; Stirling and Wilson 

2002). 

Here we refer to quantitative hazard assessments as those that provide a probabilistic estimate 

of intensity (e.g. height, velocity and/or pressure) for one or many volcanic phenomena (i.e. 

using common definitions of Connor et al. 2015; Marzocchi et al. 2012). In the framework of 

probabilistic volcanic hazard assessment (PVHA, Stirling et al. 2017; Stirling and Wilson 

2002), quantification at any site of interest consists of four broad steps: (1) identification of 

volcanic sources that may generate hazardous phenomena; (2) estimation of magnitude-

frequency relationship for the eruption source; (3) quantifying the dependence of hazard 

intensity on the eruption magnitude, site properties and environmental conditions; and (4) 

estimation of hazard exceedance from the magnitude-frequency and hazard intensity 

relationships. This follows a similar methodology to probabilistic seismic hazard assessments 

(PSHA), exploiting the relatively early development (Cornell 1968) and acceptance of seismic 

hazard modelling (Hill et al. 2009; Stirling et al. 2017). 



The most mathematically complex elements in the PVHA approach occur in steps 2 and 3 

(Stirling et al. 2017), which do not have accepted or easily computable solutions. Regarding an 

eruption source model (step 2), data completeness uncertainties (Mead and Magill 2014; Wang 

and Bebbington 2012) and intervolcano variation (Bebbington 2014) affect frequency-

magnitude relationships. These are further complicated by the range of eruption durations, style 

and transitions between styles (Bebbington and Jenkins 2019) that may affect hazard intensity. 

Baseline probabilities of when and how large an eruption may be estimated through data 

(Damaschke et al. 2018) or expert elicitation approaches (Bebbington et al. 2018), and can be 

used to calculate conditional probabilities for (e.g.) hazard occurrence, eruption intensity, size 

and style. Provided with an eruption source model, the most logical approach to calculate 

hazard exceedance is through cross-multiplication of the source probability distributions 

(‘input’) with a hazard intensity model (e.g. Bevilacqua et al. 2017).  

Numerical or statistical models that simulate volcanic processes (e.g. through commonly used 

simulation packages Titan2D, VolcFlow, Fall3D, Tephra2) are most often used to generate a 

hazard intensity model, as they also consider the effect of relevant site properties (e.g. terrain 

between source and site) and environmental conditions (e.g. wind speed and direction for ash 

fall). Hazard assessments using this (or a similar) PVHA approach have mainly been applied 

to ashfall hazard with either a single source (Biass et al. 2016; Bonadonna et al. 2005; Hurst 

and Smith 2004) or a multi-source region (Hurst and Smith 2010; Jenkins et al. 2012; Magill 

and Blong 2005), using Monte Carlo methods to sample the input space for simulation 

parameters. This is often possible through limiting input variables to only a few dimensions. 

The dominance of probabilistic ashfall hazard assessments (Calder et al. 2015) is mainly due 

to the availability of simulators that are fast enough to be directly used in Monte Carlo analyses. 

However, when applied to more computationally expensive simulators such as the Titan2D 

suite for volcanic mass flows (Patra et al. 2005), Monte Carlo methods become infeasible 



(Mahmood et al. 2015). Critically for volcanic hazards, input distributions may change 

throughout a volcanoes lifecycle, episode or eruption event (see Jenkins et al. 2007 for 

terminology). This may require updating and further simulations of the processes (Spiller et al. 

2014). 

Monte Carlo approaches that sample simulator inputs differ from PSHA, and the Stirling et al. 

(2017); Stirling and Wilson (2002) conceptual outlines of PVHA, where a functional 

approximation of hazard intensity is used. These functions are often linear transformations, 

producing a hazard surface that can be rapidly queried to estimate hazard intensity, and its 

uncertainty for the entire spectrum of untested (or ‘unseen’) inputs. A classic example of such 

mappings are ground motion prediction equations (GMPE’s) in seismology, but similar 

mappings (Bebbington et al. 2008; Rhoades et al. 2002) have been developed for ashfall based 

on the geologic record. A critical obstacle is developing functional approximations for volcanic 

mass flows (e.g. pyroclastic flows, lahars, debris avalanches) where robust models are difficult 

to develop from the geologic record due to physical processes that mask the record and large 

variability in flow initiation and dynamics. A proposed solution to this problem (Bayarri et al. 

2009; Rutarindwa et al. 2019; Spiller et al. 2014) is to use an emulator, a fast statistical 

surrogate to computationally expensive simulations (Kennedy and O'Hagan 2001; Rasmussen 

2006; Sacks et al. 1989). In simple mathematical notation, where a computationally expensive 

simulator produces outputs y as a function of the input configuration x as 𝑦 = 𝑓(𝑥) , an 

emulator is a suitably fast and accurate approximation of f(x)  (i.e. ~𝑓(𝑥) ) that can be 

substituted to find y at unsimulated inputs. 

In this study, we focus on the use of emulation as a functional approximation (i.e. step 3 of 

PVHA) for probabilistic hazard assessment of dome collapse volcanic mass flows. Emulation 

techniques have been applied to volcanic mass flow hazards (e.g. Bayarri et al. 2009; Dalbey 

et al. 2008; Gu et al. 2018; Mahmood et al. 2015; Rutarindwa et al. 2019; Spiller et al. 2014; 



Stefanescu et al. 2012), but focus on emulation to identify a specific catastrophic threshold or 

spatially mapping hazard. This is a ‘hazard-centred’ approach that is largely incompatible with 

(volcanic) multi-hazard assessments that are typically ‘location-centred’, using the location to 

identify and define the range of hazard sources and intensities (Carpignano et al. 2009; Nadejda 

et al. 2016). Our method uses warped Gaussian processes (Snelson et al. 2004) to simplify 

elements of the previous approaches (e.g. needing sub-emulators Rutarindwa et al. 2019; 

Spiller et al. 2014) and provide a continuous estimate of hazard exceedance. Using a location-

centred approach, we refine and develop a PVHA methodology for volcanic mass flows to 

provide probabilistic hazard forecasts that integrate statistical modelling of source parameters, 

emulation methods and numerical simulations. This is demonstrated in an application to 

(probabilistically) forecast dome collapse impacts from Taranaki Volcano, New Zealand.  

2 Methods used in probabilistic hazard assessment 

2.1 Overview 

A conceptual overview of the probabilistic hazard assessment process is shown in Figure 1. At 

the location of interest, the (individual) hazard exceedance probability is determined by 

creating models of the hazard intensity and its dependence on magnitude, site properties and 

environmental conditions (‘Intensity-magnitude model’, Figure 1) and the hazard source (i.e. 

the occurrence probability of magnitude, properties and environmental conditions, ‘Hazard 

source model’ in Figure 1). The source model produces values in the input space according to 

their probability distribution, which are then used to sample the hazard intensity model and 

define the exceedance function. Hazard source models for mass flows require the definition of 

a frequency-volume relationship, which is often conditional on probabilities of an eruption and 



specific eruptive phases, in addition to relationships for site properties (e.g. direction of flow 

for pyroclastic density currents, Wolpert et al. 2018). 

The source model probability spaces are mostly real-valued and likely to change in response 

to volcanic activity, therefore a continuous and easily sampled (fast) intensity model is 

preferred. However, mass flow hazard intensity cannot be easily modelled as a continuous 

function, so a statistical surrogate in the form of a Gaussian process emulator is used. A general 

framework for surrogate modelling using Gaussian process emulation is reasonably well 

established from earlier literature (Bayarri et al. 2009; Kennedy and O'Hagan 2001; Spiller et 

al. 2014). First, the hazard intensity at a set of predefined points within the input space (often 

in a space-filling design, Santner et al. 2003) is calculated using a computationally expensive, 

deterministic simulator (‘Hazard simulations’, Figure 1). Then, the simulation inputs and 

outputs are used as training data for the emulator to create a computationally efficient, 

continuous approximation of the simulator.  

We use previously established source models and methods in this probabilistic hazard 

assessment, and therefore focus our methodology description on the simulation and emulation 

components of the surrogate modelling procedure to produce a hazard intensity model.  

Figure 1. The probabilistic mass flow hazard assessment process. 



2.2 Volcanic mass flow simulation 

Volcanic mass flows include dilute mixtures of particles in air (e.g. pyroclastic surges), dense, 

granular dominated flows (e.g. pyroclastic flows, block-and-ash flows) and, mixtures of 

granular material and water (lahars, debris avalanches, debris flows). The depth of these flows 

are typically much smaller than their large geographical extent. Depth-averaged simulation 

approaches which reduce computational complexity through a shallow-layer approximation are 

therefore well suited and frequently applied to the prediction of volcanic mass flow hazards 

(e.g. Aguilera et al. 2004; Bayarri et al. 2009; Charbonnier and Gertisser 2009; Kelfoun et al. 

2017; Mead and Magill 2017; Patra et al. 2005; Pitman et al. 2003; Procter et al. 2010). The 

depth averaged system of equations in Cartesian coordinates can be expressed in terms of the 

height and momentum vector U, directional (x, y) flux vectors F, G and source (driving forces) 

vector S as: 

𝜕𝐔

𝜕𝑡
+

𝜕𝐅

𝜕𝑥
+

𝜕𝐆

𝜕𝑦
= 𝐒 (1) 

We use a Mohr-Coulomb rheological model (Pitman et al. 2003) implemented in the Titan2D 

platform (Patra et al. 2005; Sheridan et al. 2005) for this application. The Mohr-Coulomb 

model for granular mass flows requires the following user specified inputs: 

1. the terrain, 

2. the initial volume, and its spatial distribution,  

3. an internal friction angle φ, and 

4. a basal friction angle, ϕ. 

Previous studies have shown simulation results to be relatively insensitive to reasonable, mid-

range values of internal friction angle (Procter et al. 2010; Sheridan et al. 2005), and the 

mobility of volcanic flows (expressed as tan(𝜙)) is relatable to the flow volume (Pudasaini 

and Miller 2013). The terrain input is commonly regarded as a fixed input for simplicity, 



however is often subject to considerable uncertainty (Hawker et al. 2018; Stefanescu et al. 

2012), and may change throughout a volcanic crisis. With terrain and friction angles fixed or 

having a fixed relationship, the input space of the simulator (χ) therefore consists of the 

variables needed to define the initial volume and its spatial distribution (location and shape). 

These inputs can be most conveniently and efficiently parameterised as an ellipsoid with 

constant aspect ratios (e.g. Procter et al. 2010) requiring the definition of four inputs: an initial 

volume (v), location (North and East coordinates; N, E) and orientation (azimuth, θ) of the 

elliptical pile. 

While the application described here uses and makes simplifications on the basis of the Mohr-

Coulomb depth-averaged approximation in Titan2D, the emulation procedure (described in 

following section) treats the simulator as a ‘black box’ consisting only of inputs and outputs. 

As a result, our framework is not restricted to the simplifications specifically mentioned here. 

Alternative simulators and rheological models for depth averaged systems of equations (e.g. 

Iverson and George 2014; Kelfoun 2017; Pudasaini 2012) may be substituted and additional 

inputs may be added with little methodological differences to the emulator. 

2.2.1 Surrogate modelling of mass flow simulations 

The simulator will produce a set of outputs (e.g. flow depth, dynamic pressure) for each 

simulation grid cell at any combination of the 4-dimensional input space (𝜒 = [𝑣, 𝑁, 𝐸, 𝜃]), but 

at a great computational expense (e.g. ~12-24 hours on a 12 core processor). Our goal is to 

develop a fast and computationally cheap surrogate (emulator) for the simulator that provides 

an efficiently sampled (i.e. functional) representation of the input space. The emulation 

approach applied here borrows from the Bayarri et al. (2009); Gu et al. (2018); Spiller et al. 

(2014) Gaussian Process (GP) emulator methodology. The reader is referred to these 

publications for the full mathematical details, here we summarise the practical elements and 

key variations from the previous approaches important to this study. 



Representing a scalar output of interest (y) from the simulator as 𝑦 = 𝑓(x); (x = [𝑣, 𝑁, 𝐸, 𝜃]), 

the GP emulator is a substitute for f(x) as follows: 

𝑓(x) ~ 𝐺𝑃(𝜇(x), 𝑘(x, x′)) (2) 

∴ 𝑦 ~ 𝐺𝑃(𝜇(x), 𝑘(x, x′)) (3) 

Where µ(x) is the mean (trend) with respect to x, and k(x, x′) is the covariance function across 

input pairs. The mean function µ(x) is often taken as zero or a fixed basis expansion for 

simplicity, as it simply normalises (to µ(x)) the differences in x (Rasmussen 2006). 

The covariance function (also called a kernel, Lloyd et al. 2014; Rasmussen 2006) defines the 

correlation structure between inputs (x, x’) across the input dimensions, controlled by a set of 

free parameters (hyperparameters). A useful feature of kernels is that they can be combined 

across and within input dimensions as a sum or product of different kernels (e.g. k(x, x′) = k1(x, 

x′) + k2(x, x′)). This compositional property is convenient for model selection and aids 

interpretability (Duvenaud et al. 2013), as covariance functions can be defined for each 

dimension individually (a conceptually simple task for domain experts) rather than en masse. 

For computer simulation outputs, smoothing kernels such as the squared exponential and 

Matérn kernels are most common (e.g. in Bayarri et al. 2009; Gu et al. 2018; Rutarindwa et al. 

2019; Spiller et al. 2014). The primary free parameter in these smoothing functions is the 

lengthscale ℓ, a measure of the correlation distance between input values. In our simulations, 

expecting some degree of multi-scale variation as the pile volume and location changes, we 

choose a Matérn 3/2 kernel for the volume, North and East dimensions. In the orientation 

dimension, we expect smoother correlation and choose a periodic Matérn 5/2 kernel, with a 

period of π due to symmetry of the ellipse. Our covariance kernel is therefore: 

𝑘(xi, xj) = ∏ 𝑘𝑥=[𝑣,𝑁,𝐸,𝜃] (xi, xj) (4) 



where 

𝑘𝑥=[𝑣,𝑁,𝐸](xi, xj) =  (1 +
√3𝑟

ℓ
) exp (− √3𝑟

ℓ
⁄ ) , x = [𝑣, 𝑁, 𝐸] (5) 

𝑘𝑥=𝜃(xi, xj) = (1 +
√5𝑟

ℓ
+

5𝑟2

3ℓ2
) exp (− √5𝑟

ℓ
⁄ ) , x = θ (6) 

𝑟 =  |x𝑖 − x𝑗| (7) 

Inserting equations 4 to 5 into equation 3 defines a function parameterised with 4 unknown 

lengthscales and the mean function. Estimating the lengthscale hyperparameters using 

Maximum Likelihood Estimation (MLE) is often unstable (Gu et al. 2018; Spiller et al. 2014). 

This issue can be solved through specification of a prior (the 'reference prior', Berger et al. 

2001) and finding the posterior mode (i.e. MAP estimate, Bayarri et al. 2009; Spiller et al. 

2014). We use the ‘jointly robust prior’ of Gu (2019), an easily computable objective prior with 

similar properties to the reference prior (Berger et al. 2001) that yields a proper posterior 

distribution.  

Another difficulty encountered in GP emulation of mass flow simulations is the presence of 

zero values in our quantity of interest (e.g. flow height). At any location a reasonable distance 

from the source, a large portion of the simulation input space (of volume, ellipse location and 

orientation) will produce an output value of zero, abruptly changing to non-zero and then 

increasing monotonically with volume. Such an output is non-stationary, a property which 

causes difficulty when fitting the GP emulator (see e.g. Spiller et al. 2014). Solutions to this 

problem have been proposed and include partitioning (e.g. Treed-Gaussian Process, Gramacy 

and Lee 2008), input or output warping (Snelson et al. 2004; Snoek et al. 2014) and non-

stationary covariance functions (Paciorek and Schervish 2004). For this task we found warping 

of the model output vector produced the most robust results. This approach, outlined in Snelson 



et al. (2004), transforms the model outputs (ym) by a series of hyperbolic tangent (tanh) steps 

with a linear trend outside the function bounds: 

𝑓(ym; {𝑎, 𝑏, 𝑐}) = ym + ∑ 𝑎𝑖 tanh(𝑏𝑖(ym + 𝑐𝑖))

𝐼

𝑖=1

   𝑎𝑖, 𝑏𝑖 ≥ 0 (8) 

Where a scales the step size, b the steepness and c controlling step position for any number of 

I steps. We use a single step in this study as our output data is relatively simple (zero values, 

then monotonic increase), although any number of steps could be used. 

Following Gu and Berger (2016), we add a noise term (‘nugget’) to equation 3 (i.e. approximate 

𝑦 = 𝑓(𝑥) + 𝜖), as the basal friction input is masked from the emulator. The final emulator 

therefore contains 8 parameters (3 from equation 8, 4 lengthscales and the nugget), which was 

optimised using a SCG optimisation algorithm through the GPy package (GPy, 2012). 

3 Emulation of dome collapse flows at Mt. Taranaki 

3.1 Geologic setting and eruptive history of Mt. Taranaki, New Zealand 

Mt. Taranaki (2518 m) is near-symmetrical andesitic stratovolcano with more than 170,000 

years of geologic history (Alloway et al. 2005). The volcanic activity of Mt. Taranaki is 

cyclical, with large, unconfined debris avalanches initiated by destruction of former Taranaki 

edifices beginning the cycle (Zernack and Procter 2021). Regrowth of the Taranaki cone 

follows through smaller-scale activity, including small explosive eruptions, lava flows and 

dome growth. This activity can shift into larger scale explosive activity with large Plinian and 

sub-Plinian eruptions; block-and-ash flows; and the generation of long-runout, but confined 

mass flows (Zernack and Procter 2021). 

Activity since the last debris avalanche (~7,000 years ago) is represented through a regrowth 

phase of 53 different eruption episodes identified in proximal deposits on Taranaki. These 

indicate complex eruption sequences associated with the generation of ashfall deposits and 



small-scale pyroclastic density currents from eruption columns, longer-runout block-and-ash 

flows, and syn-eruptive or secondary lahars following valley and river channels in the Taranaki 

region (Torres-Orozco et al. 2016).  The last 1000 years of activity (the Maero Eruptive Period, 

Neall 1979; Platz et al. 2007) is dominated by small eruptions (Volcanic Explosivity Index 3-

4) with emplacement and collapse of lavas and smaller domes on the summit of Mt. Taranaki 

(Neall et al. 1986; Torres-Orozco et al. 2017; Zernack 2008). 

A detailed account of pyroclastic flows during the Maero Eruptive Period is reported in Platz 

et al. (2007) who identified at least 10 separate flow events over the past 900 years. These flows 

affected two main sectors of Mt. Taranaki: the W-NW sector towards Stony (Hangatahua) 

River and the N-NE sector towards Ahukawakawa Swamp (Figure 2). This distribution of 

dome collapse pyroclastic flows is strongly influenced by the summit morphology (Lerner et 

al. 2019). Currently, the summit contains remnants of a lava dome (~1.5 x 106 m3) within a 420 

m diameter crater breached from the SW to NE  (‘The Chute’, towards Stony River, Platz et 

al. 2007). This morphology directs most block-and-ash flows towards the NW sector of Egmont 

National Park; the past ~800 years of block-and-ash flows have almost exclusively impacted 

this sector (Procter et al. 2010). The hazard is assessed across three different locations (shown 

in Figure 2) to compare and quantitatively examine the effect of this morphology. 



3.2 Simulation of dome collapse pyroclastic flows 

Dome collapse flows from the Taranaki summit appear to have lower energy in contrast to 

(e.g.) lateral blast triggered pyroclastic density currents, and dynamics are approximated well 

with a Mohr-Coulomb rheological model (Platz et al. 2007; Procter et al. 2021). Unit volumes 

for the Maero period come collapse flows range from 1-15 × 106 m3, but likely represent a 

collection of smaller flows (Procter et al. 2010). A previous study of summit dome collapses 

(Procter et al. 2010) simulated flows with a volume of 106 m3 using the Mohr-Coulomb model 

in Titan2D, which matched well to mapped deposits with similar volumes. Our simulation 

study introduces more variation to the summit dome configuration. 

A half-ellipsoidal collapse shape was assumed with aspect ratios matching those of the previous 

dome (from Platz 2007) and volumes ranging from 105 to 107 m3. The maximum volume 

corresponds to the presumed maximum dome volume possible in the summit crater, but is 

Figure 2. Taranaki volcano in Egmont National park with flow measurement points used in this 

study. Arrows show major flow paths for block-and-ash flows during the Maero eruptive period 

(Platz, 2007), dashed line shows crater rim. 



larger than the maximum dome collapse flow volumes expected at Taranaki (Procter et al. 

2010). We specify a larger volume in this case to expand the simulation input space beyond 

‘realistic’ to ensure adequate support for the surrogate modelling and sampling (e.g. as in 

Rutarindwa et al. 2019). Similar ‘expanded’ input spaces are used to vary the planimetric centre 

and orientation of the dome, accounting for scenarios where a new dome is emplaced on the 

summit following an explosive eruption to clear the remnant dome (a possible scenario 

described in Ogburn et al. 2015). The centre of the collapsing ellipse from the summit vent 

varied in polar coordinates (0 to 210 m radius, 0 to 2π angle), transformed into planimetric (N, 

E) coordinates for input. The orientation of the ellipse major axis is also varied between 0 to 

180° (current orientation ~117.5°). The internal friction coefficient, shown to have little effect 

on simulations (Procter et al. 2010; Sheridan et al. 2005), is set at 30° and basal friction is 

determined as a function of volume using the friction-volume relationship for volcanic mass 

flows (Pudasaini and Miller 2013). A total of 1024 input configurations (a set of [𝑣, 𝑁, 𝐸, 𝜃]) 

were simulated, with inputs chosen in a space filling design (latin hypercube sampling). All 

simulations used a 25 m digital elevation model (Landcare Research NZ 2002). 

The simulation output of interest (y from Equation 3) in this study is the maximum flow depth 

throughout the entire simulation. Results from all simulations are shown in Figure 3, 

aggregated to show the minimum volume required to exceed a threshold flow height of 1.0 m 

(typical heights for a catastrophic flow are between 0.25 and 1.0 m, Spiller et al. 2014). The 

simulations show most valleys within Egmont National Park are affected by dome-collapse 

flows in the range of dome configurations described, and that impact (as defined by the height 

threshold) increases with volume in a largely monotonic manner. Across the three locations in 

this study, flows need to exceed a critical volume (5.0 × 106 for Ahukawakawa and Stony 

River, 2.5 × 106 for Kokowai Stream) to cause impact above the threshold 1.0 m. However, the 

simplistic assessment in Figure 3 disregards the effect of location and orientation input 



variables. This can be explored through the use of Gaussian Process emulator fitted to data for 

the three locations in Figure 2. 

3.3 Emulator 

Figure 4 shows leave-one-out cross-validation results (calculated using Vehtari et al. 2016) for 

the emulators fitted to each location of interest. The emulator mean is within 2 standard 

deviations of almost all (>90%) of the simulated values, although the errors (red in Figure 4) 

show some bias towards over-estimating at very low (simulated) height. Over-estimation is 

Figure 3. Map of minimum block-and-ash flow volume to exceed 1.0 m in flow depth for all 

simulations. 



preferred to underestimation in terms of risk, and uncertainties at very low heights are expected 

to have less of an effect on estimated hazard (examined in the following section). 

The emulators can be used to examine ‘slices’ of the input space by providing a continuous 

estimation across any dimension (or a combination of dimensions). Two examples of these are 

shown in Figure 5 and Figure 6. Figure 5 shows the emulator mean and 95% confidence interval 

for dome collapse flows with a location and orientation similar to the current dome and volume 

varying between 105 and 107 m3. The prediction for Ahukawakawa (Figure 5a) indicates flow 

heights are expected to be less than 2.5 m in any volume scenario with the current dome 

configuration. The emulated flow height is much higher for Stony River, in agreement with the 

observations of a preferential flow direction in Platz et al. (2007). Emulated heights for 

Figure 4. Leave-one-out cross-validation results for emulators fitted to simulation data at (a) Ahukawakawa, (b) Stony River, and (c) 

Kokowai Stream. Dots indicate the mean estimate, error lines are ±2 standard deviations of the mean, red points highlight estimates 

that are greater than 2 standard deviations from the simulated flow height. Magenta line indicates a perfect fit. 



Kokowai Stream also indicate a critical volume (>2.5 × 106 m3) is necessary to overcome 

topographic barriers and direct flow towards this location. 

Figure 5. Emulator mean (black line) and 95% confidence interval (shaded) predictions for dome 

collapse flows in a similar configuration to the current (remnant) Taranaki dome at (a) 

Ahukawakawa, (b) Stony River, and (c) Kokowai Stream locations. Grey dots indicate simulated 

flow heights from all simulations. 



Emulator slices can also be used to estimate impacts in new dome configurations (e.g. 

following explosive modification of summit). For example, Figure 6 shows an example of 

emulated flow heights for a dome collapse volume of 7.0 × 106 m3 across the major axis 

orientation which can be used to evaluate directionality effects of dome collapse flows. A 

circular shape would indicate the dome major axis has no effect on maximum flow height (i.e. 

no directionality effects). Figure 6 shows clear variations in flow height with major axis angle, 

with a preference for larger flow heights when the dome is oriented towards the location. 

4 Application to dome collapse hazard assessment 

Referring to Figure 1, probabilistic hazard assessment requires both an easily sampled 

surrogate (the emulator) and a source model quantifying the probability of the input space. The 

exceedance probability of the hazard (flow height) can then be calculated using Monte Carlo 

samples of the source distributions to calculate flow height in the emulator (i.e. similar to 

Bebbington et al. 2008). With the emulator built (see previous), and uniform distributions 

assumed the dome orientation and location (N, E, θ) due to a lack of prior information, a 

frequency-volume distribution is required to define the hazard. 

Figure 6. Emulator mean predictions for dome collapse flow volumes of 7.0 × 106 m3 with a 

similar configuration to the current (remnant) Taranaki dome and varied major axis orientation at 

Ahukawakawa (solid line), Stony River (dashed line), and Kokowai Stream (dotted line) locations.  



Figure 5 suggests dome collapse volumes need to be greater than the current remnant dome 

volume (~~1.5 x 106 m3) to cause flow heights greater than 0.5 m. Dome collapses of this 

magnitude have occurred at Taranaki (the most recent summit dome volume was estimated by 

Platz et al. (2012) to be ~5.9 x 106 m3 in volume before collapse). However, an episode of 

significant dome growth is required to generate such conditions. Therefore, the likelihood of 

block-and-ash flows affecting the locations of interest is limited by the occurrence of a 

sufficient dome growth episode. 

As there is no direct evidence of dome growth and collapse at Mt. Taranaki, we use the 

‘DomeHaz‘ global dome growth dataset and analysis of Ogburn et al. (2015) to identify 

pathways to dome growth episodes capable of generating hazardous flows. The Ogburn et al. 

(2015) analysis notes it is most common to have an explosive eruption before dome growth 

episodes. They posit that large explosive eruptions may be necessary before dome growth 

episodes to remove high viscosity (i.e. cold rock) magma and lava from the conduit and enable 

extrusion of large magma volumes. This hypothesis is also supported by Platz (2007), using 

evidence from the most recent (Maero) eruptive period of Mt. Taranaki. Assuming an explosive 

eruption is required to precede a new episode of dome growth capable of producing hazardous 

Figure 7. Log-log scale plot of proportion of dome collapse flow 

volumes exceeding volume V. Dots are empirical data from Harnett et 

al. (2019), black line is best fit power-law (α≈1.78) with a minimum 

volume of 1.5 × 106 m3. 



block-and-ash flows, and using the minimum dome extrusion rate (6.0 m3s-1) for the latest 

dome growth episode (Pyramid, Platz 2007); the probability tree of Ogburn et al. (2015) 

suggests there is a 0.73 probability of a dome growth episode, if an eruption occurs. This 

probability (0.73) relates to the chance of a dome growth episode following an eruption. As 

most lava domes do not collapse completely (see e.g. Ogburn and Calder 2017; Platz et al. 

2007), instead releasing 50% to 80% of their total dome volume, the probability of dome 

collapse volumes, conditional on a sufficient growth episode needs to be calculated. A power-

law distribution (𝑝(𝑥) ∝ 𝑥−𝛼) was used to fit andesitic dome collapse volumes in the Global 

Archive of Dome Instabilities database (Harnett et al. 2019). The frequency-volume plot in 

Figure 7 shows the data are well-fit by the distribution between 1.5 x 106 and 107 m3 with an α 

of 1.78. 

Figure 8 shows dome collapse flow height exceedance probability, conditional on a new dome 

growth episode, for all locations calculated from 10,000 dome configurations and 10 draws of 

the emulator posterior. Smaller flows (heights < 1.0 m) are more likely at the Kokowai (dotted 

line) and Ahukawakawa (solid line) locations, potentially due to their proximity to the dome. 

Figure 8. Flow height exceedance probabilities for Ahukawakawa 

(black line), Stony River (dashed line), and Kokowai Stream (dotted 

line) locations. Probabilities are conditional on a new dome growth 

episode following an eruption (p = 0.73). 



However, larger flows (> 4 m) are much more likely to occur in the Stony River, as a result of 

the topographic controls directing most mass flows along this catchment (Procter et al. 2010). 

5 Discussion 

The use of surrogates for computationally expensive simulations have a dual purpose in the 

probabilistic hazard methodology used here. First, the surrogate emulator can be rapidly 

sampled, alleviating the computational burden when sampling using Monte-Carlo estimation. 

The 300,000 (3 × 100,000) samples in this example (Figure 8) took only 7 minutes on a desktop 

computer using an unoptimized sampling algorithm. In contrast, a single simulation using 

Titan2D can take up to 6 hours in a high-performance, parallel computing environment.  

The emulator also provides a continuous approximation of hazard across the input space, as 

opposed to a discrete set of simulations. This continuous approximation supports easier 

updating of the hazard estimate in response to changes in source probabilities. For example, if 

the location and orientation of new dome growth is known, the exceedance probabilities can 

be updated in minutes through Monte-Carlo sampling of the emulator, rather than requiring a 

new set of computationally expensive simulations. Used as described here, emulation provides 

a preferable solution to quantifying mass flow hazard in a probabilistic manner over ‘brute 

force’ applications running many thousands of simulations, even if computational cost is not a 

factor for consideration. 

These benefits can be limited by the simulation and simulator design space. If the simulation 

is inadequate or approximations are required outside the design space, the emulator will 

provide a bad fit. Simulator (model choice) inaccuracies can be simply addressed through 

informed model choice and calibration or model averaging (Akhavan-Safaei et al. 2017) as 

simulators are treated as a ‘black box’ by the emulator, only relying on the input (𝜒) and output 

(y) vectors. Definition of the input space can cause issues in emulation, as the space needs to 



be broad enough to cover all eventualities, while narrow enough to provide an adequate density 

of data for the emulator. In particular, non-stationarity is a difficult issue for mass flow 

emulation (Rutarindwa et al. 2019; Spiller et al. 2014). Output warping (Snelson et al. 2004) 

performed satisfactorily for this application (see cross-validation results in Figure 4) and 

appears simpler to apply than previously suggested sub-emulators.  

6 Conclusion 

This methodology for probabilistic hazard assessment using deterministic simulations used 

Gaussian Process emulators as a statistical surrogate for simulation results. The emulator 

created a linear mapping between dome collapse flow inputs (volume, location, orientation) 

and simulated maximum flow heights, with non-stationarity in outputs addressed using a 

warping function fit with the emulator. Emulators created at three locations for dome collapse 

flow simulations at Taranaki volcano, New Zealand were found to approximate the simulations 

well (>90% within 2 standard deviations using leave-one-out cross validation). These created 

emulators act as a fast engine for probabilistic volcanic hazard assessment, enabling the use of 

standard Monte Carlo methods to estimate dome collapse flow hazard. This method has been 

successfully applied to a probabilistic estimation of hazard at key locations within the Egmont 

National Park at Taranaki, the application of which will be explored in future work. This 

methodology incorporating deterministic simulations and gaussian process emulators is not 

specific to dome collapse flows, and can be readily applied to other volcanic hazards and geo-

hazards in general, provided a well-defined input space.  

Computer Code Availability 

The open-source python code for the Probabilistic Surrogate, including sample data, is 

available from https://github.com/stuartmead/probablisticsurrogate. Modified Titan2D 

simulator source code used to create the source data is available in the Zenodo repository 

https://doi.org/10.5281/zeondo.153.993. 

https://github.com/stuartmead/probablisticsurrogate
https://doi.org/10.5281/zeondo.153.993
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