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Abstract

The paper investigates the applicability of machine learning (ML) to weather
prediction by building a low-resolution ML model for global weather prediction. The
forecast performance of the ML model is assessed by comparing it to that of persistence
and a numerical physics-based model, whose prognostic state variables and resolution
are identical to those of the ML model. The ML model typically provides realistic
prediction of the weather for the entire globe for about five forecast days. For the first
three forecast days, the ML model outperforms persistence in the extratropics. While
the relative performance of the ML model compared to the physics-based model is
mixed, the ML forecasts are more accurate for the specific humidity in the extratropics
and the specific humidity and temperature in the tropics. These results suggests
that ML has a potential to improve the prediction of state variables most affected by
parameterized processes in numerical models.

1 Introduction

The ultimate goal of our research is to develop a hybrid (numerical-machine-
learning) weather prediction (HWP) model. We hope to achieve this goal by imple-
menting algorithms developed by Pathak et al. [2018a,b] and Wikner et al. [2020]: the
first paper introduced an efficient ML algorithm for numerical-model-free prediction
of large, spatiotemporal dynamical systems, based solely on the knowledge of past
states of the system; the second paper showed how to combine a machine learning
(ML) algorithm with an imperfect numerical model of a dynamical system to obtain a
hybrid model that predicts the system more accurately than either component alone;
while the third paper combined the techniques of the first two into a computationally
efficient hybrid modeling approach. The present paper implements the parallel ML
technique of Pathak et al. [2018a] to build a model that predicts the weather in the
same format as a global numerical model. We train and verify the model on hourly
ERAD5 reanalysis data from the European Centre for Medium-Range Weather Forecasts
(ECMWF) [Hersbach et al., 2019].

The work presented here can also be considered an attempt to develop a ML
model that can predict the evolution of the three-dimensional, multivariate, global
atmospheric state. To the best of our knowledge, the only similar prior attempts were
those by Scher [2018] and Scher and Messori [2019], but they trained their three-
dimensional multivariate ML: model on data that was produced by low-resolution nu-
merical model simulations. In addition, Dueben and Bauer [2018] and Weyn et al.
[2019] designed ML models to predict two-dimensional, horizontal fields of select at-
mospheric state variables. Similar to our verification strategy, they also verified the
ML forecasts against reanalysis data. Compared to all of the aforementioned stud-
ies, an important new aspect of our work is that we employ reservoir computing (RC)
[Jaeger, 2001; Maass et al., 2002; LukoSevicius and Jaeger, 2009] rather than deep-
learning [e.g. Goodfellow et al., 2016], which is primarily motivated by the significantly
lower computer wall-clock time required to train an RC-based model. This difference
in training efficiency is a potential key advantage at higher spatial resolutions.

The structure of the paper is as follows. Section 2 describes the ML model,
while section 3 presents the results of the forecast experiments, using as benchmarks
persistence of the atmospheric state, as well as numerical forecasts from a physics-based
model of the same resolution. Section 4 summarizes our conclusions.



2 The ML model

The N components of the state vector v™(t) of the ML model are the grid-
point values associated with the spatially discretized fields of the Eulerian dependent
variables of the model. Training the model requires the availability of a discrete time
series of past observation-based estimates (analyses) v®(kAt) (k= —-K,—K+1,...,0)
of the atmospheric states that use the same N-dimensional representation of the state
as the model. Beyond the training period, the analyses v®(kAt) (k= 1,2,...) are used
only to maintain the synchronization of the model state with the observed atmospheric
state. An ML forecast can potentially be started at any analysis time kAt (k =
0,1,...): the forecast is a discrete time series of model states v*(k’At) (k' = k +
1,k +2,...), where kAt is the initial time, v*(kAt) is the initial state, At is the
time-step, and (k' — k)At is the forecast time.

2.1 Representation of the Model State
2.1.1 The Global State Vector

We define v™(t) by the grid-based state vector of the physics-based numerical
model SPEEDY [Molteni, 2003; Kucharski et al., 2013]. While SPEEDY is a spec-
tral transform model, it uses the grid-based state vector to represent the input and
output state of the model, and to compute the nonlinear and parameterized terms of
the physics-based prognostic equations. The horizontal grid spacing is 3.75°x3.75°
and the model has eight vertical o-levels ( at o equals 0.025, 0.095, 0.20, 0.34, 0.51,
0.685, 0.835, and 0.95), where o is the ratio of pressure to the pressure at the sur-
face. On this computational grid, the three-dimensional field of an Eulerian dependent
variable is represented by 96 x48x8=36,864 grid-point variables. The model has four
three-dimensional dependent variables: the two horizontal coordinates of the wind
vector, temperature, and specific humidity. The logarithm of surface pressure is also
a dependent model variable, but it is represented by a two-dimensional (horizontal)
field. Thus the number of variables per horizontal location is n=4x8+1=33, while the
total number of model variables is N = nx4,608=1.52064x10°. Because the different
Eulerian state variables have different units and their values vary in different ranges,
they should be standardized before forming the state vector v (t). We subtract the
climatological mean and divide by the standard deviation of each variable in the local
region for the standardization.

2.1.2 Local State Vectors

The global model domain is partitioned into L = 1,152 local regions. We use
a Mercator (cylindrical) map projection to define the local regions, partitioning the
three-dimensional model domain only in the two horizontal directions: each local region
has the shape of a rectangular prism with a 7.5°x7.5° base (Fig. 1). The model state
in local region ¢ (¢ =1,2,...,L) is represented by the local state vector vi*(t), whose
components are defined by the D,=4x33=132 components of the global state vector
in the local region. The model computes the L evolved local state vectors v (t + At)
from v™(t) in parallel, and the evolved global state vector v (¢ + At) is obtained by
piecing the L evolved local state vectors together.

2.2 The Computational Algorithm

2.2.1 RC

The computation of v}’ (t+At) from v (t) requires the evaluation of a composite
(chain) function for each local state vector. Because we use an RC algorithm, this
composite function has only three layers: the input layer, the reservoir, and the output



Domain Decomposition

Figure 1. Illustration of the local regions. The local regions are defined on a Mercator map

projection, where the black dots indicate the horizontal location of the grid-points of the model.

The blue rectangles mark the boundaries of nine adjacent local regions. The red rectangle indi-

cates the boundaries of the extended local region for the local region in the center.

layer. A key feature of RC is that the trainable parameters of the model appear only
in the output layer, which greatly simplifies the training process.

2.2.2 The Input Layer and Reservoir

The composite of the input layer and the reservoir is
ro(t 4+ At) = Ge{re(t), Wan o[¥7" ()]},

where the function W, ¢[-] is the input layer. The dimension D, of the reservoir state
vector ro(t) = (r¢1,7¢,2,---,7e,p,) is much higher than the dimension D; of the input
vector Vi (t). (Notice that the reservoir is a high-dimensional dynamical system.) The
input vector v} (t) is an extended local state vector that represents the model state in
an extended local region. In the present paper, we define v}*(t) by the grid points of
local region ¢ plus the closest grid points from the neighboring local regions (see Fig. 1
for an illustration). In the terminology of Pathak et al. [2018a], the locality parameter
of our model is 1. Using a nonzero value of the locality parameter is essential, because
otherwise no information can flow between the local regions. (We note that the ‘local’
approach of Dueben and Bauer [2018] that was introduced independently of the par-
allel technique of Pathak et al. [2018a] employs a conceptually identical localization
strategy.) The dimension of the extended local state vectors is D;=16x33=528 for
most £. The exceptions are the local regions nearest to the two poles, because for
those, we add no extra grid points in the poleward direction. The dimension of the
input vectors in these local regions is D; = 12 x 33 = 396.

The input layer is implemented as W, ¢[V}*(t)] = W (V}*(t), where W 4 is a
D, x D; random matrix, whose entries are drawn from a uniform probability distri-
bution in the interval [—0.5,0.5]. The reservoir dynamics is defined by

Go{re(t), Win o[V (t)]} = tanh [Aer,(t) + W4 oV (2)],

where tanh [-] is the component-wise hyperbolic tangent function and A, is a D, X
D, weighted adjacency matriz that represents a low-degree, directed, random graph



[Gilbert, 1959]. Each entry of A, has a probability x/D, of being nonzero, so that
the expected degree of each vertex is a prescribed number k. Thus, k is the average
number of incoming connections (edges) per vertex, determining the average number
of components of ry(t) that can affect a component of ry(t + At). The nonzero entries
of Ay are randomly drawn from a uniform distribution in the interval (0, 1] and scaled
so that the largest eigenvalue of Ay is a prescribed number p. The parameter p is
called the spectral radius and it controls the length of the memory of the ML model
dynamics.

2.2.3 The Output Layer

The evolved local state vector is obtained by
Vzn(t + At) = Wout7g[rg(t + At), P@],

where the function W ¢[-, -] is the output layer. This function is chosen such that it
is linear in the matriz of trainable parameters P,. To be precise,

Wout,é[ré(t + At), Pd = ng‘g(t 4 At),

where To(t + At) = (re1, 7”%,27 Te3, 7'24, ey T D1, TZDT)(t + At).

2.2.4 Synchronization and Training

We define the local analysis v§(kAt) by the components of the global analysis
vi(kAt) (k = —K,—K + 1,...) that describe the state in local region ¢. In other
words, v§ (kAt) is the observation-based estimate of the desired value of the model state
vy (kAt). Likewise, we define the extended local analysis v§(kAt) as the observation-
based estimate of the extended local state vector v}*(kAt) (k= —-K,—-K +1,...).

The synchronization and training of the ML model starts with feeding the past
analyses to the reservoir, or more precisely, by substituting v§(kAt) (k = —K,—-K +

1,...,—1) for v{*(kAt) in Eq. (1). Thus the output layer, Eq. (3), is not needed to
compute ry(kAt) for k = —K +1,-K 4+ 2,...,0: we generate ry(—KAt) randomly,
discard the transient sequence ry(kAt), k = —K,—K+1,..., —K;, and define v} (kAt)

for k= —K;+1,—K; + 2,...,0 according to Eq. (1), with P, as yet undetermined.
The training is done by finding the values of the entries of P, that minimize the cost
function

0
e = [ S0 IvERA) = v RADI | + B Wourll),  £=1,2,..., L,
k=—K+1
where || - || is the Frobenius norm. The purpose of the Tikhonov regularization term

BIIWoue ell) [Tikhonov et al., 1977] of J;(P;) is to improve the numerical stability of
the computations and prevent overfitting to the training data by choosing large values
of the components of W, . Because W, depends linearly on Py, the solutions
of the L minimization problems can be obtained by a linear regression. That is, Py is
computed by solving the linear problem

P, (R@RZ +51) —VIRY, (=12...,1L,
where the columns of R, are ro(kAt) (k=—-K¢+1,—K:+2,...,0) and the columns
of V¢ are va(kAt) (k= —K, +1,—K; +2,...,0).
2.3 Implementation on ERA5 Reanalysis Data
2.3.1 Training

The global analyses v®(kAt) (k = —K,—K+1,...) are hourly ERA5 reanalyses.
We interpolate the reanalysis fields onto the computational grid of the model by first



interpolating the horizontal fields at each pressure level by a 2-dimensional quadratic
B-spline interpolation. As the local height of the topography has a major effect on
the surface pressure, we adjust the reanalysis surface pressure fields to the SPEEDY
topography after completing the horizontal interpolation. The adjustment is done
by making the assumption of hydrostatic balance and taking into account the local
height difference between the SPEEDY and ERASB topography [for details, see Baek
et al., 2009; Herrera et al., 2018]. Because the vertical coordinate of SPEEDY is o,
the vertical interpolation of the fields requires first computing sigma at each horizontal
grid point locations for the reanalysis fields. Then, we interpolate the reanalysis fields
to the sigma levels of SPEEDY by a 1-dimensional cubic B-spline interpolation.

This training starts at 0000 UTC! on 1 January, 1981 and ends at 2000 UTC
on January 24, 2000 (K = 1.66 x 10°). We add a small-magnitude random noise (t)
to v3(kAt) (k= —-K,—K +1,...,—1) before we substitute it for v;*(¢) in Eq. (1) in
order to improve the robustness of the ML model to noise [Jaeger, 2001] The transient
sequence of K — K reservoir states that we discard corresponds to the first 43 days of
the training data set.

2.3.2 Code Implementation and Performance

Following the convention of numerical weather prediction (NWP), the computer
code of the model is written in Fortran, using both MPI and OpenMP for paralleliza-
tion. The linear problem of Eq. (6) is solved by the LAPACK routine DGESV. All
computations are carried out on 1,152 Intel Xeon E5-2670 v2 processors in an Ivy
Bridge configuration. Training the ML model takes 67 minutes wall-clock time and
requires 2.5 Terabytes of memory.

2.4 The Forecast Cycle

Beyond the training period, the analyses are used only to maintain the syn-
chronization between the reservoirs and the atmosphere. While we use the hourly
reanalyses for synchronization, we start a new 5-day forecast only once every 48 hours.
(Preparing a 5-day forecast takes about 15 seconds of wall-clock time.) We prepare a
total of 171 forecasts for the period from January 25, 2000 to 28 December, 2000. The
forecast error statistics reported below are calculated based on these forecasts.

2.4.1 Selection of the Hyperparameters

The parameters [, D,, k, p, €, and (3 are the hyperparameters of the model.
Our choice of [ = 1 is primarily dictated by the limited amount of available computer
memory. We found suitable combinations of the other hyperparameters by numerical
experimentation, monitoring the accuracy and stability of the forecasts. All results re-
ported in this paper are for D,=9,000, k=6, 3 = 10~*, while p monotonically increases
from 0.3 at the equator to 0.7 at 45° and beyond. The components of & are uncorre-
lated, normally distributed, random numbers with mean zero and standard deviation
0.2 in the tropics (between 30°S and 30°N) and 0.25 elsewhere. For this combination
of the hyperparameters, the ML model typically produces realistic forecasts for about
five days. Beyond that time, the model remains stable (the errors are bounded), but
the fields develop unrealistic atmospheric features.

! Universal Time Coordinated, known as Greenwich Mean Time (GMT) prior to 1972.



3 Forecast Verification Results
3.1 Benchmark Forecasts

We use two sets of benchmark forecasts for the evaluation of the ML model fore-
casts. The first set is based on the assumption that the initial state of the atmosphere
will persist for the entire time of the forecast. Persistence has a long history of use as a
benchmark to decide whether a forecast technique (model) has forecast value. Beating
persistence by a model forecast has been a nontrivial task in the history of atmospheric
modeling. For instance, of the four celebrated ENIAC forecasts [Charney et al., 1950],
which were the first successful experimental numerical weather forecasts, all had a
larger mean error, and three had a larger root-mean-square error than persistence

[Lynch, 2008].

The second set of benchmark forecasts are numerical forecasts prepared by Ver-
sion 42 of the SPEEDY model. While SPEEDY has been developed for research appli-
cations rather than weather prediction, it can be considered a low-resolution version
of today’s state-of-the-art NWP models. Most importantly, similar to all operational
models, it solves the system of atmospheric primitive equations and has a realistic
climate. It provides an ideal benchmark in the current stage of our research, in which
the primary goal is to prove a concept rather than improve operational forecasts.

3.2 Results

We verify all forecasts on the SPEEDY grid, using properly interpolated ERA5
reanalyses as the proxy for the true atmospheric state. We measure the magnitude
of the forecast errors by the area-weighted root-mean-square difference between the
forecasts and the verification data in the NH midlatitudes (Fig. 2) and the tropics
(Fig. 3). The root-mean square error is calculated and showed separately for the air
temperature, meridional (south-north) coordinate of the wind and specific humidity at
the different vertical (pressure) levels. (The small number of forecasts that developed
unrealistic values of the specific forecast variable are not included in the computation
of the root-mean-square error, but their number is indicated in each panel.) Each row
of panels is for a particular state variable at forecast times 24-h, 48-h, and 72-h.

The results suggest that similar to SPEEDY, the ML model outperforms persis-
tence by a significant margin in the extratropics, but not in the tropics. While the
overall relative performance of the ML model compared to SPEEDY is mixed, the
ML forecasts are more accurate for the specific humidity near the surface in both the
extratropics and tropics, especially at the shorter forecast times. The ML forecasts
are also more accurate for the temperature in the tropics. The difficulties of SPEEDY
in predicting humidity near the surface and temperature in the tropics is not surpris-
ing considering that these forecast variables are strongly affected by physical processes
that are either not included or parameterized by highly simplified schemes in SPEEDY.
The fact that the data-driven ML model can greatly improve upon these forecasts is
one of the most encouraging results of our study.

3.3 Rossby Wave Propagation

The forecast variable for which SPEEDY clearly outperforms the ML model
is the meridional component of the wind: while the accuracy of the wind forecasts
by the two models is similar at 24 h, the error of the ML model forecasts grows more
rapidly beyond that time. The absolute difference between the errors of the two models
grows the fastest in the layer around the jet streams of the Northern Hemisphere
(NH) midlatitudes (between 400 hPa and 200 hPa). Because the variability of the
meridional wind in this layer is dominated by dispersive synoptic-scale Rossby waves,
the aforementioned result suggests that the ML model may be inferior to the numerical



model in describing the Rossby wave dynamics. To investigate this possibility, we
plot Hovmoéller diagrams of the meridional wind for both forecasts and the verifying
reanalyses (Figure 4).

The axes of troughs and ridges associated with the individual waves lie along the
lines that separate the regions of positive and negative values: a pattern of negative
(positive) values followed by a pattern of positive (negative) values indicate a trough
(ridge). Because at the synoptic scales the eastward group velocity is larger than the
eastward phase velocity, new troughs and ridges can develop downstream of the original
wave. In Figure 4, four such developments can be observed, each marked by a straight
black line and labeled by a capitol letter. The ML model captures the dispersive wave
dynamics qualitatively correctly and also provides realistic prediction of the phase and
group velocities. There are even some features of the wave packets (center panel) that
the ML model (left panel) predicts more accurately than the numerical model (right
panel). An example is the intensification of wave packet A from day 3 to day 5.

4 Conclusions

We have demonstrated that a RC-based parallel ML model can predict the global
atmospheric state (weather) in the same gridded format as a numerical global weather
prediction model. For the tested parameters, the ML model was able to realistically
predict the atmospheric state for about five days. Based on our experience with lower
dimensional systems, we believe that this time limit could be extended by increasing
the dimension D,. of the reservoir states. Overall, the ML model predicts the weather
more accurately than persistence and is competitive with a numerical model of the
same resolution for the first three forecast days. The forecast variables for which the
ML model outperforms the numerical model are those that are influenced the most by
parameterized processes in the numerical model. Preliminary results with a model that
implements the hybrid scheme of Wikner et al. [2020] on our ML model and SPEEDY
suggest that the hybrid approach will lead to further significant improvement of the
short-term forecast performance.

Our results also suggests that RC-based ML models have potential in short-term
weather forecasting. Because the parallel computational algorithm is highly scalable,
it could be easily adapted to higher spatial resolutions on a larger supercomputer. As
the algorithm is highly efficient in terms of wall-clock time, it could be used for rapid
forecast applications and could also be implemented in a limited-area rather than a
global setting. The ML modeling technique described here could also be applied to
other geophysical fluid dynamical system for which a high quality training data set is
available.
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