
• Create an FCNN architecture capable of processing spectral bands alongside matched 
filter inputs

• Train the FCNN for the detection and delineation of methane plumes
• Review feasibility of FCNNs for accurate methane plume delineation

• FCNN architecture based on U-Net, allowing for pixel-wise semantic segmentation9

• Encoder path increases feature layers while down-sampling image resolution
• Decoder path uses skip connections to up-sample feature layers to full resolution

• Encoder learns to discriminate plumes from confusers while the decoder learns to 
reassemble feature layers into semantically classified outputs

• 131 flight lines were reviewed, with plumes manually labeled

• Stratified splits of 84 training, 21 testing, and 26 validation scenes were utilized
• Scenes were cropped to 480x480 pixel image tiles containing two bands

• Single panchromatic band 
• Multi-modal matched filter provided by NASA Jet Propulsion Lab (JPL)

• Tiles from underrepresented scenes were augmented with 50% overlap, horizontal 
flip, vertical flip, random rotation, and transpose axis to increase training data

• Tiles from well represented scenes were augmented with only 50% overlap and one 
random rotation

• Model was trained for 47 hours using early stopping, converging at 19 epochs

Methane
• Atmospheric methane (CH4) is a potent greenhouse gas responsible for 20% of 

anthropogenic radiative forcing since 1750 1

• Anthropogenic sources constitute 50-65% of CH4 emissions and in many cases are 
under estimated in bottom-up emission budgets 2

• 20-50% of regional budgets may be produced by point-source super-emitters 3

Detection & Quantification
• CH4 point-source detection is carried out through the use of matched filter (MF) 

analysis of airborne hyperspectral imagery 4
• Integrated methane enhancements (IMEs) of plumes, calculated from MF retrievals 

and measured in kilograms, are used to derive flux rates 5
• The identification and masking of plumes from MF outputs is necessary as confuser

materials such as roads, roofs, and paints appear as false positives 6
• Delineation is typically conducted through manual inspection and simple statistical 

analyses 5-6

Convolutional Neural Networks
• Convolutional Neural Networks (CNNs) are a growing interest in remote sensing image 

classification 7
• Utilizing moving window sampling CNN models recognize local patterns that are 

translation invariant and scalable 8
• Recent fully convolutional neural network (FCNN) architectures allow for the semantic 

classification of images on a pixel-by-pixel level 9
• FCNNs have the potential to automate CH4 plume delineation
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Background

Data

• FCNNs can be trained for the delineation of plumes from matched filter outputs
• Plume morphology allows for the exclusion of typical human-built confusers
• IME values are comparable to previous manually derived values provided by JPL
• FCNN predictions are computationally and time efficient once a model is trained, 

taking roughly one minute per scene

Conclusions

Future Work

Results

• Determine optimal IME and FCNN thresholds for pixel identification and masking
• Label and train on scenes with heterogenous landscapes to increase robustness
• Automate the IME calculation of individual plumes from predicted scenesObjectives

True Color Scene

Plume Detection

True Color Scene True Color Scene

Confusers Confusers

Methods

Real-Color RGB Scene Multi-Modal Matched Filter

85th – 99.999th Percentile Labeled Plumes

FNFPTP TN(plume) 10 (no plume)

Plume Identifier Label IME [kg] FCNN IME [kg] JPL IME [kg]

ang20191017t163235-A 40.79 20.42 7.04

ang20191018t144405-A 24.33 19.91 35.38

ang20191016t153826-A 20.30 16.60 15.80

ang20191017t174946-A 11.85 11.77 10.97

ang20191019t153454-A 7.39 7.49 7.33

ang20191021t183204-A 7.36 4.97 7.72

ang20191017t152518-A 5.65 4.52 3.83

ang20191017t152518-B 5.62 4.95 5.54

ang20191016t165454-A 4.08 3.96 3.70

ang20191022t175031-A 2.04 2.03 1.06

ang20191017t163235-B 1.08 0.91 1.05

ang20191021t183204-B 0.80 0.61 0.63

• AVIRIS-NG data were collected during a 2019 flight campaign over the Permian Basin
• The basin accounts for 38% of US oil and 17% of US natural gas production 10

• 380 – 2510nm wavelength range
• 600 cross track elements
• 5.6 – 6.0nm sampling range

• Flown for 22 days between September 22nd and October 25th   11

• Produced 335 flight lines, 274 of which contained CH4  enhancements 11

References

• Funding for this research was provided by NASA Carbon Monitoring System Grant 80NSSC20K0244
• We appreciate assistance provided by the NASA JPL AVIRIS-NG team

Plume Identifier Label IME [kg] FCNN IME [kg] JPL IME [kg]

ang20191016t165454-B 55.70 54.77 --

ang20191017t163235-C 2.88 2.88 --

ang20191017t174946-B -- 22.10 21.07

ang20191017t152518-C -- 3.89 4.19

ang20191016t152245-A 2.96 -- 1.25

ang20191016t152245-B 1.43 -- 1.05

ang20191022t175031-B 1.29 -- --

ang20191022t172245-C 0.19 -- --

ang20191016t153826-C -- 17.68 --

ang20191022t172245-A -- 0.84 --

ang20191016t165454-C -- -- 0.47

ang20191022t175031-B -- -- 0.85

ang20191017t163235-A

Multi-Modal Matched Filter Training Label FCNN 60% Threshold Label Prediction Overlay

(plume) 1 0 (no plume)4289[kg] ≥ ≤ 287[kg]

FNFPTP TN(plume) 10 (no plume) (plume) 10 (no plume)4227[kg] ≥ ≤ 216[kg]

ang20191022t175031-A

Multi-Modal Matched Filter Training Label FCNN 60% Threshold Label Prediction Overlay

Confusion Matrix: All Validation Scenes
(60% FCNN Threshold)

Results cont.
ang20191019t153454-A ang20191018t144405-A

ang20191017t174946-A ang20191021t183204-A

ang20191016t153826-A

Example Individual Plume IMEs 
Label IME calculated from Training Labels; FCNN IME used a 60% threshold. JPL IME calculated with concentric circles at a 20m fetch. All calculations 
adopt a 1000ppm-m pixel enhancement cut off for IME inclusion, based on standard JPL IME method. Bolded plumes are shown in figures.

Acknowledgements

Binary Accuracy: 0.9980
Loss: 0.0076

AUC: 0.9240Precision: 0.7379
Recall: 0.3382
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