
2. DATABASE

• The area of sufficient completeness is detected based on the

ratio R (R>0.8) between the number of ISC earthquakes that

have an equivalent in OGS catalogue and the total number of

earthquakes in ISC catalogue (Kossobokov et al. 1999,

Peresan and Gentili, 2018).

• From 2008, the area could be extended 0.5 degrees eastward

thanks to the collaboration with ARSO (Environmental

Agency of the Republic of Slovenia)

3. CLUSTER IDENTIFICATION

• Clusters were selected by a windowing algorithm for the

radius (𝝆) and its duration (𝝉) identification. In this work

the “mainshock” is the first event with M≥3.7 in a cluster

and “aftershocks” are the following events. 42 clusters were

detected.

• If after the “mainshock” another event with magnitude ≥

Mm-1 occurs, the cluster is labeled as being of type “A”;

otherwise it is considered of type “B” (Vorobieva 1999).
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All data 0.2340.003 37.80.3 

A data 0.1780.005 49.70.7 

B data 0.3060.004 27.90.6 
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5. PATTERN RECOGNITION APPROACH

 NESTORE – (NExt STrOng Related Earthquake) is a software package for A clusters forecasting based on pattern

recognition approach. It analyses the seismic data at increasing time intervals T after the mainshock.

 Tested features:

 Accordingly with Gentili and Di Giovambattista (2017), each feature has been evaluated by a pattern recognition approach

using an independent decision tree (Jang et al., 1997).

 A one-node decision tree is trained: the algorithm identifies for each feature f a threshold Th so that if f≥Th the cluster is

identified as A, otherwise B.

• Using Mc<=Mm-3 the number of clusters that can be analyzed is low => we developed NESTORE_M2

• In order to compare precursors performances we selected 6 different time periods (in days: [0, 0.25] [0,0.5] [0,0.75] [0,1],

[0, 2], [0, 3]) and for each time period we calculated the values of all the tested precursors.

• We checked the performances by the LeaveOneOut (or LOO) method: each learning set is created by taking all the

samples except one, the test set being the sample left out. The procedure is repeated for all the samples

• The test allowed to obtain the confusion matrix and derived information like ROC diagrams (A = p; B = n).

• NESTORE method trains a set of classifiers based on independent features. The different classification results need to be 

combined in a unique classification “Probability of Class A”. We used a Bayesian approach (Bailer-Jones et al. 2011):

4. RESULTS: 

CLUSTERS’ CHARACTERISTICS 

1. ABSTRACT
• We investigated the occurrence of large aftershocks following the most significant earthquakes that occurred in North-eastern Italy and 

Western Slovenia. 

• Clusters are defined as  “type A” if, given a main shock of magnitude Mm, the subsequent strongest earthquake in the cluster has 

magnitude Ma≥Mm-1; of type B otherwise.

• We used an improved version of a pattern recognition method developed by Gentili and Di Giovambattista 2017 for medium-high

seismicity in Italy.

• In particular, we investigated the radiated energy and the the spatio-temporal evolution of the aftershocks occurring within a few days

and the probability to have a strong earthquake depending on the time elapsed after the mainshock.

• In order to characterize the feature depending on the cluster type, we used decision trees as classifiers on single feature separately. The

performances of the classification are tested by leave-one-out method.

• The analysis was performed on different time-spans after the mainshock to simulate the increase of information available as time passes

during the seismic clusters.

• The method has been successfully applied to the 1976 Friuli cluster, in which a swarm of large earthquakes happened 4 mounths after

the first mainshock and on two small cluster this year in the same are

Fig. 1: Selected area (before and after 2008) and 

clusters’ epicenters (42 clusters)

Gentili and Bressan (2008) + 2 km
𝜏 = 100.33𝑀𝑚+0.42

𝜌 = 100.41𝑀𝑚−1 + 2

Binary 1-node 

decision tree : circle is 

a decision node; 

rectangles are leaves

LOO method

Fig. 3: Percentage (Perc) of clusters that have had the 

strongest aftershock. Red=A, Blue=B, black=all.

Perc=T

 N, N2=number of aftershocks (with magnitude Mm-2 and Mm-1, respectively)

 S=total equivalent source area

 Q=cumulative radiated energy

 Vm=variation of magnitude from event to event

 Vmed=variation of average magnitude from day to day

 Vn=variation of the number of aftershocks from day to day

 Z=linear concentration of aftershock

 SLcum, SLcum2 =deviation of S from the long term trend (SLcum2 with sliding window)

 Qlcum, QLcum2=deviation of Q from the long term trend (QLcum2 with sliding window)

Confusion matrix

Hp

class

True class

p n

Y TP FP

N FN TN

totals P N

Random classifier

Better

Worse

𝑃 𝐴 𝐷1…𝐷𝑁 =
𝑁 𝐵 𝑁−1ς𝑛=1

𝑁 𝑝𝑛

𝑁 𝐵 𝑁−1ς𝑛=1
𝑁 𝑝𝑛 + 𝑁 𝐴 𝑁−1 ς𝑛=1

𝑁 (1 − 𝑝𝑛) Fig. 6: NESTORE_M2 successfully estimates A probability P(A)

Fig. 5: Receiver Operating Characteristics (ROC) graph (Swets et al., 2000).
It depicts the trade-off between benefits (true positives) and costs (false positives)

pn=P(A|Dn) is the probability to have A cluster

given a value Dn of the n feature, N(A), N(B):

number of A, B, N: number of classes.

Compatible dataset

Different features require 
different completeness 
magnitudes: a subset of 
features allow to have a 
larger database

4
6

o
N

   
   

  4
7

o
N

   
   

  4
8

o
N

11oE               13oE                15oE 

ABSTRACT 

NUMBER: 

S43F-0664

Mean Dm 1.3-1.4 in good

agreement with Båth law

(Båth, 1965).

For Mm>5 Dm decreases

(orange: uncertainty when

Ma<Mc).

Dt generally increases with

Mm

Hp: larger earthquakes activate more complex tectonic structures

=> the probability to have a subsequent strong event and a longer

interval between the mainshock and the strong event is higher.

The database we adopted was

OGS Bulletins: an accurate 

local catalogue (1977-2018). 

Mc=2 till 1993 and 1.5 from 

1994 (Peresan and Gentili, 

2018)
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Fig. 2: Clusters’ characteristics: Dm =Mm–Ma; Dt =ta-tm ([Days]);

<.> mean of .; a=strongest aftershock
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6. RESULTS: PATTERN RECOGNITION; SINGLE FEATURES 
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Fig. 4: Feature performances: Continuous lines: 
estimation by D2 dataset; Dashed lines: estimation 
by database D3; const: constant response 
corresponding to B class. Recall (True Positive Rate), 
Precision, Accuracy and FPR (False Positive Rate) 
vary in the range [0 (worst), 1 (best)]. 
Informedness from -1 (worst) to 1 (best).
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7. RESULTS: PROB(A) FORECASTING ON INDEPENDENT DATA
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