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Key points: �	�

• A new divergence method is developed to estimate methane emissions based on �
�
satellite observations, requiring no a priori emissions. ���

• The applicability of this method in identifying and quantifying sources is proven ���
by a GEOS-Chem simulation with known a priori emissions. ���

• The estimated emissions over Texas (United States) based on TROPOMI ���
observations are evaluated and are found to be robust. ���

Abstract ���

We present a new divergence method to estimated methane (CH4) emissions from ���
satellite observed mean mixing ratio of methane (XCH4) by deriving the regional ���



enhancement of XCH4 in the Planetary Boundary Layer (PBL). The applicability is �	�
proven by comparing the estimated emissions with its a priori emission inventory from �
�
a 3-month GEOS-Chem simulation. When applied to TROPOspheric Monitoring ���
Instrument (TROPOMI) observations, sources from well-known oil/gas production ���
areas, livestock farms and wetlands in Texas become clearly visible in the emission ���
maps. The calculated yearly averaged total CH4 emission over the Permian Basin is ���
3.06 [2.82, 3.78] Tg a-1 for 2019, which is consistent with previous studies and double ���
that of EDGAR v4.3.2 for 2012. Sensitivity tests on PBL heights, on the derived ���
regional background and on wind speeds suggest our divergence method is quite robust. ���
It is also a fast and simple method to estimate the CH4 emissions globally. ���

Plain Language Summary  �	�

Methane (CH4) is an important greenhouse gas in the atmosphere and plays a crucial �
�
role in the global climate change. It kept increasing over the last decades. About 70% ���
of CH4 comes from human activities like oil/gas productions or livestock farms. The ���
recently launched TROPOspheric Monitoring Instrument (TROPOMI) provides an ���
opportunity to estimate the emissions of CH4 on a regional scale. This work presents a ���
new method to fastly derive CH4 emissions at a fairly high spatial resolution without a ���
priori knowledge of sources.  ���

1 Introduction ���

Methane (CH4) is the second most important anthropogenic greenhouse gas after ���
carbon dioxide (CO2) and is also a principal precursor of tropospheric ozone [Shindell �	�
et al., 2012]. In-situ measurements show a continuous increase of methane over the last �
�
decades [Dlugokencky et al., 2009; IPCC, 2013; Saunois et al., 2016; Turner et al., ���
2019], with stable concentrations from 2000 to 2006 [Dlugokencky et al., 2009; Rigby ���
et al., 2008]. CH4 has both natural (e.g., wetlands, wildfires, termites) and ���
anthropogenic (e.g., fossil fuels, livestock, landfills and wastewater treatments) sources. ���
About 360 million tons (60 % of the total CH4) are released through human activities ���
[Saunois et al., 2020]. The relatively short lifetime of CH4 (about a decade) makes it a ���
short-term target for mitigating climate change by reducing the emissions.  ���

Satellite observations of CH4 provide an efficient way to analysis its variations and ���
emissions at a regional to global scale [Buchwitz et al., 2017; Lunt et al., 2019; J. D. �	�
Maasakkers et al., 2019; Miller et al., 2019; Zhang et al., 2020]. Compared to previous �
�
widely used instruments like Greenhouse gases Observing SATellite (GOSAT) and ���
SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY ���
(SCIAMACHY, onboard Envisat), the TROPOspheric Monitoring Instrument ���



(TROPOMI) on board the Sentinel 5 Precursor (S5-P) satellite measures CH4 at an ���
unprecedented resolution of 7 × 7 km2 since its launch in October 2017 (upgraded to ���
5.5 × 7 km2 in August 2019) [Veefkind et al., 2012]. Several studies have shown the ���
capability of TROPOMI on identifying and quantifying the sources at a local to regional ���
scale (e.g., [de Gouw et al., 2020; Pandey et al., 2019; Schneider et al., 2020; Zhang et ���
al., 2020]). These studies mainly focused on oil/gas leakage events, which show strong �	�
signals that can be easily identified, or they are using an inverse modeling relying on �
�
an a-priori emission inventory. ����

Freshly emitted air pollutants are usually concentrated around the emission source, in 	��
the case of not too high wind speeds [Liu et al., 2020]. Beirle et al. [2019] found that 	��
the strong gradients near sources of nitrogen oxides (NOx) are preserved by averaging 	��
horizontal fluxes. Therefore, the divergence of horizontal fluxes of nitrogen dioxide 	��
(NO2) plus a sink term can be used to estimate the emissions of NO2. In our study, we 	��
apply a divergence method for deriving CH4 emissions. The sink term can be ignored 	��
for CH4 because of its relatively long lifetime, which makes it more straightforward to 	��
link the divergence to the emission. The divergence works on the product of horizontal 		�
fluxes and wind fields, which is independent of a priori emission inventories and 	
�
models and can be applied at various resolutions regionally or globally.  	��

The retrieved CH4 from satellite observations are the ratios of methane total vertical 
��
columns to air density columns (XCH4), which are strongly affected by the 
��
stratospheric abundance. Thus the influence of transportation in the upper atmosphere 
��
and of orography should be removed to better distinguish gradients due to emissions. 
��
XCH4 measured by satellites reflects the abundance of the background plus the newly 
��
emitted methane because of its around 10-year lifetime. Hence the contribution from 
��
the background should be deducted when estimating the emissions. 
��

In this study, we present a new divergence method to quantify the emission of CH4 from 
	�
satellite retrieved XCH4. The XCH4 of TROPOMI is first destriped and corrected with 

�
albedos at short-wave infrared (SWIR) wavelengths (2305–2385 nm) to improve the 
��
data quality. Before applying the method to TROPOMI observations, a 3-month (from ���
July 2012 to September 2012) hourly GEOS-Chem nested model simulation over North ���
America is used to test the applicability of our method. The data quality of the resulting ���
emissions is further analyzed with sensitivity studies and comparisons to the literature. ���

2 Method and Data ���

Figure 1 shows the flowchart of the procedure to estimate the CH4 emissions from ���
TROPOMI retrieved XCH4. It consists of three main steps. First, applying posteriori ���
corrections on XCH4 to reduce the systematic biases caused by across-track biases and �	�
surface albedos. Second, the mean mixing ratios of CH4 in the PBL (XCH$%&') and the �
�
corresponding regional backgrounds are derived by subtracting the columns above the ���



PBL, which are estimated by XCH4 profiles from the Atmospheric Composition ����
Reanalysis 4 (EAC4) of the Copernicus Atmosphere Monitoring Service (CAMS) ����
[Inness et al., 2019]. The enhancements of XCH$%&' are further used to calculate the ����
spatial divergence and estimate CH4 emissions.  ����

 ����

Figure 1. The flow chart of using TROPOMI XCH4 to derive the CH4 emissions over ����
a certain period. PS and Vair stand for the surface pressure and the total column of air ����
density used in TROPOMI XCH4 retrieval. RH is the relative humidity.  ��	�



2.1 Estimate methane emission from TROPOMI ��
�

There are two additive corrections, the stripe correction and the albedo correction, on ����
XCH4 to remove biases caused by the satellite retrieval. The detailed method can be ����
found in Part A and B of Supplementary Information (SI). ����

The continuity equation connecting the divergence (D), emission (E) and sink (S) for ����
steady state is: D = E + S [Beirle et al., 2019]. As the lifetime of CH4 is around 10 years, ����
the sink term can be ignored, that is: D = E. The divergence D works on horizontal ����
fluxes (F):�D = ∇), where F stands for zonal (Fu) and meridional fluxes (Fv), which ����
is the product of gridded vertical columns (V) and horizontal wind fields (*). For each ����
day d: ��	�

+, = ∇), = ∇(/ ∙ *)  (1) ��
�

Numerical derivatives for D are calculated as the second-order central difference in this ����
study. We convert XCH4 to mean mixing ratio in the PBL, XCH$%&' (denoted by 2345), ����
to eliminate the effects of orography and transport in upper atmosphere. The column of ����
methane in the PBL (/345) for day d is derived by: ����

/,345 = 	2,345×8,345  (2) ����

where 8,345  is the corresponding air density column in the PBL. Considering the ����
relatively long lifetime of methane, D in the PBL actually contains the variations of its ����
background and sources. As  D is a linear operator, the daily Dd of the fluxes in the ����
PBL can be written as: ��	�

 9, = 9,4 + 9,;   (3) ��
�

where 94  is the daily divergence of the background flux and 9;  is the daily ����
divergence caused by sources in PBL, respectively. Combining with Eq. (1) and (2), Eq. ����
(3) can be written as:  ����

9,;	= ∇(	(2,345 	−	2,4)	×	8,345 	 ∙ *  (4) ����

where 2,4 is the background of 2,345.	It is hard to know the exact 2,4, so we use the ����
regional background (2,>) to approximate the 2,4	 as will be stated in Sect. 2.2. Eq. (4) ����
is then written as: ����

9,;	=	∇(	(2,345 	−	2,>)	×	8,345 ∙ *)  (5) ����



Equation (5) is applied to the daily variations of CH4, and the emission is estimated by ��	�
averaging 9,;	over a time period: ��
�

+, = 9,; = 9, − 9,>  (6) ����

where 9> stands for the averaged divergence of the regional background. However, ����
we found a significant correlation between 9;  and 9>  at some locations, which ����
suggest that the derived emissions still contain part of the background. Strong spatial ����
positive correlations R are typically found over areas with complicated terrain where ����
the background is less homogenous.  ����

To remove the remaining background, we apply a two-step posteriori correction. First ����
of all, E is multiplied by the empirical “correlation correction factor” (1−R) to reduce ����
the biases caused by regional background.  ��	�

In addition, we find that areas with negative emissions E also have negative 9> and ��
�
divergence of winds (9?), implying no significant sources. Thus, secondly, the grids ����
with negative E are set to be zero in the final estimated emissions. The practice of this ����
posteriori correction is presented in Sect. 3. ����

2.2 Calculating the regional enhancement of methane in PBL ����

The entire atmospheric column was divided into only 12 layers in the TROPOMI XCH4 ����
retrieval, which is too coarse to resolve the vertical distribution. To estimate the ����
methane column above the PBL we use model results of EAC4 of CAMS ����
(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-����
eac4?tab=overview). It is a global hourly reanalysis of atmospheric composition at a ��	�
relative high spatial resolution, 0.75° horizontally and 60 layers vertically [Inness et al., ��
�
2019], which contains no a priori CH4 emissions. Thus, the spatial distribution of CH4 ����
is solely the result of transport and orography, which will be subtracted from TROPOMI ����
observations to estimate the PBL concentration of CH4.  ����

The surface pressure of each pixel is adjusted by a high-resolution GMTED2010 Digital ����
Elevation map [Hasekamp et al., 2019], and the pressure at each layer of the EAC4 ����
XCH4 profile is recalculated accordingly. The number of dry air molecules in the entire ����
column of the XCH4 profile is scaled to the total number that is used for the retrieval ����
of the pixel. We do not interpolate the averaging kernel (AK) to the layers of EAC4, ����
because the AK is approximately equal to 1.0 at each layer [Hasekamp et al., 2019]. In ��	�
this way, we ensure the conservation of air mass for each pixel as well as the high-��
�
resolution vertical distributions of methane.  ����



Considering the height of the planetary boundary layer (PBLH) from reanalysis or �	��
forecast dataset has large uncertainties and is occasionally too shallow, we fixed the �	��
PBLH at 500 meters above the ground. XCH$%&' is obtained by subtracting the column �	��
above 500 meters from the ground and dividing the remainder by the corresponding dry �	��
air density column. The XCH$%&' of each pixel is then used to build the daily gridded �	��
data at a resolution of 0.25 °. In this study, for each grid, daily regional background of �	��
XCH$%&' (XCH$@) is defined as the average of the lower 10 percentile of its surrounding �	��
±5 grid cells (11×11=121 grid cells in total by taking the current grid cell as the center). �		�
The difference between XCH$%&' and XCH$@ (Eq. (5)) is finally used to calculate the �	
�
divergence with wind speeds. Therefore, the system biases between EAC4 and �	��
TROPOMI is implicitly removed by subtracting XCH$@ from XCH$%&'. �
��

The wind field halfway the PBLH close to the overpass time is obtained from the �
��
ECMWF. The divergence method works only when transport takes place, i.e. there is �
��
at least some wind. In addition, extremely high wind speeds are not favorable for the �
��
method that is based on the regional mass balance. Therefore, wind speeds are �
��
constrained between 1 m/s to 10 m/s in this study. �
��

2.3 Using a GEOS-Chem simulation to test the method �
��

In order to evaluate the feasibility of our method, the case of a model simulated XCH4 �
	�
is suitable because of known a priori emissions. In this study, we perform a 3-month �

�
simulation starting from 1 July 2012 by the GEOS-Chem 12.5.0 (http://geos-chem.org) �
��
nested model over North America at a resolution of 0.5° lat. × 0.625° lon. with 47 ����
vertical layers extending to the mesosphere. The boundary conditions are provided by ����
GEOS-Chem global simulation at 4° lat. × 5° lon. using posterior methane emissions ����
and OH levels inversed from GOSAT satellite observations [Lu et al., 2021], and ����
therefore these boundary conditions are unbiased to GOSAT observations outside the ����
domain. Both models are driven by MERRA-2 reanalysis meteorological fields from ����
the NASA Global Modeling and Assimilation Office (GMAO) [Gelaro et al., 2017]. ����
The a priori natural emissions include wetlands, open fires, termites and seeps. The ��	�
anthropogenic emissions are from EDGAR v4.3.2 , with fugitive fuel emissions (oil, ��
�
gas, coal) overwritten by the Scarpelli et al. [2020] inventory, and further superseded ����
by the gridded version of Inventory of U.S. Greenhouse Gas Emissions and Sinks from ����
the Environmental Protection Agency (EPA GHGI) over the US [Maasakkers et al., ����
2016]. More information on the model setup can be found in [Lu et al., 2021]. Here we ����
take the results at UTC 18:00, which is close to the overpass time of TROPOMI over ����
the US. We apply our method to these simulations of XCH4 in the PBL. The XCH$%&' ����
is the mixing ratio of the column in PBL at the same time. The method to build regional ����
background for each grid follows Sect. 2.2. ����



3 Results ��	�

3.1 Verification of the method using GEOS-Chem simulations ��
�

Figure 2(a-c) shows the spatial distribution of the 3-month average of a priori emissions ����
used in GEOS-Chem simulation, the divergence of XCH4 enhancement in PBL and the ����
estimated emission. Although the horizontal resolution of the model is much coarser ����
than TROPOMI observations, the sources have been identified (Fig. 2(b)-(c)), even for ����
relatively small emissions less than 2.5 kg/km2/h. For the mountainous and coastal areas ����
that are more complex than typical flat land terrain, the performance of the divergence ����
works fairly well. Some fake signals caused by orography (e.g., in Mexico, convergence ����
over oceans near the coastal) are successfully removed by the posteriori “correlation ����
correction”. The influence from the remaining background is mostly found over the ��	�
grid cells with R greater than 0.7.  ��
�

We further quantitatively compare the estimated emissions with the a priori emission ����
inventory. The grid cells with emissions > 0 in the a priori inventory have been selected ����
as the reference. The scatter plots in Fig. 2(d) and (e) compare a priori emissions greater ����
than zero and greater than 4 kg/km2/h with their counterparts respectively. Our ����
estimated emissions capture the spatial variability in a priori emissions throughoutthe ����
full range of emissions (R2 = 0.63). The Reduced Major Axis (RMA) regression show ����
a slope of 0.87 and an intercept of −0.08, highly implying the capability of our method ����
in retrieving model emissions using simulated columns. The biases are mainly related ����
to the simplified regional background we used. The big sources (a priori emission ��	�
greater than 4 kg/km2/h) are much easier to capture by our method (R2 = 0.78, R = 0.88). ��
�
The final result shows the simple regional background removal is simplified but ����
efficient.  ����

We also test our method by using the enhancement in the troposphere instead of the ����
PBL (Fig. S5). The estimated emissions show a much weaker correlation with a priori ����
emissions, especially over the areas with complicated orography. The transport in the ����
upper troposphere are intervening with the emission estimates. Therefore, using the ����
enhancement of XCH4 in the PBL is more suitable to identify and quantify the ����
emissions.  ����

3.2 CH4 emissions over the US based on TROPOMI ��	�

Figure 3(a) presents the spatial distributions of TROPOMI yearly-averaged XCH4 after ��
�
destriping and SWIR surface albedo corrections over North America on a 0.25° grid in ����
2019. After converting XCH4 to XCH$%&', the spatial distribution of CH4 becomes more ����
continuous over mountains in Fig. 3(b). Despite the uncertainty from surface albedo ����
corrections (see more detailed discussion in Part B of SI), enhancements of CH4 are ����



found over Texas, California and Appalachia regions when comparing to the regional ����
background (Fig. 3(c)).  ����

Figures 3(d)-(e) show examples of the divergence of sources and of corresponding ����
regional backgrounds in the PBL over the Texas area, one of the most prolific ����
petroleum- and gas-producing regions in the U.S., and Fig. 3(f) shows their spatial ��	�
correlation. The areas with negative values (convergence) in Fig. 3(d) are also negative ��
�
in Fig. 3(e), demonstrating there are no significant sources. In addition, high positive ����
spatial correlations mainly appear over the areas with complicated orography but few ����
emissions. On the contrary, the areas with big sources have weak or negative spatial ����
correlations between sources and regional backgrounds (Fig. 3(f)). Here we apply the ����
“correlation correction” for grids with R greater than 0.0 to reduce the biases of the ����
regional background we built.  ����

 ����

 ����
Figure 2. The spatial distributions of (a) the average of a priori CH4 emissions used in ��	�
GEOS-Chem simulation, (b) the divergence of CH4 sources in PBL, and (c) ��
�
corresponding estimated CH4 emissions over June-August 2012 on a 0.625° lon. × ����
0.5° lat. grid. (d) The elevation map that is generated from GMTED2010 data set. (e) ����
Scatter plots for emissions between a priori emissions higher than 0.0 kg/km2/h and ����
estimated CH4 emissions. (f) As (e) but for a priori emissions that are higher than 4.0 ����
kg/km2/h. Each dot in (e) and (f) represents a grid cell.   ����



 ����
Figure 3. Spatial distributions of yearly averaged (a) XCH4 with the stripe and surface ����
albedo corrections, (b) the corresponding XCH4 in PBL and (c) its regional background. ����
The divergences of (d) CH4 sources in PBL and (e) of the regional background in 2019. ��	�
(f) The spatial correlation between (d) and (e). For each grid cell, the correlation is ��
�
calculated in a domain of 11×11 grid cells, taking the grid cell as center.  ����



Figure 4. CH4 emissions over the Texas area. (a) Our estimated emissions for 2019. (b) �	��
Natural gas power plants (blue circles) and processing plants (black circles) in Texas �	��
(available at: https://www.eia.gov/special/gulf_of_mexico/ ). The size of each circle �	��
represents the capacity of the plant. (c) County-based heads of cattle and calves in Texas �	��
in 2019 (available at: �	��
https://www.nass.usda.gov/Statistics_by_State/Texas/Publications/County_Estimates/�	��
ce_maps/ce_catt.php ) (c) EDGAR v4.3.2 for the total anthropogenic emissions in 2012 �	��
(available at:� https://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG), (d) �		�
WeCHARTs wetland emissions for 2015 [Bloom et al., 2017], (e) EDGAR v4.3.2 �	
�
anthropogenic CH4 total emissions for 2012. (f) EDGAR v4.3.2 CH4 oil+gas+coal �	��
emissions in 2012, and (g) a global inventory of methane emissions from oil, gas, and �
��
coal exploitation that spatially allocates the national emissions reported to the �
��
UNFCCC for 2016 [Scarpelli et al., 2020]. The area enclosed by the solid blue line is �
��
the Permian Basin (30°-34°N, 101°-105°W). The annual total emissions of CH4 based �
��
on our estimates and EDGAR v4.3.2 over the Permian Basin are embedded in the left �
��
corner of (a) and (e).   �
��



Our method not only successfully identified the sources in abovementioned well-�
��
known oil/gas fields, but also shows the ability to capture the sources from other sectors �
	�
such as livestock and wetlands. For example, the high CH4 emissions north of the �

�
Permian Bas in Fig. 4(a) are very likely coming from a large number of cattle farms �
��
there (Fig 4(b)). Dairy farms or feed yards in this region are typically open lot, and ����
sources of CH4 are enteric emissions from cattle and emissions of wastewater lagoons. ����
The emission rate of cattle is estimated to be on average 0.211 kg/head/day [Todd et al., ����
2011]. These biogenic emissions do not exist in oil/gas/coal emissions in Fig. 4(f)-(g) ����
but can be found as small contributions to EDGAR v4.3.2 total emissions (Fig. 4(e)).  ����

TROPOMI CH4 retrievals are not available over water, which inevitably leads to ����
uncertainties and limited number of observations near coasts, lakes and bays. However, ����
the natural gas power/processing plants onshore Texas near western Gulf of Mexico ��	�
(Fig. 4(b)), which shows the energy infrastructures of U.S Energy Information ��
�
Administration [EIA], are found near the locations of sources shown in Fig. 4(b). It ����
implies that emissions relating to oil/gas productions in the coastal are caught by our ����
divergence method.  ����

We further quantify the annual average CH4 emissions over the Permian Basin ����
(enclosed by the solid blue boundary in Fig. 4(a)). Our estimated emissions in 2019 ����
(see baseline settings in Table S1) is 3.06 Tg a-1, which is 42% higher than EDGAR ����
v4.3.2 total anthropogenic emissions in 2012 (1.77 Tg a-1), which can be due to an ����
increase in oil production between 2012 and 2019. Zhang et al. [2020] estimated the ����
total emission as 2.9±0.5 Tg a-1 based on the S5P operational TROPOMI CH4 product ��	�
[Hasekamp et al., 2019; Landgraf et al., 2019] from May 2018 to March 2019 by using ��
�
inverse modeling with a priori emissions. The average annual emissions for the time ����
period 2018/2019 based on the TROPOMI/WFMD v1.2 [Schneising et al., 2019] ����
product is reported as 3.18±1.13 Tg a-1 by Schneising et al. [2020] using a mass balance ����
method. ����

In addition to testing different surface albedo corrections (see Part B in SI), we designed ����
several other sensitivity tests to discuss the uncertainties of our estimated emissions ����
that are generated from assumptions on the PBLH, the regional background ����
concentration and wind speeds. Table S1 shows the different results for each case and ����
the baseline method, called REF, over the Texas area. The mean, median, maximum ��	�
and minimum difference relative to REF in Texas are listed. The total emission of each ��
�
case over the Permian Basin is also quantified (last column in Table S1). Figure S5-S7 ����
are corresponding spatial distributions of estimated emissions and the difference with ����
reference to the REF by using different assumptions of PBLH, the regional background ����
and the wind speeds, respectively.  ����

PBLHs varying from 300m to 1000m were tested. The influence of the PBLH on the ����
spatial pattern and the total amount of final emissions are small, especially for the cases ����



below 1000m. We also changed the size of the background region from surrounding 3 ����
grid cells to 7 grid cells (in each direction), leading to a bias of at most −0.19 Tg a-1 ����
for the total emissions of the Permian Basin. As expected, the smaller size of the ��	�
regional background (e.g. 3 grid cells) lead to a higher regional background over the ��
�
areas with big sources. Thus, the estimated emissions are decreasing over the emissions ����
clusters while the emissions around them often increase.  ����

We tested various restrictions on the maximum and minimum wind speed (Figure S8). ����
The influence of wind speed is more complicated. Unlike the tests of PBLH and ����
regional background, different restrictions firstly affect the samplings of days. High ����
wind speeds lead to large uncertainties over areas with complicated terrain. For example, ����
large divergence values near the mountains close to the west of the Permian Basin, are ����
not sufficiently removed with the “correlation correction” (Fig. S8 (a)). The smearing ����
effect by high wind speeds lead to homogenous spatial distributions of XCH4 in the ��	�
PBL. The signals of sources are hard to be separated from the regional background. It ��
�
also indicates that cases with high wind speeds are not handled well by our method, and ����
are therefore excluded. In contrast, constraints on lowest wind speeds have smaller ����
effects on final emissions (Fig. S8 (e)-(f)), because pollutants exhibit much stronger ����
horizontal gradient in calm scenes. But the divergence method works only if ����
transportation related to wind exists, so we set the minimum wind speed at 1m/s. ����

4 Conclusions ����

A new divergence method has been successfully developed and applied to estimate CH4 ����
emissions over Texas in North America based on observations of the TROPOMI ����
instrument. The method works fairly well to detect sources of all strengths, proven by ��	�
using a GEOS-Chem model simulation as an ideal case. Applied to real TROPOMI ��
�
observations it clearly identifies signals from oil/gas clusters and other sources, such as ����
livestock and wetlands. Further quantification of annual averaged CH4 emissions over ����
the Permian Basin area is consistent with recent previous studies. The different spatial ����
distributions of emissions in different inventories (ranging from 2012-2019) imply ����
strong temporal variations of emissions in this area. The divergence method we built ����
benefits from TROPOMI’s high spatial resolution and provides a way to quickly ����
estimate CH4 emission from satellite observation. The method does not need use any a ����
priori information on location of strength of the emissions.  ����

Through the sensitivity tests on the PBLH, the regional background and the wind speeds, ��	�
the uncertainties of estimated emissions could be reduced by constraining their values. ��
�
High wind speeds cause high uncertainties over areas with complicated terrain. In ����
future work the uncertainties caused by the winds will be reduced when longer records ����
of background concentrations, EAC4 dataset, are available. The higher spatial ����
resolution of the estimated emissions is another aspect to be improved after the new ����
S5P TROPOMI CH4 dataset will be released. ����
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