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Abstract 

Megathrust earthquakes are strongly influenced by the elastic properties of rocks surrounding

the  fault. However,  these  properties  are  often  overestimated  in  numerical  simulations,

particularly  in  the  shallow megathrust.  Here  we  explore  the  influence  that  realistic  depth-

varying  upper-plate  elastic  properties  along  the  megathrust  have  on  earthquake  rupture

dynamics and tsunamigenesis using 3D dynamic rupture and tsunami simulations. We compare

results  from three  subduction  zone  scenarios  with  homogeneous  and  heterogeneous  elastic

media,  and bimaterial  fault.  Elastic properties in the heterogeneous model  follow a realistic

depth-distribution derived from controlled-source tomography models of subduction zones. We

assume the same friction properties  for  all  scenarios.  Simulations  in the  heterogeneous and

homogeneous models show that rigidity variation of the country rock determines the depth-

varying  behavior  of  slip,  slip  rate,  frequency content,  and  rupture  time.  Fault  friction  may

provide  additional  constraints,  but  to  a  lesser  extent.  The  depth-varying  behavior  of  slip,

frequency content, and rupture duration quantitatively agree with previous predictions based on

worldwide  data  compilations,  explaining  the  main  depth-dependent  traits  of  tsunami

earthquakes and large shallow megathrust earthquakes. Large slip, slow rupture and slip rate

amplification in bimaterial simulations are largely controlled by the elastic rock properties of

the most compliant side of the fault, which in subduction zones is the upper plate. Large shallow

slip and trenchward increasing upper-plate compliance of the heterogeneous model lead to the

largest co-seismic seafloor deformation and tsunami amplitude. This highlights the importance
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of considering realistic variations in upper-plate rigidity to properly assess the tsunamigenic

potential of megathrust earthquakes.

Key points:

We test the influence of realistic upper-plate rigidity on megathrust  dynamic properties and

tsunamigenesi using 3D numerical simulations

Simulations  show  that  realistic  upper-plate  rigidity  variations  explain  the  depth-dependent

behavior of earthquake dynamic properties

Overestimation  of  upper-plate  rigidity  leads  to  underestimation  of  co-seismic  seafloor

deformation and tsunami amplitude in our simulations.
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1 Introduction

Megathrust earthquakes tend to nucleate within the seismogenic zone (Hyndman et al., 1997; 

Byrne et al., 1988). The updip limit of this region may vary depending on material properties 

and thermal conditions along the megathrust (Hyndman et al., 1997), but it is commonly defined

between 5-10 km of depth (Scholz, 1998). Yet, megathrust earthquakes may occasionally 

rupture through the shallow and apparently aseismic region of the fault (< 5 km of depth), 

particularly in areas with sediment-starved trenches and irregular subducting topography (e.g. 

Polet and Kanamori, 2000; Geersen, 2019), and heterogeneous sediment thickness and elevated 

pore pressure (Tobin and Saffer, 2009; Li et al., 2018). When this occurs, the rupture produces 

anomalously large slip near the trench, dramatic seafloor deformation and large and devastating 

tsunamis. This is the case of tsunami earthquakes, which are defined as a particular type of 

shallow events that excite disproportionally large tsunamis for their moderate seismic 

magnitude (Kanamori, 1972). In addition, these are relatively slow earthquakes that radiate 

seismic waves depleted in high frequencies, which in turn leads to a large discrepancy between 

their surface-wave magnitude (Ms) and moment magnitude (Mw) (e.g. Kanamori and Kikuchi, 

1993; Newman et al., 2011). However, an increasing number of observations demonstrate that 

these properties are not only particular of tsunami earthquakes, but of most shallow megathrust 

events, implying a depth-dependent behavior of megathrust earthquake rupture characteristics 

(Lay and Bilek, 2007; Lay et al., 2012). Large tsunamigenic earthquakes such as the 2004 

Sumatra-Andaman (Mw9.2), 2010 Maule (Mw 8.8), and 2011 Tohoku-Oki (Mw 9.0) produced 

larger slip near the trench than at deeper portions of the fault (e.g. Lay et al., 2012). In addition, 

these large events displayed similar depth-dependent frequency content as tsunami earthquakes, 

with lower-frequeny energy mostly emanated from the shallow portion of the megathrust (e.g. 

Kanamori and Yomogida, 2011; Meng et al., 2011; Simons et al., 2011; Koper et a., 2012; Lay 

et al., 2012). 

These seismological observations indicate that such depth-dependent behavior shares 

similarities between contrasting tectonic environments (erosional and accretionary margins) and

earthquake sizes, suggesting the existence of a common contributing factor. The presence of 

low-rigidity subducting sediments has been invoked to explain some characteristics of shallow 

ruptures, in particular the large shallow slip and slow rupture (Bilek & Lay, 1999; Polet and 

Kanamori, 2000). However, numerical simulations show that the presence of a low velocity 

fault zone may result in acceleration of the rupture to supershear speed and produce high-

frequency radiation (e.g. Huang and Ampuero, 2011; Huang et al., 2016), in contrast with 

seismological observations of shallow events (e.g. Kanamori and Kikuchi, 1993). On the other 

hand, results from numerical simulations explain the large slip and slow rupture observed in 
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tsunami earthquakes with a large compliant sedimentary prisms and velocity-weakening fault 

friction conditions (Lotto et al., 2017). However, some tsunami earthquakes like the 1992 

Nicaragua event occurred in erosional convergent margins with no accretionary prisms 

(McIntosh et al., 2007; Sallares et al., 2013), implying that the cause of large shallow slip and 

tsunamigenesis is controlled by factors other than well-developed sedimentary wedges. More 

recent research proposes that, rather than fault plane properties, the depth-varying behavior of 

earthquake properties, such as slip, rupture time, and frequency content may be explained by the

distribution of elastic properties of rocks overlying the fault in the upper plate (Sallares & 

Ranero, 2019). Overall, all these studies share a common ground, in which the depth-varying 

behavior of earthquake properties is controlled by elastic properties of rocks involved in the 

rupture.

Over the last decade, there has been an increasing number of numerical studies attempting to 

understand the dynamics of megathrust earthquakes and their depth-varying behavior. Depth-

dependent initial stress conditions and/or friction laws are invoked to explain the depth-varying 

behavior of the 2011 Tohoku-Oki event (e.g. Huang et al, 2012; Murphy et al., 2018), while 

other studies invoked inelastic wedge deformation to account for the depth-dependent behavior 

of tsunami earthquakes (Ma, 2012; Ma and Hirakawa, 2013). Yet, the distribution of elastic 

properties considered in most of these simulations tend to be homogeneous (e.g. Huang. et al. 

2012), layered (e.g. Galvez et al., 2016), or constant for a given geological unit (e.g. Moreno et 

al., 2012; Murphy et al., 2018; van Zelst et al., 2019) and, in almost all cases, it is not extracted 

from data. This hinders understanding of the additional role that realistic elastic properties along

the fault have on the dynamics of these events, and may lead to dynamic models in which fault 

friction is forced to explain most seismological observations. On the other hand, in some 

models, elastic properties of the shallow megathrust such as rigidity are considered one order of 

magnitude larger (e.g. Ma 2012) than estimated from drilling samples (Jeppson et al., 2018). 

The overestimation of elastic properties involved in the shallow rupture may lead to 

underestimation of slip, uplift and tsunami size (e.g. Satake, 1994; Geist and Bilek, 2001), thus 

underestimating related hazards.

Here, we use 3D numerical simulations to show that incorporating a realistic distribution of 

elastic properties has a first-order effect on the depth-dependent behavior of megathrust 

earthquakes and tsunamigenesis. We compare results from 3D dynamic rupture simulations 

obtained in two subduction zone scenarios with homogeneous and depth-dependent elastic 

properties, respectively, and we compare the outcomes in terms of slip, rupture duration, and 

frequency content. All scenarios share the same friction properties and fault geometry, so that 

any difference in rupture properties may be only attributed to differences in the elastic 

properties. We then explore the influence of bimaterial fault properties, in models that include 
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the material contrast between the overriding and subducting plates. Finally, we assess the 

influence of depth-dependent rock rigidity on seafloor deformation and tsunamigenesis from 

tsunami simulations.

2 Dynamic rupture model setup

We consider a megathrust fault with a dip angle of 15o based on controlled-source tomographic 

models from the Middle American subduction zone (Sallares et al., 2013). We model three 

subduction scenarios: a homogeneous elastic medium, a heterogeneous medium, and a 

bimaterial fault. The values of P-wave velocity (Vp), S-wave velocity (Vs) and density (ρ) in the 

homogeneous medium are those of rocks of the overlying the megathrust at 20-25 km depth 

(Fig. 1d to 1g), while the heterogeneous medium includes a realistic depth-distribution of elastic

properties inferred from worldwide controlled-source upper-plate tomographic models (Sallares 

and Ranero, 2019) (Fig. 1d to 1h). Depth variations in the heterogeneous model are not only due

to changes in geological units (e.g. crystalline crust vs sediments), but may also reflect 

variations in the tectonic framework (e.g. density of fractures) within the same geological unit. 

This simplified representation of the heterogeneous distribution of elastic properties of the 

upper plate is consistent with first-order variations in which elastic moduli decrease towards the 

upper-plate toe (Fig. 1h) (Calahorrano et al., 2008; Sallares et al., 2013; Contreras-Reyes et al., 

2017). This distribution of elastic properties is, therefore, ideal to explore how realistic elastic 

properties influence the rupture and the permanent upper-plate co-seismic deformation.
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Figure 1.- a) Unstructured mesh showing the fault domain in b) and c) with 500 m element 
size. The rupture area of the fault is represented by the shaded area and is 120 wide and 111 
km long. The fault dips 15º. Lower panels show the depth distribution of d) Vp, e) Vs, f) ρ, and
g) rigidity (μ) used in this study for the homogeneous (blue) and heterogeneous (red) models. 
Orange, yellow and white background color show the extent of the shallow, transitional, and 
regular domain, respectively. h) The same fault domain in b) showing the depth distribution 
of Vp-

We divide the fault in three different domains based on variation of elastic properties overlying 

the megathrust fault (Sallares and Ranero, 2019). This way, the “regular domain” extends from 

30 to 10 km depth, the “transitional domain” from 10 to 5 km depth, and the “shallow domain” 

from 5 to 0 km depth (Fig. 1d to 1g). To capture the rupture properties characteristic of each 

domain, we performed three different sets of simulations, each confined to one of the three 
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domains. We performed two simulations in each domain, one in the homogeneous medium and 

a second one in the heterogeneous medium. 

For all simulations, we assume a linear slip-weakening friction law, with constant critical slip-

weakening distance (Dc) of 0.4 m, static friction coefficient (μs) of 0.6 and dynamic friction 

coefficient (μd) of 0.4. The initial normal (σn) and shear stresses (τ0) are 100 MPa and 50 MPa, 

respectively, through the regular domain, and decrease linearly across the transitional and 

shallow domains to 10 MPa and 5 MPa at the surface, respectively (Fig. 2a to 2c). We run 

simulations in which the rupture is confined to a particular domain of the fault by setting μs to 

10  outside of it, strengthening the fault and preventing the rupture from propagating further. ⁴

The rectangular nucleation zone in each domain was set as a region where initial shear stress 

exceeds initial shear strength in each domain, and its size was estimated to be large enough to 

sustain rupture propagation (Day et al 2005) (Figs. 2a to 2c). The nucleation patches are located 

at 24 km, 9 km, and 4.5 km of fault depth, for the simulations through the regular, transitional 

and shallow domains, respectively (Fig. 2a to 2c).

Figure 2.- Frictional parameters and nucleation zones for the a) shallow, b) transitional, and 
c) regular domains extracted from a cross section along the center of the fault. The blue line 
is the initial dynamic shear stress, black is initial shear stress, red curve is the initial shear 
strength, and gray curve is the initial normal stress.

13

137

138

139

140

141

142

143

144

145

146

147

148

149

150



To solve the dynamic rupture problem we use the open-source spectral element code 

SPECFEM3D (Peter et al., 2011) and its dynamic rupture capabilities (Kaneko, et al., 2008; 

Galvez et al., 2014). The simulations use an unstructured mesh generated with software CUBIT 

(Fig. 1). The mesh is 240 km wide, 270 km long and 80 km deep (Fig. 1a). The fault domain is 

a confined volume at the center of the mesh that extends over the first 30 km of depth, and is 

240 km wide and 270 km long, although our models only rupture a square patch in the center of 

the fault that is 120 km wide and ~110 km long (Fig. 1b to 1c). The spectral element size in the 

fault domain is 500 m with 5 Gauss-Lobatto-Legendre (GLL) nodes per element edge, yielding 

an average grid size of 125 m, while outside the fault domain the element size gradually 

increases to 1 km at the boundaries of the mesh.

3 Numerical Results

We simulated ruptures confined to each of the three fault domains, as well as whole-depth 

ruptures. The results in the heterogeneous medium show clear depth-varying values of slip, 

source duration, frequency content, rupture speed, and slip rate, in contrast to simulations in 

homogeneous medium.

3.1 Slip

Figure 3 shows the spatial distribution of slip ratio between the heterogeneous and 

homogeneous models (Slip het/Slip hom) through each of the three domains (absolute values are 

shown in Figure S1). In all fault domains, the rupture through the heterogeneous model results 

in larger slip than in the homogeneous (Fig. 3); particularly in the shallowmost 5 km of the fault

(i.e. shallow domain), where the slip ratio increases from 3 to 9 as we approach the trench (Fig. 

3). Despite these slip differences, similar moment magnitudes are obtained in both elastic 

models in the shallow (Mw~7.5), transitional (Mw ~7.5), and regular domains (Mw ~ 8.4) as we

are using the same rupture surface (S) and stress drop (Δτ) in both simulations, and 

Mo = Δτ S3/2 C-1,(3)

where Mo is seismic moment and C is a geometric constant of order one.
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Figure 3.- Slip ratio (Slip het/Slip hom) calculated from the final slip of each fault domain 
(absolute values in Figure S1). Red stars are the nucleation points of each confined rupture.

3.2 Source duration & frequency content

Simulations through the heterogeneous and homogeneous media show increasing differences in 

source durations and moment rate spectra towards the trench (Fig. 4d to 4f and Figures S2 and 

S3). The source duration ratio (Duration het/ Duration hom) is 1.3 in the transitional domain and 

increases in the shallow domain to 1.6 (Fig. 4a to 4f and Figure S3). These variations translate 

into corner frequency (fc) differences that imply an increasing depletion of high-frequency 

content trenchwards (Fig. 4). The largest fc differences occur in the shallow domain, where fc in

the heterogeneous model is twice lower than in the homogeneous model. Minor fc differences 

are observed in the transitional domain, while no differences are observed in the regular domain

(Fig. 4d to 4f).
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Figure 4.- Moment rate of the a) shallow, b) transitional and c) regular domains rupture, and 
their corresponding moment rate spectra in d), e) and f). Blue and red curves correspond to 
the results from the homogeneous and heterogeneous model, respectively. fc is corner 
frequency.
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3.3 Rupture speed

To assess rupture speed differences attributed to depth-dependent elastic properties we 

simulated a continuous rupture throughout the three domains (Fig. 5), and compared the rupture 

times obtained in both media along a 2D cross section along the center of the fault (Fig. 6d). 

The nucleation was set at 24 km depth and friction was modified in the shallowmost 3 km of the

fault to prevent supershear rupture propagation. We increased μd linearly towards the surface 

from 0.4 at 10 km depth to 0.8 at the surface (Fig. 5a), resulting in a region with negative stress 

drop (τ0 < τd) in the shallowmost 3 km and slip-strengthening (μd > μs) in the topmost kilometer 

(Fig. 5a). Even though this results in reduction of the final slip near the trench (Figure S4) as 

shown by previous numerical studies (Duan 2012; Galvez et al., 2016), the rupture through the 

heterogeneous model consistently produces larger slip, particularly in the shallow domain (Fig. 

5b and Figure S4). Both ruptures have similar seismic moment (Mw ~ 8.5).

Figure 5.- a) Frictional parameters used to simulate the rupture through the entire fault. The 
blue line is the initial dynamic shear stress, black is the initial shear stress, red curve is the 
initial shear strength, and gray curve is the initial normal stress. b) Final slip ratio between the
heterogeneous and homogenous model (Slip het/Slip hom). Red stars is the nucleation points. 
Final slip values for each elastic model are shown in Figure S4.

The modified frictional setup is enough to suppress supershear propagation in the heterogeneous

model, but not in the homogeneous model, where the presence of a small daughter crack 

rupturing ahead of the main rupture front at supershear speed appears in the shallowmost 6-5 

km of the fault (Fig. 6c). This difference may be attributed to the fact that Vs, which limits 

rupture velocity (e.g. Bilek and Lay, 1999), is >1.5 times faster in the shallow domain in the 
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homogeneous scenario than in the heterogeneous, so that rupture acceleration is more effective 

in the former. To avoid the effect of the daughter crack in the comparison, in the homogeneous 

model we consider the rupture times only for the main rupture front (Fig.6c). In addition, we 

spatially smoothed rupture times of the heterogeneous model to suppress the effect of steps 

generated by the interaction of the rupture with the negative stress drop and slip-strengthening 

friction at shallow depth (Fig.6d). 

Figure 6.- a) Moment rate, and b) moment rate spectra of the rupture through the entire fault. 
Blue and red lines correspond to results from the heterogeneous and homogeneous model, 
respectively. c) Slip rate values taken across the center of the fault at 3s, 12s, 20 s of the 
rupture of the entire fault through the homogenous model. d) Along-dip rupture time depth 
profile across the center of the fault. Thick blue and red lines are the rupture time profiles for 
the homogeneous and heterogeneous case, respectively. Dashed blue lines is the rupture time 
profile of the main rupture front through the homogeneous model derived from slip rate 
profiles in c). The red dashed line is the smoothed rupture time profile of the heterogeneous 
model, in which time steps attributed to the negative stress drop and slip-strengthening region
are removed. Both dashed lines are used to calculate the normalized rupture time ratio for unit
length between both elastic models in Figure 8b. Rupture velocity (Vr) curves for the e) 
heterogeneous and f) homogeneous model. Gray bands show the range of velocity values 
between 70 % and 90 % of Vs from the medium, which is represented by solid black lines.
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Rupture time differences increase trenchwards (dashed colored lines in Fig. 6d). The main 

rupture front arrives at the trench at 29 s in the homogeneous model and at ~40 s in the 

heterogeneous models (Fig. 6d), while the total source duration is ~38 s for the homogeneous 

and ~43 s for the heterogeneous model (Fig 6a). Rupture velocity (Vr) derived from rupture time

curves show that Vr ranges between 70% and 90% of Vs in both models (Figs. 6e and 6f), 

consistent with empirical observations (e.g. Bilek and Lay, 1999). Depth-variations of Vs in the 

heterogeneous model induce similar changes in Vr (Fig. 6e). In both cases, rupture slows down 

below 70% of Vs in the shallowest ~5 km of the fault, because of the increasing μd assumed in 

our simulations (Fig. 5a).

3.4 Slip rate

We use the simulation results from the rupture through the entire fault in Fig. 5 to explore slip 

rate differences between both models. Peak slip rate values along a 2D cross section in the 

center of the fault show increasing differences between elastic models towards the trench (Fig. 

7a), where slip velocity is up to 5 times larger in the heterogeneous model. Interestingly, when 

the rupture reaches the surface, it reflects back resulting in the acceleration of slip rate near the 

trench (Movie S1). This process, which has been attributed to the contact of the rupture with the

free surface in previous numerical studies (e.g. Ma and Beroza, 2008; Huang et al., 2012), 

occurs in both elastic models, but its effect is larger in the heterogeneous one (right hand side 

simulation in Movie S1).

25

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228



Figure 7.- a) Depth profile of the center of the fault showing peak slip rate values of 
simulations through the entire fault. Blue and red circles are values from the homogeneous 
and heterogeneous model, respectively. Grey thick line is the depth distribution of rigidity 
from Sallares and Ranero (2019). b) Same peak slip rate values of the heterogeneous model 
in a) as a function of rigidity. c) Along-dip profile of the fault showing the location of fault 
points (FP) and seismic stations (ST) from which slip rate (d) and ground motion (e) values 
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are measured. The color scale along the fault depicts rigidity of the heterogeneous model.

4 Discussion

4.1 Depth-varying dynamic rupture properties

The different dynamic rupture properties presented here show a clear depth dependence that 

arise from variations in elastic properties. The trenchward decrease of rock rigidity enhances 

slip in the shallow domain, where it is 3 to 10 times larger than in the regular domain, where 

rigidity is nearly one order of magnitude larger (5 GPa vs 40 GPa; Fig 1g and Fig. 8a). Peak slip

rate is also enhanced as rigidity decreases trenchwards (Fig.7b), and effect that is somewhat 

expected, as peak slip is inversely proportional to Vs and ρ (Ohnaka et al., 1987). Increasing slip 

rate towards the trench in the heterogeneous model causes stronger ground motion near the 

trench than in the homogeneous model (Fig. 7c to 7e). Regarding frequency content, corner 

frequency fc is up to twice lower in the shallow domain than in the deeper region along the 

regular domain. This is due to the longer duration of the event in the shallow region, which in 

turn results from the lower Vr. As shown in Fig. 6e and 6f, Vr in our simulations is largely 

controlled by the depth distribution of Vs, which can be up to ~2 times slower in the shallow 

region than in the regular one (Fig. 6e and 6f). Additional effects slowing down Vr may come 

from the slip-strengthening behavior of the shallowest megathrust region in our simulations, 

although at expenses of decreasing slip near the trench (Figure S4). Thus, while fault friction 

may explain some depth-dependent properties of megathrust earthquakes, it fails to reconcile 

them all. This aspect is also observed in homogeneous models of the Tohoku-Oki earthquake, 

which managed to partially explain seismological observations of the event with fault friction 

variations along the fault, but found inconsistencies in the shallow region, where the amount of 

high frequency radiated was higher than observed (Huang et al., 2014).
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Figure 8.- Comparison between depth trends of a) slip ratio, b) rupture duration ratio, and c) 
fc ratio from Sallares & Ranero (2019) (white circles) and this study (red). Grey line in a) is 
rigidity ratio (µhet/ µhom). Rupture duration ratio (Heterogeneous/Homogeneous) is calculated 
from rupture time curves in Figure 6d

The depth distribution of slip ratio, rupture time difference per unit length ratio (rupture 

duration ratio in Fig. 8b) and fc ratio (fc het/ fc hom) calculated in this study quantitatively agree 

with previous estimates of these properties (Sallares and Ranero, 2019) (Fig. 8). The excellent 

agreement of the fc ratio estimates implies that our results are also consistent with the depth-

varying Ms-Mw discrepancy presented by the authors, explaining thereby, the depth-dependent 

megathrust earthquakes source characteristics (Lay et al 2012). We show that large slip, slow 

rupture and high-frequency depletion are strong indicators of shallow ruptures and thus, 

potential indicators for high tsunami hazard, in agreement with seismological observations of 

tsunami earthquakes and larger shallow megathrust earthquakes (e.g. Kanamori and Kikuchi, 

1993; Lay and Bilek, 2007; Newman et al.,2011). These results are also consistent with tsunami 

early warning studies (Lomax and Michelini, 2009; 2011), which reveal that tsunamigenic 

megathrust earthquakes are related to anomalously long apparent rupture duration (> 50 s) and 

low P-wave frequency content. However, rather than compliant fault zone sediments (Bilek and 

Lay, 1999; Polet and Kanamori, 2000), our study strongly suggests that this behavior should be 

attributed to the decreasing rigidity of rocks in the shallow megathrust, where rigidity decreases 

one order of magnitude in the shallowmost 5 km of the fault (from ~20 to ~2 GPa; Fig. 1g).

4.2 Bimaterial fault

We considered a bimaterial fault interface, including the material contrast between the 

overriding and downgoing plates, to explore the role that elastic properties at each side of the 
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megathrust fault have in controlling earthquake characteristics. In this simulation, we assume 

the same 1D distribution of elastic properties from Sallares and Ranero (2019) for the upper 

plate but a homogeneous media for the downgoing plate (Fig. 9a). To assess slip variations, we 

simulated three rupture scenarios, each confined to one of the three fault depth ranges. The 

results show similar slip values to those obtained through the heterogeneous model (Fig. 9b and 

Figure S5); indicating that slip is mainly controlled by the medium with lower rigidity, which 

here is the upper plate. 

Figure 9.- Unstructured mesh showing the Vp distribution of the bimaterial fault. b) Depth 
trend of slip ratio between the heterogeneous and bimateiral models (green), the bimaterial 
and homogeneous models (blue), and the heterogeneous and homogeneous models (red). c) 
Rupture duration ratio between the heterogeneous and bimateiral models (green), and the 
heterogeneous and homogeneous models (red). d) Slip rate from the bimaterial (green) and 
the heterogeneous (red) models extracted from fault points 1 to 4 in Figure 7c. 

Additionally, we simulate the rupture through the entire fault to assess relative rupture time and 

slip rate variations between the heterogeneous and the bimaterial case (Fig. 9c and 9d, and 

Figure S6). We calculated the ratio of rupture time differences per unit of fault length between 
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the heterogeneous and bimaterial models (rupture duration in Fig. 9c and Figure S6 and S7). 

This ratio shows that rupture duration through the bimaterial model resemble that in the 

heterogeneous model with some differences along the shallow domain, where the rupture 

accelerates and propagates at supershear speed in the shallowmost 2 km of the fault. Based on 

results from the homogeneous model, this effect is possibly attributed to the faster media of the 

downgoing plate. Using a more compliant and therefore realistic elastic structure of the 

incoming plate could mitigate this effect. Previous studies focused on bimaterial ruptures 

indicate that Vr is related to bimaterial contrast and controlled to a greater extent by the lowest 

Vs (Rubin and Ampuero, 2007; Shlomai et al., 2021). While supershear propagation obscures 

this relation in the shallow domain, it seems to be the case for the regular and transitional 

domain, where the rupture duration ratio between the heterogeneous and the bimaterial 

scenarios is ~1 (Fig. 9c, Figures S6 and S7). Regarding slip rate, the bimaterial model shows 

larger values than in the heterogeneous model in the shallowmost region of the fault, where the 

bimaterial contrast is larger (Fig. 9d). This amplification of slip rate, and consequently of 

ground motion, is consistent with previous bimaterial simulations in which the overlying side of

the fault is (i.e. overriding plate) is more compliant than the underlying one (Ma and Beroza, 

2008). This mechanism deserves further consideration in numerical simulations as it may have 

tsunamigenic implications. Although our setup does not have topography, the enhanced slip rate

and ground motion occurs at distances of less than 10-15 km from the trench, where the 

continental slope is commonly found and seafloor may dip 5-15º trenchwards (e.g. Harders et 

al., 2011). These topographic features, in combination with strong ground shaking, may trigger 

slope failure processes and contribute to tsunamigenesis (e.g. Tappin et al., 2014).

Overall, results from the bimaterial simulation show a clear depth-dependent behavior of slip, 

rupture speed and slip rate that is largely controlled by the elastic structure of the softer and 

slower material of the fault. However, while the distribution used in our simulations is realistic 

for rocks overlaying the fault, it overestimates elasticity of the incoming plate. The distribution 

of these properties is often poorly resolved along the entire seismogenic zone. Tomographic 

models show a more compliant structure of the megathrust in the shallowest region (e.g. 

Calahorrano et al., 2008; Contreras-Reyes et al., 2017), which could also contribute to enhance 

slip and slow rupture. Yet, the limited information that we have indicate that variations in 

seismic velocities occur spatially faster in the downgoing plate along the shallowmost region of 

the megathrust because of sediment compaction and over-pressured fluid release (Calahorrano 

et al., 2008). The different seismic structure results from the different tectonic processes acting 

on both plates. The upper plate is controlled by contractional structures that intensify 

trenchwards as a result of the convergence (von Huene et al., 1994; Kodaira et al., 2017), while 

the incoming plate is overlaid by subducting sediments and mostly affected by extensional 
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bending-related faulting (Ranero et al., 2003). These differences and the fact that normal stress 

is higher on the incoming plate, make the upper plate more compliant than the incoming plate. 

Therefore, our results strongly support that the elastic properties of rocks overlying the fault in 

the upper plate control the depth-dependent traits of megathrust earthquakes source properties, 

as proposed by Sallares and Ranero (2019).

4.3 Co-seismic seafloor deformation: implications for 

tsunamigenesis

Our modeling results also show that the low rigidity of the shallow domain causes large slip 

near the trench, which in turn enhances large co-seismic seafloor deformation. Rupture 

simulations in the shallow domain show that uplift ratios (Uplift het/Uplift hom) in the shallow 

domain are up to 4-6 times larger in the heterogeneous model (Fig. 10a) (absolute values are 

shown in Figure S8). These differences lead to important differences in tsunami amplitudes 

(Fig.10c and 10d, and Figure S9 and Movie S2 and S3). 
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Figure 10.- a) Uplift ratio and b) along-dip displacement ratio calculated from the final uplift 
and along-dip displacement resulting from the rupture through the shallow domain. b) Close-
up of the 3D perspective of the bathymetry used as setup (small inset) to simulate the 
tsunamis associated with the uplift of the shallow domain in the heterogeneous and 
homogeneous model. Red square in the inset shows the location of the close-up. White dots 
depict the location of ten points of interest (POI) used to record the temporal evolution of 
tsunami wave (see Figure S6). c) Maximum tsunami wave ratio versus time calculated for 
each POI.

We used the final uplift of the shallow domain in both models (Figure S8) and the Tsunami-

HySea software (Macías et al., 2017) to calculate the tsunamigenic response. We assume a 

simplified bathymetry that contains the main topographic features of subduction zones, 

including the continental shelf and slope, the trench and the outer rise (Fig. 10a). The extent and
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slopes of each of these domains are based on bathymetry data from the Nicaragua convergent 

margin (e.g. Sallares et al. 2013). The spatio-temporal evolution of the tsunami wave amplitude 

was measured at 10 different points of interest (POI) that recorded the tsunami propagation 

from the trench to the shore (Fig. 10c). Figure 10d shows the maximum wave ratio (Max het 

/Max hom) at each POI, while the absolute values of the tsunami amplitude can be found in the 

Figure S9. The maximum wave amplitude of the tsunami derived from the heterogeneous model

is 6-8 times larger than that from the homogeneous model, and differences increase to ~10 at the

shore, because of the interaction of the shallow bathymetry with the tsunami wave. As indicated

in real-case tsunami earthquake studies (Satake, 1994; Satake and Tanioka, 1999; Geist and 

Bilek, 2001), these results demonstrate the importance of taking into account realistic low-

rigidity upper-plate values (1 to 10 GPa) in the shallow domain as they determine large slip and 

important tsunamigenic uplift.

Simulations of the shallow domain also reveal significant differences in co-seismic along-dip 

displacement between elastic models. Similar to uplift, along-dip displacement ratios (Along-

dip het/ Along-dip hom) increases towards the trench, where displacement may be up to 8-10 times

larger in the heterogeneous model (Fig. 10b). Trenchward displacement of the slope region may

promote folding of accretionary structures (Tanioka and Seno, 2001), and reactivation of pop-up

structures (Hananto et al., 2020), providing additional tsunami sources as indicated in previous 

simulations (e.g. Murphy et al., 2016).

5 Conclusions

We demonstrate that depth-dependent variations of upper-plate elastic properties along the 

megathrust fault exert a major effect on rupture dynamics and tsunamigenesis. We performed 

dynamic rupture simulations through a homogeneous and heterogeneous elastic model, and a 

bimaterial fault. The assumed friction properties are the same in all simulations. We use the 

depth distribution of Vp, Vs and ρ from Sallares and Ranero (2019) to build the heterogeneous 

scenario, while we assumed the elastic properties of rocks overlying the fault at 25 km of depth 

to build the homogeneous one.

The results show that decreasing rigidity of the country rock is the main determining factor for 

enhanced slip, slip rate, slow rupture, and depleted high-frequency energy radiation in the 

shallow domain, and that fault friction may provide additional controls but to a lesser extent. 

Depth-dependent elastic properties also affect the dynamics of slip rate. Peak slip rate values in 

the heterogeneous model anticorrelate with rigidity variations. The increment in peak slip rate 

correlates with enhanced ground motion in the heterogeneous model, an effect that is amplified 

if we consider a bimaterial contrast across the fault.
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The depth distribution of slip ratio, rupture duration ratio and fc ratio quantitatively agrees with 

empirical estimates by Sallares and Ranero (2019), thus explaining most seismological 

observations regarding the depth-dependent behavior of tsunami earthquakes and large shallow 

megathrust earthquakes (e.g. Tohoku-Oki). In addition, bimaterial simulations show that slip, 

rupture velocity and slip rate are largely controlled by the softer side of the fault, which 

according to geophysical observations is likely to be the upper plate side. 

The anomalously large slip in the shallow domain, together with an increasing compliance of 

the upper plate towards the trench, result in larger co-seismic seafloor deformation than in a 

homogeneous medium. Uplift differences between elastic models translate into order-of-

magnitude differences in tsunami amplitude at the shore. The low rigidity at the toe of the upper

plate also enhances along-dip displacement, which may contribute to amplifying the 

tsunamigenic response.

This study shows the importance of considering realistic variations in megathrust elastic 

properties and upper-plate rigidity in dynamic rupture simulations and in source models for 

tsunami modeling. Neglecting these properties may result in significant underestimation of slip, 

rupture time, local ground motion, seafloor co-seismic deformation and tsunami size, leading to 

underestimation of the tsunami hazard of the margin.
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