We present a comprehensive study of the nightside discrete electron aurora phenomenon on Mars, utilizing observations from EMUS onboard EMM. The oxygen emission at 130.4 nm is by far the brightest FUV auroral emission line observed at Mars. We identify auroral pixels in OI 130.4 nm disk observations, with higher sensitivity than previously possible. Our statistical analysis reveals regional, SZA, local time, and seasonal dependencies of auroral occurrence. Higher occurrence of aurora is observed in regions of open magnetic topology and vertical crustal magnetic fields. Aurora occurs more frequently closer to the terminator and is more likely on the dusk versus dawn sides of the night hemisphere. A pronounced auroral feature appears close to midnight local times in the southern hemisphere, consistent with the “spot” of energetic electron fluxes previously identified in the MGS data. The auroral spot is more frequent after midnight than before. Additionally, some regions on Mars are “aurora voids” where essentially no aurora occurs. The non-crustal field aurora exhibits a seasonal dependence, with major enhancements around Ls 235° (near perihelion) and Ls 30°. This is in line with the seasonal variability in ionospheric TEC observed by Mars Express, which is in turn related to the variability of solar irradiance and thermospheric density. Aurora occurrence also shows an increase with the rise of Solar Cycle 25. These observations not only shed light on where and when Martian aurora occurs, but also add to our understanding of Mars’ magnetic environment and its interaction with the heliospheric environment.

Jasper S. Halekas

and 9 more

We describe a new method to analyze the properties of plasma waves, and apply it to observations made upstream from Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The slow measurement cadence of most charged particle instrumentation has limited the application of analysis techniques based on correlations between particle and magnetic field measurements. We show that we can extend the frequency range of applicability for these techniques, for a subset of waves that remain coherent over multiple wave periods, by sub-sampling velocity distribution function measurements and binning them by the wave phase. This technique enables the computation of correlations and transport ratios for plasma waves previously inaccessible to this technique at Mars. By computing the cross helicity, we find that most identified waves propagate upstream in the plasma frame. This supports the conclusions of previous studies, but enables a clearer determination of the intrinsic wave mode and characteristics. The intrinsic properties of observed waves with frequencies close to the proton cyclotron frequency have little spatial variability, but do have large temporal variations, likely due to seasonal changes in the hydrogen exosphere. In contrast, the predominant characteristics of waves at higher frequencies have less temporal variability, but more spatial variability. We find several indications of the presence of multiple wave modes in the lower frequency wave observations, with unusual wave properties observed for propagation parallel to the magnetic field and for background magnetic fields nearly perpendicular to the solar wind flow.