Irina Melnikova

and 9 more

There is a substantial gap between the current emissions of greenhouse gases and levels required for achieving the 2 and 1.5 °C temperature targets of the Paris Agreement. Understanding the implications of a temperature overshoot is thus an increasingly relevant research topic. Here we explore the carbon cycle feedbacks over land and ocean in the SSP5-3.4-OS overshoot scenario by using an ensemble of Coupled Model Intercomparison Project 6 Earth system models. Models show that after the CO2 concentration and air temperature peaks, land and ocean are decreasing carbon sinks from the 2040s and become sources for a limited time in the 22nd century. The decrease in the carbon uptake precedes the CO2 concentration peak. The early peak of ocean uptake stems from its dependency on the atmospheric CO2 growth rate. The early peak of the land uptake occurs due to a larger increase in ecosystem respiration than the increase in gross primary production, as well as due to a concomitant increase in land-use change emissions primarily attributed to the wide implementation of biofuel croplands. The carbon cycle feedback parameters amplify after the CO2 concentration and temperature peaks due to inertia of the Earth system so that land and ocean absorb more carbon per unit change in the atmospheric CO2 change (stronger negative feedback) and lose more carbon per unit temperature change (stronger positive feedback) compared to if the feedbacks stayed unchanged. The increased negative CO2 feedback outperforms the increased positive climate feedback. This feature should be investigated under other scenarios.

Tokuta Yokohata

and 12 more

Future socio-economic and climate changes can profoundly impact water resources, food production, bioenergy generation, and land use, leading to a broad range of societal problems. In this study, we performed future projections by using a land integrated model, MIROC-INTEG-LAND, that considers land surface physics, ecosystems, water management, crop growth, and land use, under various socio-economic scenarios (Shared Socio-economic Pathways, SSPs). Under the sustainability scenario (SSP1), demands for food and bioenergy are kept low, so that the increase in cropland areas for food and bioenergy are suppressed. On the contrary, in the middle of the road and regional rivalry scenarios (SSP2 and SSP3), cropland areas are projected to increase due to high demand for food and bioenergy. The expansion of cropland areas is projected to increase the water demand for irrigation and CO2 emissions due to land use change. MIROC-INTEG-LAND simulations indicate that the impacts of the CO2 fertilization effect and climate change on crop yields are comparable, with the latter being greater than the former under climate scenarios with high greenhouse gas concentrations. We also show that the CO2 fertilization effects and climate change play important roles in changes in food cropland area, water demand for irrigation, and CO2 emissions due to land use change. Our results underscore the importance of considering Earth-human system interactions when developing future socio-economic scenarios and studying climate change impacts.