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Abstract19

A promising approach to improve cloud parameterizations within climate models and20

thus climate projections is to use deep learning in combination with training data from21

storm-resolving model (SRM) simulations. The Icosahedral Non-Hydrostatic (ICON) mod-22

eling framework permits simulations ranging from numerical weather prediction to cli-23

mate projections, making it an ideal target to develop neural network (NN) based pa-24

rameterizations for sub-grid scale processes. Within the ICON framework, we train NN25

based cloud cover parameterizations with coarse-grained data based on realistic regional26

and global ICON SRM simulations. We set up three different types of NNs that differ27

in the degree of vertical locality they assume for diagnosing cloud cover from coarse-grained28

atmospheric state variables. The NNs accurately estimate sub-grid scale cloud cover from29

coarse-grained data that has similar geographical characteristics as their training data.30

Additionally, globally trained NNs can reproduce sub-grid scale cloud cover of the re-31

gional SRM simulation. Using the game-theory based interpretability library SHapley32

Additive exPlanations, we identify an overemphasis on specific humidity and cloud ice33

as the reason why our column-based NN cannot perfectly generalize from the global to34

the regional coarse-grained SRM data. The interpretability tool also helps visualize sim-35

ilarities and differences in feature importance between regionally and globally trained36

column-based NNs, and reveals a local relationship between their cloud cover predictions37

and the thermodynamic environment. Our results show the potential of deep learning38

to derive accurate yet interpretable cloud cover parameterizations from global SRMs, and39

suggest that neighborhood-based models may be a good compromise between accuracy40

and generalizability.41

Plain Language Summary42

Climate models, such as the ICON climate model, operate on low-resolution grids,43

making it computationally feasible to use them for climate projections. However, phys-44

ical processes –especially those associated with clouds– that happen on a sub-grid scale45

(inside a grid box) cannot be resolved, yet they are critical for the climate. In this study,46

we train neural networks that return the cloudy fraction of a grid box knowing only low-47

resolution grid-box averaged variables (such as temperature, pressure, etc.) as the cli-48

mate model sees them. We find that the neural networks can reproduce the sub-grid scale49

cloud fraction on data sets similar to the one they were trained on. The networks trained50

on global data also prove to be applicable on regional data coming from a model sim-51

ulation with an entirely different setup. Since neural networks are often described as black52

boxes that are therefore difficult to trust, we peek inside the black box to reveal what53

input features the neural networks have learned to focus on and in what respect the net-54

works differ. Overall, the neural networks prove to be accurate methods of reproducing55

sub-grid scale cloudiness and could improve climate model projections when implemented56

in a climate model.57

1 Introduction58

Clouds play a key role in the climate system. They regulate the hydrologic cycle59

and have a substantial influence on Earth’s radiative budget (Allen & Ingram, 2002). Yet,60

in climate models with horizontal resolutions commonly on the order of 100 km, clouds61

are sub-grid scale phenomena, i.e. they cannot be directly resolved but need to be “pa-62

rameterized”. It turns out that insufficiencies in cloud parameterizations are a major cause63

of the uncertainty of climate projections (e.g. Eyring et al., 2021; Randall et al., 2003;64

Schneider et al., 2017). This uncertainty in climate projections has not decreased in the65

last 40 years (Meehl et al., 2020).66

These long-standing deficiencies in cloud parameterizations have motivated the de-67

velopment of high-resolution global cloud-resolving climate models (Klocke et al., 2017;68
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Stevens, Satoh, et al., 2019) with the ultimate goal of explicitly resolving clouds and con-69

vection. Yet, these simulations are extremely computationally demanding and cannot70

be run on climate timescales for multiple decades or for ensembles. Deep learning for the71

parameterization of sub-grid scale processes has been identified as a promising approach72

to improve parameterizations in climate models and to reduce uncertainties in climate73

projections (Eyring et al., 2021; Gentine et al., 2021).74

In the atmospheric component of the state-of-the-art Icosahedral Non-Hydrostatic75

(ICON) climate model (ICON-A), clouds result from an interplay of different parame-76

terization schemes (Giorgetta et al., 2018). In it, the cloud cover scheme takes an inte-77

gral role. Its cloud cover estimate constitutes an important parameter for the radiation78

scheme and influences the tendencies of cloud liquid water, cloud ice, and water vapor79

in the microphysics’ scheme (Lohmann & Roeckner, 1996; Pincus & Stevens, 2013). Cloud80

cover is estimated as a diagnostics based on the local amount of relative humidity (RH),81

and a semi-empirical relationship devised by Sundqvist et al. (1989) and further adapted82

by Xu and Krueger (1991) (see Lohmann and Roeckner (1996)) and Mauritsen et al. (2019).83

In this scheme, cloud cover can only exist whenever RH exceeds a specified lower bound84

(the critical RH threshold), which depends solely on atmospheric and surface pressure.85

RH-based cloud cover schemes have some notable drawbacks. First of all, know-86

ing RH does not fully determine cloud cover. For instance Walcek (1994) had shown that87

with an RH of 80% and between 800 and 730 hPa, the probability of observing any amount88

of cloud cover can be nearly uniform. In addition, no clear critical RH threshold seems89

to exist. Furthermore, even though they influence cloud characteristics, RH-based schemes90

do not directly differentiate between local dynamical conditions (e.g. whether the grid91

column undergoes deep convection; A. Tompkins, 2005). The ICON-A cloud cover scheme92

also does not account for vertical sub-grid scale cloud cover variability. An exception to93

this is the recent adaptation to artificially increase RH in regions below subsidence in-94

versions to incorporate thin marine stratocumuli (Mauritsen et al., 2019).95

Finally, most cloud schemes are based on local thermodynamic variables, yet rapid96

advection (e.g. updrafts) could lead to non-locality in the relationship. Overall, the for-97

mation and dissipation of clouds is still poorly understood (Stensrud, 2009). Therefore,98

physics-based cloud parameterizations have to build on incomplete knowledge and are99

prone to inaccuracies. They usually also contain tuning parameters. In the ICON-A cloud100

cover scheme these are the RH for 100 % cloud cover, the asymptotic critical RH in the101

upper troposphere, the critical RH at the surface, and the shape factor. These param-102

eters have to be adjusted following the primary goal of a well balanced top-of-the-atmosphere103

energy budget (Giorgetta et al., 2018).104

Our novel approach to a cloud cover parameterization is based on the idea of train-105

ing a supervised deep learning scheme to estimate the coarse-grained cloud cover using106

coarse-grained high-resolution thermodynamical variables as inputs. We allow for ver-107

tical sub-grid scale cloud cover variability by learning the fraction of a grid volume that108

is cloudy (‘cloud volume fraction’; Brooks et al., 2005). Cloud volume fraction is the prefer-109

able measure of cloud cover, for instance in ICON’s microphysics scheme where in-cloud110

condensation and evaporation rates are multiplied by the volume fraction of the grid box111

that is cloudy (Lohmann & Roeckner, 1996). In section 4.2, we also introduce NNs that112

predict the horizontally projected amount of cloudiness inside a grid cell (‘cloud area frac-113

tion’). The reason is that we still require cloud area fraction as a parameter for the (ICON’s114

two-stream) radiation scheme (Pincus & Stevens, 2013) to evaluate whether radiation115

penetrates through a cloud or not.116

The ICON modeling framework is used in realistic conditions on a variety of timescales117

and resolutions (Zängl et al., 2015). It thus allows us to work with data from high-resolution118

ICON simulations to train machine learning based parameterizations fit for the low-resolution119

ICON climate model. Observations, on the other hand, are temporally and spatially sparse120

and would thus constitute less adequate training data (Rasp et al., 2018). The basis of121
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our training data form new storm-resolving ICON simulations from the Next Genera-122

tion Remote Sensing for Validation Studies (NARVAL) flight campaigns (Stevens, Ament,123

et al., 2019) and the Quasi-Biennial Oscillation in a Changing Climate (QUBICC) project,124

with horizontal resolutions of 2.5 km and 5 km respectively. At these resolutions one can125

generally consider deep convection to be resolved (Vergara-Temprado et al., 2020), and126

therefore these simulations forego the use of convective parameterizations. Hohenegger127

et al. (2020) systematically compared 27 different statistics in ICON simulations with128

resolutions ranging from 2.5 km to 80 km. They concluded that simulations with explicit129

convection at resolutions of 5 km or finer may indeed be used to simulate the climate.130

Stevens et al. (2020) have shown that the NARVAL simulations can more accurately rep-131

resent clouds and precipitation than simulations with an active convective parameter-132

ization.133

We train neural networks (NNs) on coarse-grained data from these high-resolution134

simulations. Here, two commonly used ICON-A grids (with horizontal resolutions of 80 km135

and 160 km) are the target grids we coarse-grain to. ICON uses an icosahedral grid in136

the horizontal and a terrain-following height grid in the vertical. On these grids, more137

sophisticated and partly new methods of coarse-graining are required than on simpler138

regular grid types. As our machine learning algorithm we choose NNs, which are able139

to incorporate this wealth of data to –in principle– approximate any type of nonlinear140

function (Gentine et al., 2018; Hornik, 1991). While being generally fast at inference time,141

NNs also have computational advantages over alternative machine learning based approaches142

such as random forests (Yuval et al., 2021). Hence, a NN-powered parameterization of143

cloud cover could accelerate and improve the representation of cloud-scale processes (from144

radiative feedbacks to precipitation statistics).145

The field of machine learning based parameterizations is growing and ranges from146

radiation (Chevallier et al., 2000; Krasnopolsky et al., 2005), convection (Beucler, Pritchard,147

Gentine, & Rasp, 2020; Gentine et al., 2018; Mooers et al., 2020; Rasp et al., 2018) and148

microphysics (Gettelman et al., 2021; Seifert & Rasp, 2020) to nonorographic gravity waves149

(Chantry et al., 2021). For instance, in a pioneering study by Rasp et al. (2018), a NN150

was successfully trained to estimate sub-grid scale convective effects by learning from the151

output of the superparameterized Community Atmosphere Model in an idealized aqua-152

planet setting. Often, the effects of multiple sub-grid scale processes are learned (Brenowitz153

& Bretherton, 2018, 2019; Brenowitz et al., 2020; Han et al., 2020; Krasnopolsky et al.,154

2013; Yuval & O’Gorman, 2020; Yuval et al., 2021). Recent research has suggested that155

emulating sub-grid scale physics on a process-by-process level may lead to more stable156

machine learning powered climate simulations (Yuval et al., 2021). It may also facilitate157

interpretability and targeted studies of the interaction between large-scale (thermo)dynamics158

and cloudiness. In the context of these new advances, our study is the first machine learn-159

ing based approach specifically focused on the parameterization of cloud cover. Some of160

these other studies also use coarse-grained high-resolution data as training data. The first161

proof of concept was established by Krasnopolsky et al. (2013) who trained a very small162

NN on coarse-grained regional data. Later, Brenowitz and Bretherton (2018, 2019); Brenowitz163

et al. (2020); Yuval and O’Gorman (2020); Yuval et al. (2021) adapted this approach.164

However, in contrast to our study, they worked with idealized aquaplanet simulations165

and coarse-graining limited to the horizontal dimension.166

The first key question that we want to tackle in this study is whether we can train167

a NN based cloud cover parameterization that is able to emulate high-resolution cloudi-168

ness. We then want to ask the following subquestions: For the sake of generalizability169

and computational efficiency should we keep the parameterization as local as possible?170

Or shall we consider non-local effects for improved accuracy? Can we apply this param-171

eterization universally or is it tied to the regions and climatic conditions over which it172

was trained upon? And can we extract useful physical information from the NN after173
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it has been trained, gaining insight into the interaction between the large-scale (thermo)dynamic174

state and convective-scale cloudiness?175

We first introduce the training data (Sec. 2) and the NNs (Sec. 3), before evalu-176

ating regionally (Sec. 4.1) and globally (Sec. 4.2) trained networks in their training regime,177

studying their generalization capability (Sec. 4.3) and peeking inside the black box (Sec.178

4.4, 4.5).179

2 Data180

2.1 ICON High-Resolution Simulations181

The training data consists of coarse-grained data from two distinct ICON storm-182

resolving model (SRM) simulations. Both simulations provide hourly model output.183

The first simulation is a limited-area ICON simulation over the tropical Atlantic184

and parts of South America and Africa (10°S-20°N, 68°W-15°E). The simulation ran for185

a bit over two months (December 2013 and August 2016) in conjunction with the NAR-186

VAL (NARVALI and NARVALII) expeditions (Klocke et al., 2017; Stevens, Ament, et187

al., 2019). The model was initialized at 0 UTC every day and ran for 36 hours. We use188

the output from the model runs with a native resolution of ≈ 2.5 km. NARVAL data also189

exists with a higher resolution of ≈ 1.2 km, but it covers a significantly smaller domain190

(in 4°S-18°N, 64°W-42°W). The native vertical grid extends up to 30 km on 75 vertical191

layers.192

The second simulation is a global ICON simulation that ran as part of the QUBICC193

project. Currently there is a set of hindcast simulations available of which we chose three194

to work with (hc2, hc3, hc4). Each simulation covers one month (November 2004, April195

2005 and November 2005). While the horizontal resolution (≈ 5 km) is lower than in NAR-196

VAL, the vertical grid extends higher (up to 80 km) on a finer grid (191 layers).197

The two simulations used different collections of parameterization schemes. While198

the NARVAL simulations were set up to run with ICON’s NWP physics package (Prill199

et al., 2019), the QUBICC simulations used the so-called Sapphire physics, developed200

for SRM simulations and based on ICON’s ECHAM physics package (Giorgetta et al.,201

2018). An overview of the specifically chosen parameterization schemes can be found in202

Table S1. By virtue of their high resolution, both simulations dispensed with parame-203

terizations for convection and orographic/non-orographic gravity wave drag. For micro-204

physics they used the same single-moment scheme, which predicts rain, snow, and grau-205

pel in addition to water vapor, liquid water, and ice (Doms et al., 2011; Seifert, 2008).206

Different schemes were used for the vertical diffusion by turbulent fluxes (Mauritsen et207

al., 2007; Raschendorfer, 2001), for the radiative transfer (Barker et al., 2003; Mlawer208

et al., 1997; Pincus et al., 2019), and the land component (Raddatz et al., 2007; Schrodin209

& Heise, 2001; Schulz et al., 2015). The simulations also differed in their cloud cover schemes.210

The QUBICC simulation assumed to resolve cloud-scale motions, diagnosing a fully cloudy211

grid cell whenever the cloud condensate ratio exceeds a small threshold and a cloud-free212

grid cell otherwise. The cloud cover scheme used in NARVAL alternatively produces frac-213

tional cloud cover with a diagnostic statistical scheme that combines information from214

convection, turbulence, and microphysics.215

In ICON terminology, the NARVAL simulations ran on an R2B10 and the QUBICC216

simulations on an R2B9 (horizontal) grid. Generally speaking, an RnBk grid is a refined217

spherical icosahedron. The refinement is performed by i) dividing its triangle edges into218

n parts, creating new triangles by connecting the new edge points and by ii) complet-219

ing k subsequent edge bisections while once more connecting the new edge points after220

each bisection. In between these refinement steps, the position of each vertex is slightly221

modified using a method called spring dynamics, which improves the numerical stabil-222

ity of differential operators (Tomita et al., 2001; Zängl et al., 2015).223
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2.2 Coarse-Graining Methodology224

We can now use both NARVAL and QUBICC data to derive training data for our225

machine learning based cloud cover parameterization.226

This requires coarse-graining the data horizontally and vertically to the low-resolution227

ICON-A grid. Our goal is to mimic typical inputs of our cloud cover parameterization,228

which are the large-scale state variables of ICON-A. We design our coarse-graining method-229

ology to best estimate grid-scale mean values, which we use as proxies for the large-scale230

state variables.231

We coarse-grain the simulation variables from R2B9 and R2B10 grids to the de-232

fault R2B4 grid of Giorgetta et al. (2018) with a resolution of ≈ 160 km. To demonstrate233

the robustness of our machine learning algorithms across resolutions, we additionally coarse-234

grain to the low-resolution R2B5 grid used in Hohenegger et al. (2020) with a resolution235

of ≈ 80 km. Afterwards, we vertically coarse-grain the data to 27 terrain-following sigma236

height layers, up to a height of 21 km because no clouds were found above that height.237

Ideally, we would derive the large-scale grid-scale mean S̄ of a given variable S by238

integrating over the grid cell volume V ⊆ R3. In practice, we compute a weighted sum239

over the values Si,j of all high-resolution grid cells H. Here, i is the horizontal and j is240

the vertical index of a high-resolution grid cell. We define the weights αi,j ∈ [0, 1] as241

the fraction of V that a high-resolution grid cell indexed by (i, j) fills. This is a basic242

discretization of the integral.243

To make this term easier to compute in practice, we introduce another approxima-244

tion. Instead of computing αi,j directly, we split it into the fraction of the horizontal area245

of V (denoted by γi ∈ [0, 1]) times the fraction of the vertical thickness of V (denoted246

by βj ∈ [0, 1]) that the high-resolution grid cell indexed by (i, j) fills. We first compute247

the weights γi and the weighted sum over the horizontal indices i (horizontal coarse-graining).248

Only afterwards do we compute the weights βj and the weighted sum over the vertical249

indices j (vertical coarse-graining).250

Note that this is indeed an approximation. The geometric heights and vertical thick-251

nesses of grid cells in H on a specific vertical layer j do not need to match exactly. These252

slight differences are lost when horizontally coarse-graining to fewer grid boxes. There-253

fore, the second approximation is an approximation because we i) compute the vertical254

overlap βj after we horizontally coarse-grain the grid cells and ii) work on a terrain-following255

height grid which allows for vertical layers of varying heights over mountaineous land ar-256

eas. Over ocean areas, where the height levels have no horizontal gradient, this simpli-257

fication in the computation of the weights has no disadvantage.258

In short, let αi,j , βj , γi ∈ [0, 1] be the weights describing the amount of overlap259

in volume/vertical/horizontal between the high-resolution grid cells and the low-resolution260

grid cell. We then calculate the large-scale grid-scale mean as the weighted sum of high-261

resolution variables262

S̄ ≡ 1

|V |

∫
V

Sdx ≈
∑

(i,j)∈H

αi,jSi,j ≈
∑

(i,j)∈H

βjγiSi,j . (1)263

The use of spring dynamics in between model grid refinement steps allows for the264

presence of fractional horizontal overlap γi. As our method for horizontal coarse-graining265

we choose the first order conservative remapping from the CDO package (Schulzweida,266

2019), which is able to handle fractional overlap and the irregular ICON grid to coarse-267

grain to and from. Figure 1 shows an example of horizontal and vertical coarse-graining268

of cloud cover snapshots from the QUBICC and the NARVAL data set.269
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Figure 1. Illustration of coarse-graining using the example of cloud fraction. Here we show

snapshots of the horizontal fields (on a single layer) and vertical profiles (from a single column)

from the high-resolution NARVAL and QUBICC simulations (top row) and the corresponding

coarse-grained horizontal fields and vertical profiles (bottom row). We coarse-grain the NAR-

VAL/QUBICC data sets horizontally from 2.5 km/5 km to 160 km/80 km and vertically from

66/87 to 27 layers up to a height of 21 km. Final coarse-grained grid boxes constitute the training

data for the machine learning models.
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Figure 2. Comparison of the coarse-grained mean cloud volume and mean cloud area fraction

profiles for NARVAL (left) and QUBICC (right). The cloud volume fraction is generally never

greater than the cloud area fraction. Close to the surface, the grid cell thickness and thus also

the vertical sub-grid variability of clouds is small. There it follows that the cloud area fraction is

approximately equal to the cloud volume fraction.

There are locations where the low-resolution grid cells that are closest to Earth’s270

surface extend significantly further downwards than the high-resolution grid cells. This271

is due to topography that can only be seen at fine scales and makes it difficult to endue272

these low-resolution grid cells with a meaningful average computed from the high-resolution273

cells. We therefore omit these grid cells during coarse-graining. While horizontally coarse-274

graining NARVAL data, we analogously omit low-resolution grid cells that are not lo-275

cated entirely inside the NARVAL region.276

To derive cloud area fraction C we cannot start by coarse-graining horizontally. We277

first need to utilize the high-resolution information on whether the fractional cloud cover278

on vertically consecutive layers of a low-resolution grid column overlaps or not. There-279

fore, we first vertically coarse-grain cloud cover to a grid that would – after subsequently280

horizontally coarse-graining – resemble the ICON-A grid as much as possible. For the281

first step, we assumed maximum overlap as the level separation of vertical layers is rel-282

atively small. We thus calculate the coarse-grained cloud area fraction C as the sum of283

the vertically maximal cloud cover values maxj{Ci,j} weighted by the horizontal grid284

cell overlap fractions γi285

C =
∑

(i,j)∈H

γi max
j
{Ci,j}. (2)286

For QUBICC grid cells, which are always either fully cloudy or cloud-free, we can287

directly interpret equation (2) as returning the fraction of high-resolution horizontal grid288

points that are covered by a cloud of any non-zero vertical extent within a coarse ver-289

tical cell. Due to the fractional cloudiness and the maximum overlap assumption, this290

link is less direct for the NARVAL data. Figure 2 illustrates the different mean vertical291

profiles of cloud volume fraction and cloud area fraction. Considerable differences in their292

coarse-grained vertical profiles (differing absolutely by almost 10% on some layers) cor-293

roborate the need to distinguish these two concepts of cloud cover.294

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Having introduced and coarse-grained the training data, we can now turn towards295

the specifics of the NNs.296

3 Neural Networks297

3.1 Setup298

We set up three general types of NNs of increasing representation power. Each NN299

follows its own assumption as to how (vertically) local the problem of diagnosing cloud300

cover is. Choosing three different NN architectures allows us to design a vertically lo-301

cal (cell-based), a non-local (column-based), and an intermediate (neighborhood-based)302

model type.303

The (grid-)cell-based model only takes data from the same grid cell level and304

potentially some surface variables into account. In that sense, the traditional cloud cover305

parameterization in ICON-A, being a function of local relative humidity, pressure, and306

surface pressure, is similarly a cell-based parameterization (with the exception of includ-307

ing the lapse rate in certain situations). Such a local model is very versatile and can be308

implemented in models with varying vertical grids.309

The neighborhood-based model has variables as its input that come from the310

same grid cell and from the ones above and below, including some surface variables. Lo-311

cal atmospheric and dynamical conditions most likely have a significant influence on cloudi-312

ness. A grid column undergoing deep convection for instance is very likely to have dif-313

ferent cloud characteristics than a grid cell in a frontal stratus cloud (A. Tompkins, 2005).314

Furthermore, strong subsidence inversions that lead to thin stratocumuli cannot be de-315

tected by looking at the same grid cell only. As an example, this dependence of cloudi-316

ness on the surroundings has been actualized in A. M. Tompkins (2002). In their study,317

the sub-grid distribution of total water is described as a function of horizontal and ver-318

tical turbulent fluctuations, effects of convective detrainment and microphysical processes.319

The column-based model operates on the entire grid column, and therefore has320

as many output nodes as there are vertical layers. In a column-based approach we do321

not have to make any a priori assumptions as to how many grid cells from above and be-322

low a given grid cell should be taken into account. Furthermore, surface variables are323

naturally included in the set of predictors. Coefficients of a multiple linear model fitted324

to the data suggest that the parameterization of cloud cover is a non-local problem, fur-325

ther motivating the use of a column-based model (see Figure S1). The input-output ar-326

chitecture of these three NN types is illustrated in Figure S2.327

We specify three NNs to be trained on the (coarse-grained) NARVAL R2B4 data328

and three networks to be trained with (coarse-grained) QUBICC R2B5 data. Using data329

that is coarse-grained to different resolutions allows us to demonstrate the applicabil-330

ity of the approach across resolutions. The largest differences between the R2B4- and331

R2B5 models exist in the neighborhood-based models:332

The set of predictors for the neighborhood-based R2B5 model contains data from333

the current grid cell and its neighbors (above and below it). On the layer closest to the334

surface this requires padding to create data from ‘below’. The vertical thickness of grid335

cells decreases with decreasing altitude. Therefore, we assume a layer separation of 0 for336

this artificial layer below, allowing us to fill it with values from the layer closest to the337

surface.338

The neighborhood-based R2B4 model considers two grid cells above and two be-339

low. Although we did not extend the padding to create another artificial layer, but trained340

a unique network per vertical layer. This allows for maximum flexibility, discarding in-341

put features that are non-existent or constant on a layer-wise basis. Additionally, the342

R2B4 model has cloud cover from the previous model output time step (1 hour) in its343

set of predictors.344
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Table 1. Overview of the NNs and their input features. Models N1-N3 are trained on NAR-

VAL R2B4 and models Q1-Q3 on QUBICC R2B5 data. 2D variables (fraction of land/lake,

Coriolis parameter and surface temperature) are shaded in purple. More information on the

choices and meaning of the features can be found in the SI.

NN Type land lake Cor. Ts zg qv qc qi T p ρ u v clct−1

N1 Cell-based 3 3 3 3 3 3
N2 Column-based 3 3 3 3 3 3 3 3
N3 Neighborhood-based 3 3 3 3 3 3 3 3 3

Q1 Cell-based 3 3 3 3 3 3 3 3 3 3
Q2 Column-based 3 3 3 3 3 3 3
Q3 Neighborhood-based 3 3 3 3 3 3 3 3 3 3

An overview of the NNs and their input parameters can be found in Table 1. The345

input parameters were mostly motivated by the existing cloud cover parameterizations346

in ICON-A and the Tompkins Scheme (A. M. Tompkins, 2002). All NNs have a com-347

mon core set of input features. Choosing varying additional features allows us to study348

their influence. However, we found that none of these additional features have a crucial349

impact on a model’s performance. We generally chose as little input parameters as pos-350

sible to avoid extrapolation situations outside of the training set as much as possible.351

By doing so, we hope to maximize the generalization capability of the NNs.352

3.2 Training353

In this section we explain the training methodology and the corresponding tuning354

of the models’ and the optimizer’s hyperparameters (e.g. model depth, activation func-355

tions, initial learning rate). These hyperparameters have a large impact on the poten-356

tial quality of the NN. The importance of hyperparameter tuning for NN parameteri-357

zations was pointed out in Ott et al. (2020) and Yuval et al. (2021) proposed its partic-358

ular need in a real-geography setting.359

The choice of hyperparameters for a NN depends on the amount and nature of the360

training data. For relatively few training samples it is computationally admissible to train361

the networks using a small batch size. This becomes computationally prohibitive when362

working with a large amount of data, because it would require too many iterations to363

process the entire data set. On our GPU, doubling the batch size halves the duration364

to process the data set. The amount of training data in turn depends strongly on the365

setup. A column-based model in an R2B4 setup trained on NARVAL data can be trained366

with no more than 1.7 · 106 data samples, using all available data. In contrast, a cell-367

based model in an R2B5 setup trained on QUBICC data can learn from maximally 4.6·368

109 data samples. Table S2 shows the amount of available training data for every setup.369

Mainly the coarse-grained QUBICC data had to be (further) preprocessed to a) reduce370

the size of the data set, b) scale the cloud cover target to a common range, c) avoid faulty371

input samples, d) normalize the training data, and e) combat the class imbalance of hav-372

ing a relatively large number of cloud-free grid cells in the training data. Steps d) and373

e) were also necessary for the coarse-grained NARVAL data. The more balanced ratio374

between cloudy and cloud-free grid cells for e) was achieved by randomly sub-sampling375

from the cloud-free grid cells.376

To train the NARVAL R2B4 networks we split the (coarse-grained and preprocessed)377

R2B4 data into randomly sampled disjoint training, validation and test sets (78%/8%/20%378

of the data). By randomly splitting the data, we ensure (with a high probability) that379

the model will see every weather event present in the training data. For the QUBICC380
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Table 2. Hyperparameters of the NNs and the optimizer

Models N1-N3 and Q2 Models Q1 and Q3

Hidden layers 2 3
Units per hidden layer 256 64

Activation fct. for each layer ReLU → ReLU → linear
tanh → leaky ReLU (α = 0.2)

→ tanh → linear
L1, L2 reg. coef. for each layer None L1: 4.7 · 10−2, L2: 8.7 · 10−2

Batch Normalization None After the second hidden layer

Optimizer Nadam/Adam Adam/Adadelta
↪→ Initial learning rate 10−3 4.3 · 10−4

↪→ Batch size 32/128 1028
↪→ Maximal number of epochs 70/40 30− 50

R2B5 models, on the other hand, the focus is on a more universal applicability. We there-381

fore use a temporally coherent three-fold cross-validation split (illustrated in Figure S3).382

Every fold covers roughly 15 days to make generalization to the validation folds more383

challenging. We choose 15 days to stay above weather-timescales (so that for instance384

the same frontal system does not appear in the training and validation folds) and to mit-385

igate temporal auto-correlation between training and validation samples. The validation386

folds of each split are equally difficult to generalize to, since a part of every month is al-387

ways included in the training folds. The three-fold split itself lowers the risk of coinci-388

dentally working with one validation set that is very conducive to the NN.389

After tuning the hyperparameters we found that a common architecture was op-390

timal for the models N1-N3 and Q2 of Table 1. The training data for models Q1 and Q3391

was more abundant and necessitated an increase of the batch size during optimization.392

This in turn required an adjustment of the architecture. The final choice of hyperparam-393

eters for the NNs is shown in Table 2. The relatively small size of the NNs (which is com-394

parable to those of Brenowitz and Bretherton (2019)) helps against overfitting the train-395

ing data and allows for faster training of the networks. By performing systematic op-396

timization of hyperparameters we also found that these networks are already able to cap-397

ture the functional complexity of the problem.398

4 Results399

4.1 Regional Setting (NARVAL)400

In this section we show the results of the NNs trained and evaluated on the coarse-401

grained and preprocessed NARVAL R2B4 data (see SI for more details on the prepro-402

cessing). For these regionally-trained NNs we define cloud cover as a cloud volume frac-403

tion.404

The snapshots and Hovmoeller plots of Figure 3 provide visual evidence concern-405

ing the capability of the (here column-based) NN to reproduce NARVAL cloud scenes.406

The ground truth consists of the coarse-grained NARVAL cloud cover fields, which the407

NN reconstructs while only having access to the set of coarse-grained input features. In408

the Hovmoeller plots we trace the temporal evolution of cloudiness throughout four days409

in a randomly chosen grid column of the NARVAL region. Given the large-scale data410

from the grid column, the NN is able to deduce the presence of all six distinct lower- and411

upper-level clouds.412

The models’ mean-squared errors (MSEs) (shown in Table 3) represent the abso-413

lute average squared mismatch per grid cell in percent between the predicted and the414

true cloud cover. As opposed to Figure 3, the MSEs provide more statistically tangible415
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Figure 3. The column-based NN trained and evaluated on the coarse-grained NARVAL R2B4

data. Panels a) and b) show cloud cover snapshots with a) displaying the cloud scene as it is esti-

mated by the NN and b) the reference cloud scene from the coarse-grained NARVAL data. Note

that some columns over land could not be vertically interpolated due to overlapping topography

and are therefore missing in a). The upper plot of panel c) shows the cloud cover predictions of

August 1 - August 4, 2016 by the NN in some arbitrary location within the NARVAL region.

The plot below depicts the data’s actual (coarse-grained) cloud cover. The vertical axis shows

average heights of selected vertical layers.

Table 3. MSEs (in (%)2) of NARVAL and baseline models evaluated on the coarse-grained and

preprocessed NARVAL data

Type

Cell-based Column-based Neighborhood-based
Our models Training set 15.16 1.64 0.84

Validation set 15.18 1.78 1.00
Test set 15.19 1.78 1.01

Baseline Untrained NN 131.07 105.97 113.34
models Zero output model 129.62 113.91 113.37

Constant output model 109.63 92.23 86.48
Best linear model 81.71 18.56 4.79

Simple Sundqvist scheme 85.19

information. The column-based model (which has the largest number of learnable pa-416

rameters) and the neighborhood-based model (which consists of a unique NN per ver-417

tical layer) have lower MSEs than the cell-based model. More trainable parameters al-418

low for the model to adjust better to the ground truth. We also found that by adding419

more input features to the cell-based model, we can further decrease its MSE to ≈ 5 (%)2.420

On the flip side, every additional input feature bears the risk of impeding the versatile421

applicability of the model and reducing its capacity to generalize to unseen conditions.422

By training multiple models of the same type, we verified these MSEs to be robust (vary-423

ing by ±0.12 (%)2). The MSEs for the neighborhood-based model are averaged over all424

NNs (i.e. one per vertical layer), while the upper-most two layers are left out due to the425

rare presence of clouds at these altitudes.426
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Our data is temporally and spatially correlated. As a consequence, our division into427

random subsets for training, validation, and testing leads to very similar MSEs on the428

respective subsets. And the error on the training set is only slightly smaller than on the429

validation and test sets.430

With MSEs being below 16 (%)2, Table 3 shows that the NNs are able to diagnose431

cloud cover better than our baseline models. These baseline models are fitted to the same432

normalized data sets as the respective NNs. As our first baseline we evaluate an untrained433

NN, which is a NN with random weights and biases. Second, we fit a zero output model,434

which always yields 0, and a constant output model, which outputs the average cloud435

cover. The constant output model’s MSE thus also represents the variance of cloud cover436

in the data. Small differences in the preprocessing of the data for each model type lead437

to differences in the MSEs of the zero and constant output model. The (multiple) lin-438

ear model is trained on the data using the ordinary least squares method and can thus439

attain the lowest MSE of our baseline models. The simple Sundqvist scheme is a sim-440

plified version of the (mainly cell-based) ICON-A cloud cover parameterization. We sim-441

plify it by assuming a constant surface pressure of 1013.25 hPa and no adjustment for442

cloud cover in regions below subsidence inversions.443

By isolating vertical layers we can better illustrate the distribution of actual and444

inferred cloud cover in the troposphere. The averaged vertical profile of cloud cover fea-445

tures three maxima (depicted in Figure 4a). These can be attributed to the three modes446

of tropical convection (shallow, congestus, and deep). The model-based cloud cover pro-447

files closely align with the actual cloud cover profile. In contrast to Müller (2019), we448

find a clear peak for deep convective clouds in the coarse-grained NARVAL (and par-449

ticularly also in the NARVALII) data. However, the author defined grid cells to be cloudy450

whenever the total cloud condensate mass mixing ratio exceeded 0.1g/kg and not based451

on the cloud cover model output field.452

(a) NN cloud cover

(b) Ground Truth

0 20 40 60 80
Hours

19.2

8.8

2.7

0.2

z [
km

]
Ground Truth

19.2

8.8

2.7

0.2
z [

km
]

NN cloud cover

0

10

20

30

40

50

60
[%]

(c) Hovmoeller plots

0 2 4 6 8 10 12 14
Mean cloud cover [%]

0

5

10

15

20

z [
km

]

Cell-based model
Column-based model
Neighborhood-based model
Ground truth

(a) Cloud cover profiles

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
R2-value

0

5

10

15

Cell-based model
Column-based model
Neighborhood-based model

(b) Coefficients of determination (best value: 1)

1

Figure 4. Evaluation of the NARVAL R2B4 models on the coarse-grained and preprocessed

NARVAL R2B4 data. The three cloud cover maxima of panel a) are located roughly at 1 km,

5.3 km and 12.2 km. The maximal absolute discrepancy between the averaged NN predictions

and the ground truth for a given vertical layer is less than 0.5%. In panel b), the two upper-most

layers are not shown.

In Figure 4b we show the coefficient of determination/R2-value profiles for the dif-453

ferent models. For a given vertical layer l, the R2-value is defined by454
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R2
l = 1− msel

varl
. (3)455

For a given vertical layer l, msel is the mean-squared error between a given model’s456

prediction and the true cloud cover and varl the variance of cloud cover. Clearly, i) R2
l ≤457

1, ii) R2
l = 1 implies msel = 0, and iii) if R2

l ≤ 0, then a function always yielding the458

cloud cover mean on layer l would outperform the model in question.459

We see that the neighborhood- and column-based models generally have R2-values460

exceeding 0.9, or equivalently msel ≤ 0.1·varl. The somewhat lower reproduction skill461

for the cell-based model concurs with the MSEs found in Table 3. The models exhibit462

strongly negative R2-values above 19 km and are therefore not shown in the figure, i.e.463

on these layers a constant-output model would be more accurate than the NNs. The rea-464

son for this is that there are almost no clouds above 19 km; the variance of cloud cover465

is not greater than 10−4 (%)2. Nevertheless, the neighborhood-based model with its unique466

NN per vertical layer is still able to learn a reasonable mapping at 19.2 km, achieving467

an R2-value of 0.93. Altogether, we found the mean cloud cover statistics to be indepen-468

dent of how the NNs were initialized prior to training.469

4.2 Global Setting (QUBICC)470

Having studied the performance of our regionally trained NNs, we now shift the471

focus to the NNs trained and evaluated on the coarse-grained and preprocessed global472

QUBICC R2B5 data set. Changing the region as well as the resolution of the training473

data allows us to conduct studies across these domains in section 4.4.474

Table 4. MSEs (in (%)2) of the models trained with a 3-fold cross validation split on

the coarse-grained and preprocessed QUBICC data. For each type we highlight the chosen

model in bold. Here, the neighborhood-based models comprise one model per split, evalu-

ated on all layers. In parentheses we compute the losses after bounding the model output

to the [0, 100]% interval.

Cloud volume fraction Cloud area fraction

Training loss Validation loss Training loss Validation loss

Cell-based
Split 1 33.40 (29.72) 33.79 (30.11) 87.58 (81.59) 88.38 (82.37)
Split 2 33.22 (29.43) 32.77 (28.98) 88.14 (81.21) 87.98 (80.96)
Split 3 39.60 (36.15) 40.94 (37.48) 88.83 (82.66) 90.03 (83.87)

Column-based
Split 1 8.01 (7.84) 8.13 (7.98) 19.85 (19.60) 21.36 (21.05)
Split 2 7.89 (7.72) 8.14 (8.03) 20.31 (20.01) 20.07 (19.79)
Split 3 7.95 (7.83) 9.51 (8.80) 20.27 (19.91) 96.44 (20.58)

Neighborhood-based
Split 1 26.27 (22.40) 25.43 (21.56) 53.96 (46.88) 55.51 (48.44)
Split 2 28.39 (24.13) 27.28 (23.04) 54.49 (47.71) 53.12 (46.28)
Split 3 24.73 (20.12) 25.07 (20.46) 51.77 (46.18) 52.19 (46.61)

Table 4 gives an overview of the performance of all model types trained and eval-475

uated on each of the data splits. When comparing Table 4 with Table 3, we find that476

QUBICC(-trained) NNs exhibit larger MSEs than NARVAL(-trained) NNs. Causes for477

the higher MSEs can be attributed to the data now stemming from the entire globe and478
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Table 5. MSEs (in (%)2) of cloud volume fraction baseline models trained and

evaluated on coarse-grained and preprocessed QUBICC data

Type

Cell-based Column-based Neighborhood-based
Untrained NN 913.91 471.17 699.21

Zero output model 923.94 537.24 692.95
Constant output model 684.51 431.28 558.28

Best linear model 401.47 97.81 297.63
Simple Sundqvist model 773.56

Due to computational reasons, only 0.001% of the data (i.e. ≈ 104 samples)
was used to compute the MSE of the simple Sundqvist model.
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Figure 5. The cell-based cloud volume and cloud area fraction models of the 3-fold cross-

validation split evaluated on their respective validation sets.

the higher stochasticity present in the higher resolution R2B5 data. Both of these rea-479

sons allow for a larger range of outputs for similar inputs, inevitably increasing the MSE480

of our deterministic model. Nevertheless, we are still well below the MSEs given by our481

baseline models in Table 5.482

In a similar vein, estimating cloud area fraction is a more challenging task than es-483

timating cloud volume fraction. Depending on whether a cloud primarily spans horizon-484

tally or vertically, practically any value of cloud area fraction can be attained in a suf-485

ficiently humid grid cell. This could explain the increased MSEs of the cloud area frac-486

tion models.487

In Table 4 we also include bounded losses in parentheses. That means that the NN’s488

cloud cover predictions, which are smaller than 0% are set to be 0%, before its MSE is489

computed. And likewise, predictions greater than 100% are set to be 100%. The differ-490

ence between these two types of losses is relatively small. We can deduce that the NNs491

(with the surprising exception of the column-based NN for cloud area fraction from the492

third split) usually stay within the desired range of [0, 100]% without being forced to do493
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Figure 6. Evaluation of QUBICC cloud volume and cloud area models on coarse-grained

and preprocessed QUBICC R2B5 data. The average R2-values of the cell-, column-, and

neighborhood-based models shown in b) are (0.94, 0.98, 0.94) and in d) are (0.90, 0.97, 0.93).

The ground truth profiles do not match due to differences in preprocessing, especially in how

many cloud-free cells were removed from the respective data sets (see SI for more details). The

column-based ground truth profile represents the true QUBICC cloud cover profiles since its data

was not altered by preprocessing.

so. In bold we highlight the splits on which we trained the models that produce the low-494

est error on the entire data set. The corresponding models are used in all subsequent fig-495

ures.496

In Figure 5 we show that the local cell-based model – the model type with the largest497

MSE – is still able to reproduce the mean cloudiness statistics of the validation sets that498

it did not have access to during training. These validation sets each consist of the union499

of two blocks of 15 days, which is sufficiently temporally displaced from the training data500

to be above weather timescales. This makes the validation loss already indicative of the501

performance of the models on data outside of their immediate training distribution. We502

can see that the validation set bias of the model corresponding to the third split is larger503

than that of the first two splits. This suggests that the first two splits provide more strat-504

ified and thus more suitable sets of training data.505
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Despite the challenging setting, Figures 6a and 6c show that the models are very506

well able to reproduce the average profiles of cloud volume and cloud area fraction of the507

global data set. The same holds true for the ability to capture the variance in time and508

the horizontal for a given vertical layer, which is conveyed by the R2-values being usu-509

ally well above 0.8 for all layers below 15 km. As in Figure 4, layers above 19 km had to510

be omitted in the R2-plots. When it comes to reconstructing the QUBICC cloudiness,511

the column-based model with its large amount of adaptable parameters is able to out-512

perform the other two model types.513

After introducing and successfully evaluating both regionally and globally trained514

networks on their training regimes, we investigate the extent to which we can apply these515

NNs.516

4.3 Generalization Capability517

In this section we demonstrate that our globally-trained QUBICC networks can518

successfully be used to predict cloud cover on the distinct regional NARVAL data set.519

Furthermore, we show that, with the input features we chose for our NNs, achieving the520

converse, i.e. applying regionally-trained networks on the global data set, is out of reach.521

We note that beside the regional extent, the QUBICC data covers a different time-522

frame and was simulated with a different physics package and on a coarser resolution (5 km)523

than the NARVAL data (2.5 km). As opposed to NARVAL’s fractional cloudiness scheme,524

the QUBICC cloud cover scheme diagnosed only entirely cloudy or non-cloudy cells. These525

differences make the application of NNs trained on one data set to the other data set non-526

trivial.527

From global to regional528

We first study the capability of QUBICC-trained models to generalize to the NAR-529

VAL data (see Figure 7). We see that the models estimate cloud volume and cloud area530

fraction quite accurately. This is the case despite the significant differences between QUBICC’s531

and NARVAL’s mean vertical profiles of cloud cover. We generally recognize a decrease532

of R2-value (by ≈ 0.2) when compared to the models’ performance on its training data533

(Figure 6). A certain decrease was to be expected with the departure from the training534

regime. But as the R2-values on average still exceed 0.7, we find that the models can be535

applied succesfully to the NARVAL data. A sign of overfitting the training data is dis-536

cernible: While the column-based model had emulated the training data better than the537

other two model types, it generalizes slightly worse to the NARVAL data (see e.g. Fig-538

ure 7c).539

A considerable bias that pertains all three NN types is a consistent overprediction540

of both cloud volume and cloud area fraction between 6 and 9 km. In this altitude range,541

this is visible in all four plots, either through the mismatch in mean cloud cover or the542

dip in R2-value. This striking behavior will be further investigated in section 4.5.543

From regional to global544

We have seen that the NNs are able to reproduce the cloud cover distribution of545

the storm-resolving NARVAL simulation, limited to its tropical region. We coarse-grain546

the QUBICC data to the same R2B4 grid resolution that the NARVAL NNs were trained547

with. This helps us to investigate to what extent the NNs can actually generalize to out-548

of-training regimes. We focus on the tropics first, extending the evaluation from the NAR-549

VAL region (68W-15E, 10S-20N) to the entire tropical band (23.4S-23.4N). Note that550

the QUBICC data shows a much stronger presence of deep convection and a weaker pres-551

ence of shallow and congestus-type convection. Nevertheless, the NNs are able to repro-552

duce the general structure of the mean cloud cover profile, in particular the peak due553

to deep convection. The flattened peak of shallow convection is most accurately repre-554
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Figure 7. Evaluation of QUBICC R2B5 cloud volume and cloud area models on NARVAL

R2B5 data. The average R2-values of the cell-, column-, and neighborhood-based models shown

in b) are (0.74, 0.74, 0.79) and in d) are (0.72, 0.71, 0.72).

sented by the neighborhood-based model, while the weakened congestus-type convection555

is reproduced by both the neighborhood- and the column-based models.556

However, the NNs are not able to generalize to the entire globe. To show this, we557

use two column-based models as an example. Looking at Figure S4, we can see that they558

are unable to reproduce mean cloudiness statistics over the region covering the South-559

ern Ocean and Antarctica. In addition, models with the same architecture produce en-560

tirely different cloudiness profiles. In this polar region, the NNs are evidently forced to561

extrapolate to out-of-training regimes and are thus unable to produce correct or consis-562

tent predictions. Let us look exclusively at the univariate distributions of the QUBICC563

input features (those for temperature and pressure are plotted on the margins of Fig-564

ure 8b). Then we can see that their values are usually covered by the distribution of the565

NARVAL training data. Only their joint distribution reveals that a large number of QUBICC566

samples exhibit combinations of pressure and temperature that were not present in the567

training data. For instance, temperatures as cold as 240K never occur in tandem with568

pressure values as high as 1000 hPa in the tropical training regime of the NARVAL data.569

This circumstance is particularly challenging for the neighborhood- and column-based570
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Figure 8. Panel a): Evaluation of NARVAL R2B4 models (NARVAL region: 68W-15E, 10S-

20N) on QUBICC R2B4 data over the tropical zone (23.4S - 23.4N). We plot the means over 10

days (Nov. 20 - Nov. 29, 2004). Different NNs of the same type produce consistent mean vertical

cloudiness profiles (±1%). Panel b): Joint distribution of temperature and pressure in NARVAL

R2B4 and QUBICC data. On the margins we see the univariate distributions of temperature and

pressure. The jagged structure emerges from the underlying coarse vertical grid.

models. This is because the input nodes in these two NARVAL model types correspond571

to specific vertical layers. So the NNs have to extrapolate when facing (during training)572

unseen input feature values on any vertical layer, such as in our example cold temper-573

atures on a vertical layer located at around 1000 hPa.574

In this section, we demonstrated that the QUBICC NNs can be used on NARVAL575

data, while in our setup the converse is not feasible. This begs the question: In which576

way do these NNs differ and have they actually learned a meaningful dependence of cloud577

cover on the thermodynamic environment?578

4.4 Understanding the Relationship of Predicted Cloud Cover to Its Ther-579

modynamic Environment580

In this section, our goal is to dig into the NNs and understand which input features581

drive the cloud cover predictions. We furthermore want to uncover similarities and dif-582

ferences between the NARVAL- and QUBICC-trained NNs that help understand differ-583

ences in their generalization capability.584

NNs are not inherently interpretable, i.e. we cannot readily infer how the input fea-585

tures impacted a given prediction by simply looking at the networks’ weights and biases.586

Instead, we need to use an attribution method that uses an explanation method built on587

top of the NN (Ancona et al., 2019). Within the class of attribution methods, few are588

adapted for regression problems. A common choice (see e.g. Brenowitz et al. (2020)) is589

to use gradient-based attribution methods. However, these methods may not fairly ac-590

count for all inputs when explaining a model’s prediction (Ancona et al., 2019). Addi-591
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tionally, gradient-based approaches can be strongly affected by noisy gradients (Ancona592

et al., 2019) and generally fail when a model is ‘saturated’, i.e. when changes in the in-593

put do not lead to changes in the output (Shrikumar et al., 2017).594

Instead we approximate Shapley values for every prediction using the SHAP (SHap-595

ley Additive exPlanations) package (Lundberg & Lee, 2017). The computation of Shap-596

ley values is solidly founded in game theory and the Shapley values alone satisfy three597

‘desirable’ properties (Lundberg & Lee, 2017). Shapley values quantify the influence of598

how an input feature moves a specific model prediction away from its base value, defined599

as the expected output. The base value is usually an approximation of the average model600

output on the training data set. With Shapley values, the difference of the predicted out-601

put and the base value is fairly distributed among the input features (Molnar, 2020). A602

convenient property is that one can recover this difference by summing over the Shap-603

ley values (‘efficiency property’).604

The DeepExplainer within the SHAP package is able to efficiently compute approx-605

imations of Shapley values for deep NNs (Lundberg & Lee, 2017). SHAP also comes with606

various visualization methods, which allow us to aggregate local sample-based interpre-607

tations to form global model interpretations.608

We now show how we use SHAP to compare the way NARVAL (R2B4)- and QUBICC609

(R2B5)-trained networks arrive at good predictions. We focus on the column-based (cloud610

volume fraction) models. These are uniquely able to uncover important non-local effects,611

have the largest number of input features to take into account and have on average the612

lowest MSEs in their training regimes (Tables 3, 4).613

We collect local explanations on a sufficiently large subset of the NARVAL R2B5614

data. For this, we compute the base values by taking the average model predictions on615

subsets (containing 10000 samples) of the respective training data sets. We showed that616

on the NARVAL R2B5 data set, the QUBICC models are able to reconstruct the mean617

vertical profile with high R2-values (Figure 7). Impressively, the column-based version618

of our NARVAL R2B4 models also makes successful predictions on the NARVAL R2B5619

data set (with an average R2-value of 0.93; Figure S5) despite the doubling of the hor-620

izontal resolution.621

The subset of NARVAL R2B5 data is chosen to be sufficiently large to yield robust622

estimates of average absolute Shapley values. Averaging the absolute Shapley values over623

many input samples measures the general importance of each input feature on the out-624

put. An input feature with a large average absolute Shapley value contributes strongly625

to a change in the model output. It on average increases or decreases the model output626

by precisely this value.627

The absolute SHAP values (Figure 9) suggest that both models learned a remark-628

ably local mapping, with a clear emphasis on the diagonal (especially above the bound-629

ary layer). That means that the prediction at a given vertical layer mostly depends on630

the inputs at the same location. The models have learned to act like our cell- or neighborhood-631

based models without human intervention.632

The input features have a larger influence in the QUBICC model than they do in633

the NARVAL model. We originally believed the cause for this to be that the QUBICC634

training data has a very distinct average cloudiness profile than the NARVAL data that635

we apply the model to. After all, the Shapley values have to bridge the gap between the636

base values and the new model predictions. However, constructing the base values to be637

much closer to the average NARVAL cloudiness profile does not decrease the magnitude638

of the Shapley values of the QUBICC model (see Figure S6). We also find that such a639

drastic change of the base value barely impacts the qualitative information that we can640

extract from the plots. An alternative explanation goes as follows: During training, the641

QUBICC model was confronted with a large variety of climatic conditions across the en-642

tire globe implying a larger variance of cloud cover. The NN is thus used to deviate from643
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Figure 9. Average absolute SHAP values of the QUBICC R2B5 and the NARVAL R2B4

column-based models when applied to a sufficiently large subset of the NARVAL R2B5 data.

We use the conventional ICON-A numbering of vertical layers from layer 21 (at a height of

≈ 20.8 km) decreasing in height to layer 47, which coincides with Earth’s surface. The dashed

line shows the tropopause, here at ≈ 15 km, the dash dotted line shows the freezing level (i.e.

where temperatures are on average below 0 degrees celsius), here at ≈ 5 km. Tests with four dif-

ferent seeds show that the pixel values are robust (the absolute values never differ by more than

0.55%). The input features that are not shown exhibit smaller absolute SHAP values (ρ < 1.8%,

p < 1.5%, zg < 0.7%, land/lake < 0.1%) everywhere and are thus omitted.

the average cloud cover, putting more emphasis on its input features, and consequently644

causing larger Shapley values.645

Both models take into account that in the boundary layer the supply of moisture646

qv from below in combination with temperature anomalies that could drive convective647

lifting influence the sub-grid distribution of cloud condensates and henceforth cloud cover.648

Such a non-local mixing due to updrafts presents limitations for purely local parame-649

terizations. In the boundary layer (which we set to be at below 1 km), temperature T650

and specific humidity qv are found to be the most important variables (having the largest651

sum of absolute SHAP values) for the NNs. Higher in the troposphere, the local amount652

of moisture has a significant impact on cloud cover. Specific cloud liquid water content653

qc is a major predictor of cloud cover below the freezing level, while specific cloud ice654

content qi is a major predictor of cloud cover above the freezing level. In contrast to the655

global QUBICC model, the tropical NARVAL model only considers the impact of qi at656

sufficiently high altitudes, which allow for the formation of cloud ice. The QUBICC model657

also learned to place more emphasis on T and qv in the lower troposphere and pressure658

p in the higher troposphere than the NARVAL model.659

Generally, the most important variables above the boundary layer and below the660

freezing level are temperature T (for the QUBICC model) and cloud water qc (for the661

NARVAL model). Above the freezing level, the QUBICC model emphasizes pressure p662

most, while the NARVAL model learns a similar impact of T , qi and p. Due to the Clausius-663

Clapeyron relation, relative humidity depends most strongly on temperature. Taking into664

account that throughout the troposphere relative humidity is the best single indicator665
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for cloud cover (Walcek, 1994), this is a likely explanation for the models’ large empha-666

sis on temperature.667

After using SHAP to illustrate which features drive the (column-based) NN pre-668

dictions, we use the same approach to understand the source of a specific generalization669

error of the QUBICC NNs (Figure 7).670

4.5 Understanding Model Errors671

In this section, our goal is to understand the source of flawed NN predictions. Which672

input features are most responsible for erroneous predictions in one NN, while in another673

NN they cause no bias?674

In the evaluation of the QUBICC (R2B5) cloud volume fraction models on NAR-675

VAL R2B5 data (Figure 7) we have seen a pronounced dip in performance (R2 ≤ 0.8676

for all models) on a range of altitudes between 6 and 9 km. The dip was accompanied677

by an overestimation of cloud cover (relative error > 15%). We specifically focus on ex-678

plaining the bias at 7 km. The vertical layer, which corresponds to this altitude, is the679

32nd ICON-A layer. On layer 32, the R2-values are minimal (R2 ≤ 0.5 for all models)680

making it arguably the largest tropospheric generalization error of the models. However,681

the method we employ here can be used to understand other generalization errors as well.682

The NARVAL (R2B4) models are perfectly able to make predictions on NARVAL683

R2B5 data on layer 32 (Figure S5), making it a suitable benchmark model. As in the684

previous section we use SHAP on the column-based models. In order to be able to com-685

pare Shapley values corresponding to certain features individually, we follow the strat-686

egy outlined in Appendix A.687

Figure 10a shows the influence of each input feature from the entire grid column688

on the average model output on layer 32. We find that the QUBICC model bias is driven689

by qv and qi. Compared to the NARVAL model, the QUBICC model clearly overesti-690

mates the impact of these two variables. This impact is dampened somewhat by a net691

decreasing effect of p and T on the cloud cover predictions. In the NARVAL model the692

impact of these features is much less pronounced. The reason is probably once again that693

the model has not learned the need for deviating much from the base value in its trop-694

ical training regime.695

When investigating the vertical profile of Shapley values in Figures 10b and c we696

find that the local values have the largest effect on cloud cover. This local importance697

is also corroborated by Figure 9. We can zoom in and look at the more precise conditionally-698

averaged functional dependence of clc 32 on these local qi 32 and qv 32 variables (Fig-699

ures 10d and e). We find the two functions to be very similar, albeit differing in their700

slope. The QUBICC model quickly increases cloud cover with increasing values of qi 32701

and qv 32. The QUBICC model’s large emphasis on qi 32 could be a relict from the cloud702

cover scheme in the native QUBICC data. This scheme had set cloud cover to 100%, when-703

ever the cloud condensate ratio had exceeded a given threshold.704

5 Summary705

In this study we develop the first machine learning based parameterization for cloud706

cover based on the ICON model and deep NNs. We train the NNs with coarse-grained707

data from regional and global storm-resolving model simulations with real geography.708

We demonstrate that in their training regime, the NNs are able to learn the sub-grid scale709

cloud cover from large-scale variables (Figures 4, 6). Additionally we show that our glob-710

ally trained NNs can also be successfully applied to data originating from a regional sim-711

ulation that differs in many respects (e.g. its physics package, horizontal/vertical res-712

olution, and time frame; Figure 7). Using SHAP we compare regionally and globally trained713
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Figure 10. SHAP/Shapley value statistics per input feature for cloud cover predictions on

vertical layer 32 (at ≈ 7 km) of the column-based models with a focus on qv and qi in (b)-(e).

Input features the models have not in common are neglected. As in Figure 9, the Shapley values

are computed on a set of 104 random NARVAL R2B5 samples (using ten different seeds). (a):

The sum of average SHAP values over all vertical layers. The black lines show the range of values

(min/max). The absolute QUBICC R2B5 model bias (of 0.95%) on layer 32 (cf. Figure 7a) can

approximately be recovered by summing over all orange values (which yields 0.81%). (b), (c):

The vertical profiles of SHAP values for qv and qi for all ten seeds. In the SHAP dependence

plots (d), (e) we zoom in on the features with the largest SHAP values (qi and qv of layer 32).

(d), (e): Each dot corresponds to one NARVAL R2B5 sample. The lines show smoothed condi-

tional expectations computed over all seeds. The dashed lines show the average SHAP value of

the input features qv and qi on layer 32 whose values can also be found in (b) and (c).

NNs to understand the relationship between predicted cloud cover and its thermodynamic714

environment and vertical structure (Figure 9). We are able to uncover that specific hu-715

midity and cloud ice are the drivers of one NN’s largest tropospheric generalization er-716

ror (Figure 10).717

We implement three different types of NNs in order to assess the degree of (ver-718

tical) locality when it comes to the task of diagnosing cloud cover. We find that by en-719

forcing more locality, the performance of the NN suffers on its training set (Figures 4,720

6). However, the more local cell- and neighborhood-based NNs show slightly fewer signs721

of overfitting the training data (Figure 7). Generally we find that none of three types722

clearly outperforms the other two types and that the potentially non-local model in ac-723

tuality also mostly learned to disregard non-local effects (Figure 9). Overall, the neighborhood-724

based model trained on the global QUBICC data (Q3) is most likely the preferable model.725

It has a good accuracy on the training data, the lowest generalization error on the NAR-726

VAL data, is low-dimensional, easy to implement and cross-model compatible. The last727

point refers to the fact that (unlike the column-based model) it is not tied to the ver-728

tical grid it was trained on.729

Furthermore, the NNs are trained to differentiate between cloud volume and cloud730

area fraction, which are distinct interpretations of cloud cover. We found cloud area frac-731

tion to be a somewhat more difficult value to predict. The shape of a cloud, which de-732
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termines its cloud area fraction, is harder to extract from grid-scale averaged thermo-733

dynamic variables. We agree with Brooks et al. (2005) that a distinction between these734

two concepts of cloud cover would be expedient inside a general circulation model for735

two reasons: First, both interpretations are used in the microphysics and radiation schemes.736

Second, depending on the interpretation, cloud cover can differ significantly (Figure 2).737

The natural next step will be to implement and evaluate the machine learning based738

parameterization for cloud cover in the ICON model. In such an ICON-ML model, the739

machine learning based parameterization would substitute the traditional cloud cover740

parameterization. The NN predictions for cloud area and cloud volume fraction would741

be used as parameters for the radiation and microphysics parameterizations, depending742

on which interpretation is most appropriate in each case. As we are not planning to fur-743

ther train the NNs in this coupled mode, the implementation itself should be relatively744

straightforward (using e.g. the Fortran-Keras bridge from Ott et al. (2020)).745

The presence of condensate-free clouds in the training data (they make up ≈ 7%746

of all cloudy grid cells) shows inaccuracies that are present both in the NARVAL and747

the QUBICC training data. The most likely reason for their occurrence is a temporal748

mismatch between different model output variables from one common time step. Some749

parameterization schemes in the ICON model are processed sequentially, potentially caus-750

ing such a temporal mismatch. However, this delay should not exceed the fast physics751

time step in the model, which was set to 40 seconds in the QUBICC and to five minutes752

in the NARVAL simulations.753

Our regionally-trained networks are not able to generalize to the entire globe. Sim-754

ilar difficulties might arise when applying our globally-trained networks to a climate so755

different that it circumvents our regularization measures (Rasp et al., 2018). In prac-756

tice, this would require us to filter out data samples which the NN cannot process in a757

meaningful way. Alternatively, one could train the NNs with climate-invariant features758

only, eliminating the need of ever extrapolating to out-of-training distributions (Beucler,759

Pritchard, Peng, et al., 2020).760

While we can achieve good results with our “vanilla” NNs, Bayesian NNs or adding761

dropout to our conventional NNs are promising ways of also estimating the uncertainty762

associated with NN predictions (Gal & Ghahramani, 2016). Furthermore, we have de-763

veloped different types of NNs to test which information those NNs need to learn cloud764

cover. However, causal discovery methods would likely provide a more rigorous and phys-765

ically consistent approach for defining the input features (Nowack et al., 2020; Runge766

et al., 2019).767

From a climate science perspective, instead of diagnosing cloud cover from large-768

scale variables directly, one could also train a NN to output parameters specifying dis-769

tributions for sub-grid scale temperature and moisture. Cloud cover could then be de-770

rived from these distributions (see statistical cloud cover schemes in e.g. Stensrud (2009);771

A. M. Tompkins (2002)). By reusing the distributions for other parameterizations as well,772

we could increase the consistency among cloud parameterizations. However, this approach773

would require us to make assumptions concerning the general form of these distributions774

(Larson, 2017) and we leave this for future work.775

Overall, this study demonstrated the potential of deep learning combined with high-776

resolution data for developing parameterizations of cloud cover.777

Appendix A Comparing Two Neural Networks With Shap778

For a given NN h, data sample X and input feature i, the SHAP package computes779

the corresponding Shapley value φh,X,i. Shapley values satisfy the so-called efficiency780

property for every sample, which means that they sum up to the difference between the781
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model output and its base value (the expected model output)782 ∑
i∈I

φh,X,i = h(X)− E[h(X)], (A1)

where I ⊆ N consists of the features’ indices. A Shapley value φf,X,i can thus be in-783

terpreted as the amount by which an input feature i contributes to the deviation of f ’s784

prediction from the base value. Shapley values are constructed so that f(X)−E[f(X)]785

is fairly distributed among the features.786

Let f be the QUBICC R2B5 and g the NARVAL R2B4 NN. Their base values Bf :=787

E[f(X)] and Bg := E[g(X)] are computed as the average prediction of f and g on a788

subset of their respective training data sets (the so-called background data set). By re-789

peatedly drawing an appropriate sample from the training set of f , we can construct its790

background data set such that Bf = Bg. Plugging f and g into (A1) we get791 ∑
i∈I

φf,X,i −
∑
j∈J

φg,X,j = f(X)− g(X) +Bf −Bg = f(X)− g(X), (A2)

where I, J ⊆ N. Let S be a random subset of the NARVAL R2B5 data and the over-792

line · denote the average over all samples in S. The size of S is chosen to be large enough793

such that i) f and g are good approximations of the predicted averages of f and g on794

the entire NARVAL R2B5 data set (as shown in Figures 7a and S5a) and ii) the mean795

Shapley values are robustly estimated.796

The sum of Shapley values corresponding to input features that are present in only797

one model (such as ρ) are in our case very small (absolute value < 0.08) and thus neg-798

ligible. Hence, by averaging over (A2) we can approximate the mismatch between the799

average outputs of f and g by the sum of the difference of averaged Shapley values cor-800

responding to features that f and g have in common801

f − g =
∑

i∈I∩J
(φf,X,i − φg,X,i) +

∑
i∈I\J

φf,X,i −
∑

i∈J\I

φg,X,i (A3)

≈
∑

i∈I∩J
(φf,X,i − φg,X,i).

So by comparing φf,X,i and φg,X,i for all common features i ∈ I ∩ J individually, we802

can explain which input features contribute to the difference between f and g. Having803

ensured that S satisfies i) and ii), we can generalize (A3) to the entire NARVAL R2B5804

data set.805
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