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Introduction This supplementary information provides more detailed information con-

cerning the data and the neural networks (NNs). It describes the variables that were

used as input features for the NNs, illustrates the architecture of the three NN types,

and the preprocessing and amount of (training) data for each network. Table S1 speci-

fies the parameterization schemes used in the NARVAL and QUBICC simulations. The

cross-validation split for the QUBICC (R2B5) models is depicted in Figure S3. Figure
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S1 illustrates the coefficients of a multiple linear model trained on the NARVAL (R2B4)

data. Figures S4 and S5 cover aspects of the generalization capability of the NARVAL

networks across regions and resolutions. Lastly, Figure S6 shows that SHAP values do

not strongly depend on the base value.

————————————————————————

1. Definition and Choice of Input Parameters for the NNs

1. land: The land fraction (in [0, 1]) is used in the ICON-A cloud cover scheme to

discern whether one might have to artificially increase relative humidity in order to take

thin maritime stratocumuli into account.

2. lake: The lake fraction (in [0, 1]) is a parameter closely related to the land fraction.

A supply of moisture from the ground very likely influences the distribution of moisture

in the atmospheric column above, especially in the presence of convection.

3. Cor.: The Coriolis parameter (in 1/s) allows the cloud cover parameterization to

vary between different latitudes, which can be especially useful with global training data.

4. qv, T, p, zg: Specific humidity (in kg/kg), air temperature (in K), pressure (in Pa)

and geometric height at full levels (in m). These are the most important input variables

for the original ICON-A cloud cover scheme (to compute relative humidity).

5. qc, qi: The specific cloud water content and the specific cloud ice content (in kg/kg).

They have a direct influence on cloudiness as their presence is a necessary requirement

for the presence of clouds. In this spirit, they are for instance used in an alternative 0-1

cloud cover scheme in ICON-A, which sets cloud cover to 1 when a certain threshold of

cloud condensate is crossed.
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6. ρ: Air density (in kg/m3). We left it out for the R2B5 NNs, since air density can

mostly be derived from p, T and qv by using the ideal gas law and is therefore redundant.

7. u, v: Zonal/eastward wind and meridional/northward wind (in m/s). Vertical wind

shear can induce a large difference between cloud area fraction and cloud cover.

8. clct−1: The cloud cover estimate (in [0, 100]%) from the previous timestep (1 hour

before). Undeniably, clouds have a memory effect on this time scale. However, a model

that relies on previous cloudiness cannot be used in the first time step.

The features ρ, u, v are also used in the Tompkins scheme of cloud cover (Tompkins,

2002).

2. Preprocessing

The preprocessing, which we define as distinct from coarse-graining, consists of up to

four steps:

1. For all cell-based and QUBICC neighborhood-based models (N1, Q1 and

Q3): Ensure that the amount of data samples with clc 6= 0 is as large (for the Q1 model

twice as large to reduce the data size) as the one with clc = 0, by downsampling the latter

class of cloud-free data samples.

2. For the neighborhood-based NARVAL models (N3): Remove the cloud cover

from the first time step of each day of the NARVAL data from the output. We cannot

predict it, because there is no previous cloud cover value which the neighborhood-based

NARVAL model would require as input.
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3. QUBICC data: Remove the first time steps of the simulations because that output

incorrectly consists of an entirely cloud-free atmosphere. Scale the cloud cover to be in

[0, 100]%. Convert the data from float64 to float32 to reduce the data size.

4. For the QUBICC cell- and neighborhood-based models (Q1 and Q3):

Subsample only every third hour from the QUBICC data set to reduce the data size.

Assuming a high temporal correlation, we should not lose a lot of information. Remove

condensate-free clouds (∼ 7% of all clouds).

5. For all models (N1-N3, Q1-Q3): Normalize the actual training data so that

each input feature to the NN is distributed according to a Gaussian with zero mean and

unit variance. In the column-based models this means that the normalization is done on

a level-by-level basis and for the cell-based and neighborhood-based models we have one

level-independent mean and standard deviation per input feature. According to Brenowitz

and Bretherton (2019), we expect the impact on our results due to these different choices

of normalization to be very small. This step of normalization can only be done after

splitting the set of all training data samples into subsets of training, validation and test

data.
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Table S1. Parameterizations used in the NARVAL and QUBICC simulations

NARVAL QUBICC

Cloud Cover Diagnostic PDF
All-or-nothing scheme

based on cloud condensate

Microphysics
Single-moment scheme

(Doms et al., 2011; Seifert, 2008)
Single-moment scheme

(Doms et al., 2011; Seifert, 2008)

Radiation
RRTM scheme

(Barker et al., 2003; Mlawer et al., 1997)
RTE+RRTMGP scheme

(Pincus et al., 2019)

Turbulence
Prognostic TKE

(Raschendorfer, 2001)
Total turbulent energy scheme

(Mauritsen et al., 2007)

Land
Tiled TERRA

(Schrodin & Heise, 2001; Schulz et al., 2015)
JSBach4-lite (Raddatz et al., 2007)

Table S2. Amount of training data samples for the NNs. The tuples denote either (time

steps, vertical layers, horizontal fields) or (time steps, horizontal fields). Note that for the R2B4

neighborhood-based model we trained one NN per vertical layer, so the number of training

samples is equal to the number of training samples for the R2B4 column-based model. Grid

columns containing grid cells that were omitted during coarse-graining are excluded in the ‘After

coarse-graining’-column and are also not used for training.

Original data (≤ 21 km) After coarse-graining After preprocessing

Cell-based
R2B4 NARVAL 5.6 · 1011 (1721, 66, 4887488) 4.5 · 107 (1635, 27, 1024) 3.7 · 107

R2B5 QUBICC 3.9 · 1012 (2162, 87, 20971520) 4.6 · 109 (2162, 27, 78069) 8.8 · 108

Neighborhood-based
R2B4 NARVAL 8.4 · 109 (1721, 4887488) 1.7 · 106 (1632, 1024) 1.7 · 106

R2B5 QUBICC 3.9 · 1012 (2162, 87, 20971520) 4.6 · 109 (2162, 27, 78069) 1.2 · 109

Column-based
R2B4 NARVAL 8.4 · 109 (1721, 4887488) 1.7 · 106 (1635, 1024) 1.7 · 106

R2B5 QUBICC 4.5 · 1010 (2162, 20971520) 1.7 · 108 (2162, 78069) 1.7 · 108
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Figure S1. Coefficients of the best multiple linear model on standardized NARVAL R2B4

data. The dashed line shows the tropopause (≈ 15 km), the dash dotted line shows the freezing

level (i.e. where temperatures are on average below 0 degrees) (≈ 5 km) and the dotted line

visualizes the diagonal. The coefficients suggest that the problem of diagnosing cloud cover is

non-local. The zg coefficients seem to dominate. An elevated grid cell on level 15 increases cloud

cover significantly. However, due to the nature of the vertical grid, the layers below will also

be elevated, driving a decrease of cloud cover. An increase in specific humidity, cloud water (at

altitudes below the freezing level) and cloud ice (at altitudes above the freezing level) increase

cloudiness in the same grid cell. In the upper troposphere, when we increase the pressure, we

force the condensation of water vapor at the given level and above.
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Three types of neural networks implemented

Cell-based Neighborhood-based Column-based

Input features are a subset of: 

Temperature; pressure; air density; zonal, meridional wind; specific humidity; cloud ice; cloud water; geometric height;

fraction of lakes, land, sea ice; Coriolis parameter

Output feature: Cloud Cover

21km

0km
27𝑝 + 𝑠 inputs 27 outputs1 output3𝑝 + 𝑠 inputs𝑝 + 𝑠 inputs 1 output

1

Figure S2. A sketch of the three NN types based on one grid column. The variable p denotes

the number of input features from the grid cells and s is the number of extra variables from the

surface. In this sketch, the neighborhood-based model uses two neighboring cells, which is only

true for our QUBICC-trained NN.

Figure S3. We split the R2B5 data using a three-fold temporally coherent cross-validation

split. In each split, we train a network on the blue folds and validate it on the green folds. One

fold covers approximately 15 days.

December 17, 2021, 4:54pm



X - 10 :

0 5 10 15 20 25 30
Mean cloud cover [%]

0

5

10

15

20

z [
km

]

Column-based model 1
Column-based model 2
Ground truth

Figure S4. Two different column-based models trained on NARVAL R2B4 data evaluated on

QUBICC R2B4 data over the Southern Ocean and Antarctica (< 60S). Models from the same

type stop being consistent and deviate significantly from the ground truth.
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Figure S5. The NNs trained on NARVAL R2B4 data evaluated on the coarse-grained and

preprocessed NARVAL R2B5 data.
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Figure S6. Average absolute SHAP values of the QUBICC R2B5 column-based model when

applied to a sufficiently large subset of the NARVAL R2B5 data. By repeatedly drawing an

appropriate training sample from the QUBICC training data we decrease its base values, aligning

them closely with the cloud cover profile of the NARVAL R2B5 data. Tests with ten different

seeds have shown the values from the lower row to be robust, with pixel values not differing

absolutely by more than 1 or relatively by more than 20%. The input features that are not

shown exhibit smaller absolute SHAP values (zg < 0.8%, land/lake < 0.22%) everywhere and

are thus omitted.
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