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Introduction  

This supplement provides two additional descriptions about the CS shape and 

magnetospheric filed model parameters and eight figures in order to show the detailed 

characteristics of the models updated in this study. The additional texts describe the 

parameterization of the two models and meaning of the model parameters. Text 1 is for 

the CS shape model, and Text 2 is for the magnetospheric field model. The current sheet 

has two characteristics as mentioned in the main text, namely, bendback and hinge. 

Figure S1 represents comparison of the bendback effect with 𝛿 in Eq. (1). Figure S2 

represents comparison of the hinge effect in the midnight meridional plane where the 

effect becomes most prominent. Figure S3 shows the comparison of the magnetospheric 

field model parameters among the three models (pre-Galileo, Galileo, and Juno) with 

parameter error estimates based on the observation errors. Figures S4 through S6 indicate 

the stability of the updated magnetospheric field model by showing the RMS curves in 

the vicinity of the optimized parameters listed in Table 1 of the main text. These figures 

are for pre-Galileo, Galileo and Juno, respectively. Figures S7 and S8 represent the 

calculated azimuthal electric current density using the field models updated in this study 

for Galileo and Juno, respectively. 



Text S1. 

In this text, the CS shape model parameters (𝑥0, 𝜌0, 𝑣0) are described in detail. 

The 𝑥0 controls the hinge effect mentioned in the main text through the term in Eq. 

(1): 

𝜌
𝑥0

𝑥
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𝑥
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First, considering the dawn-dusk meridian, 𝑥 = 0 and 𝜌 = |𝑦|, which is dusk-

directional distance on the equatorial plane. In the case of |𝑥| ≪ |𝑥0|, by using an 

approximation, 
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, (S2) 

 

the term (S1) becomes a simpler form: 
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) ≃ |𝑦|   . (S3) 

 

The CS shape model (1), therefore, can be simplified: 

 

𝑍𝐶𝑆 ≃ |𝑦| tan(𝜃𝑑) cos(𝜆 − 𝛿) . (S4) 
 

This means that the Z-coordinate of the CS is not constrained by 𝜌 in this meridian. 

Next, on the midnight meridian where 𝜌 = −𝑥, the CS shape model (1) becomes 

 

𝑍𝐶𝑆 = − tan(𝜃𝑑) 𝑥0 tanh (
𝑥

𝑥0
) cos(𝜆 − 𝛿) . (S5) 

 

While in the case of |𝑥| ≪ |𝑥0| (i.e. near Jupiter), (S5) can be simplified to the same 

form as (S4): 

𝑍𝐶𝑆 ≃ −𝑥 tan(𝜃𝑑) cos(𝜆 − 𝛿)   , (S6) 
 

in the case of |𝑥| ≫ |𝑥0| (i.e., distant from Jupiter), the hyperbolic tangent term 

becomes unity and the Z-coordinate of the CS is independent of 𝜌: 

 

𝑍𝐶𝑆 = − tan(𝜃𝑑) 𝑥0 cos(𝜆 − 𝛿)   . (S7) 
 

This means the Z-coordinate is saturated with large 𝑥, and 𝑥0 is the scale distance 

where the hinge effect becomes dominant and rules the maximum height of the CS 

(tan(𝜃𝑑) |𝑥0|). 
On the other hand, 𝜌0 and 𝑣0 control the bendback effect mentioned in the main 

text through the term: 
Ω𝐽𝜌0

𝑣0
ln cosh (

𝜌

𝜌0
)   . (S8) 

 

While 𝛿 in Eq. (1) means the longitude at which the CS has the maximum tilt without 



the hinge effect, it isn’t equal to the longitude at which the Jupiter’s dipole points, 𝜆𝑑. 𝛿  

varies as a function of 𝜌 corresponding to the finite propagation velocity of the CS 

oscillation originated from the rotation of Jupiter’s dipole. The difference between the 

longitudes, therefore, can be formulated in an integral form: 

 

𝛿 − 𝜆𝑑 = Ω𝐽 ∫
𝑑𝜌

𝑣(𝜌)

𝜌

0

(S9) 

 

where 𝑣 is the propagation velocity as the function of 𝜌. In this model, the velocity is 

modeled by using the hyperbolic tangent: 

 

𝑣(𝜌) =
𝑣0

tanh (
𝜌
𝜌0

)
, (S10)

 

 

and by integrating it, 𝛿 in Eq. (1) can be obtained. In the case of 𝜌 ≪ 𝜌0, 𝑣(𝜌) 

diverges to infinity with the approximation (S2), and this corresponds to no bendback 

effect near Jupiter because of the infinite propagation velocity. In a contrasting situation, 

𝜌 ≫ 𝜌0, the velocity reaches a constant value, 𝑣0. It follows that 𝜌0 controls the 

distance where the bendback effect becomes dominant, and 𝑣0 rules the strength of the 

effect. 

 

Text S2. 

In this text, we will explain what the magnetospheric field model parameters means. 

The magnetospheric field model is formulated by the Euler potentials 𝑓 and 𝑔 that 

are the functions of the spatial coordinates (𝜌𝑚, 𝜙, 𝑍𝑚): 

 
𝑩 = 𝛁𝑓(𝜌𝑚, 𝜙, 𝑍𝑚) × 𝛁𝑔(𝜌𝑚, 𝜙, 𝑍𝑚),
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(S11) 

 

The formulation using the Euler potentials was obtained as follows. The observed 𝐵𝜌𝑚
 

and 𝐵𝑍𝑚
 were well explained by their zeroth-order approximations (Khurana, 1997), 

𝐵𝜌𝑚0 and 𝐵𝑍𝑚0: 

 



𝐵𝜌𝑚0 = 𝐶1 {tanh (
𝜌01
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(S12) 

 

Assuming a Euler potential 𝑔0, the zeroth-order approximation of the 𝑔, is equal to 𝜙, 

𝐵𝜌𝑚0, 𝐵𝑍𝑚0, and 𝐵𝜙0 (the zeroth-order approximation of the 𝐵𝜙) can be expressed by 

𝑓0, the zeroth-order approximation of the 𝑓: 
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(S13) 

 

Using (S12) and (S13), 𝑓0 can be obtained: 

 

𝑓0 = − ∫ 𝜌𝑚𝐵𝜌𝑚0𝑑𝑍𝑚 + ∫ 𝜌𝑚𝐵𝑍𝑚0𝑑𝜌𝑚

= −𝐶1𝜌𝑚 {tanh (
𝜌01

𝜌𝑚
)}
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𝑍𝑚

𝐷1
)

     + ∫ 𝜌𝑚 {𝐶2 {tanh (
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(S14) 

 

where the term 𝐶1𝐷1 emerged by the integration is redefined as the 𝐶1. In Khurana 

(1997), 𝑍𝑚 was modified to 𝑍𝑚 − 𝑍𝑚,𝐶𝑆 corresponding to the complex shape of the 

current sheet, and 𝜌01/𝜌𝑚 was replaced by 𝑟01/𝑟. 

The parameter 𝐶1 (more precisely, 𝐶1/𝐷1) and 𝐶2 through 𝐶4 represent the 𝐵𝜌 

and the components of the 𝐵𝑍𝑚
 at 𝜌𝑚 = 0. Furthermore, considering the approximation 

of the hyperbolic tangent (S2) where 𝜌𝑚 ≫ 𝜌0, 𝑎1 through 𝑎3 represent the powers 

with which each component decreases, and 𝑟01, 𝜌02, and 𝜌03 represent the scale 

distances where the power law become significant. 𝐷1 is regarded as the 𝑍𝑚-directional 

distance where the 𝐵𝜌𝑚
 is saturated with increasing 𝑍𝑚 − 𝑍𝑚,𝐶𝑆. 

𝑔 can be obtained by adding the bendback effect of the magnetic field to the 𝑔0 

and it is formulated as the second term of Eq. (2). Considering the typical values of the 𝑝 

and 𝑞 are both positive, the term increases and 𝜙 decreases with increasing 𝜌𝑚 on a 

magnetic field line in order to conserve the Euler potential 𝑔. The parameters 𝑝, 𝑞, and 

𝐷2 are regarded as the bendback rate against 𝜌𝑚 at the center of the CS, the increment 

of the bendback rate with increasing 𝑍𝑚 − 𝑍𝑚,𝐶𝑆, and the 𝑍𝑚-directional distance where 

the effect of 𝑞 is saturated. 

 

 

 

 



 

 

 

 

 

Figure S1. Comparison of the bendback effect of the CS shape models on the 

Jovigraphical equatorial plane with the System III longitude 𝝀 = 𝝀𝒅 as 𝒙-axis. The 𝒙 

and 𝒚 distances are measured in units of 𝑹𝑱. Each curve represents the modeled 𝜹 of 

Khurana (1992) (black), pre-Galileo (red), Galileo (green) and Juno (blue). The black 

area at the origin represents Jupiter and the two dotted circles represent the distance range 

of the used data (10 𝑹𝑱 and 100 𝑹𝑱 from the origin, respectively). 



 

Figure S2. Comparison of the hinge effect of the CS shape models in the Jovigraphical 

midnight meridional plane whose distances are measured in 𝑹𝑱 with sunward direction 

as 𝒙-axis. Dashed curves represent cross-sections of the CSs in the midnight meridian 

whose System III longitude 𝝀 is 𝝀𝒅, while solid curves denote those in the pseudo 

prime meridian (𝝀 = 𝜹) at midnight. The colors corresponding to the models are the same 

as Figure S1. Black dotted curves represent the distance range of the used data. 



 

Figure S3. The updated parameters normalized by each pre-Galileo parameter and their 

estimated errors. Red, blue and green parameters represent those in pre-Galileo (Voyager 

1/2), Galileo and Juno models, respectively. The errors are estimated based on the errors 

of the observed magnetic field. 

 

 

Figure S4. The RMS distributions in the vicinity of each updated magnetospheric model 

parameter in the pre-Galileo era listed in Table 1. The horizontal line represents the 

possible RMS value when the observation errors are considered, and the cross points with 

each curve correspond to each error bar in the Figure S3. 

 



 

Figure S5. The RMS distributions in the vicinity of each updated magnetospheric model 

parameter in the Galileo era listed in Table 1. The figure format is same as Figure S4. 

 

 

Figure S6. The RMS distributions in the vicinity of each updated magnetospheric model 

parameter in the Juno era listed in Table 1. The figure format is same as Figure S4. 

 



 

Figure S7. The azimuthal electric current density calculated by the updated 

magnetospheric field model in the Galileo era on the midnight meridian using the 

magnetic dipole coordinate system. The solid and dashed white lines represent the cross-

sections of the Jovigraphical equator and modeled CS on this meridian. 

 

 

Figure S8. The azimuthal electric current density calculated by the updated 

magnetospheric field model in the Juno era. The figure format is same as Figure S7. 


