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Key Points: 16 

• Comprehensive detection and source parameter estimations of shallow very low 17 
frequency earthquake swarms along the Nankai Trough. 18 

• The scaling relationship between the activity areas and cumulative moments of the 19 
swarms roughly follows Mo ∝ A3/2. 20 

• Along-strike variations of the scaling law for swarm durations reflect differences in the 21 
faulting conditions of slow earthquakes. 22 

  23 



manuscript submitted to Geophysical Research Letters 

 

Abstract 24 

We detected shallow very low frequency earthquakes (VLFEs) off the Cape Muroto and Kii 25 
Channel in the Nankai subduction zone and estimated their moment rate functions. Combining 26 
the new and previously estimated catalogs, we obtained the comprehensive catalog of shallow 27 
VLFE moment rate functions along the Nankai Trough. We defined the shallow VLFE swarms 28 
and investigated the scaling relationships of their cumulative moments, activity area, and 29 
durations in each region. Detected swarms were considered candidates for shallow slow slip 30 
events. A similar scaling relationship was observed between the cumulative moments and 31 
activity areas, irrespective of regions. It indicates similar stress drops in each region. However, 32 
the relationship between the cumulative moments and durations varied. This difference was 33 
explained by the along-strike variations in the faulting conditions of shallow slow earthquakes, 34 
such as material or hydrological properties.  35 

Plain Language Summary 36 

Slow earthquakes are characterized as slips much slower than similar-size regular earthquakes. 37 
Although interactions between the shallow slow earthquakes and large tsunamigenic earthquakes 38 
have often been discussed, our knowledge of the source characteristics and spatial variations of 39 
the shallow slow earthquakes is still limited. In this study, we quantitatively investigated the 40 
activity characteristics of shallow, very low frequency earthquakes (VLFEs) along the Nankai 41 
Trough. Activity areas and released cumulative moments of shallow VLFE swarms exhibited a 42 
similar scaling law irrespective of regions. However, the duration and cumulative moments of 43 
the swarms varied in each region. These characteristics can provide key information on the 44 
faulting conditions of slow earthquakes in shallow plate boundaries. 45 

1 Introduction 46 

Regular (fast) and slow earthquakes occur along plate boundaries in subduction zones to 47 
release the accumulated stress due to subduction (summarized in Obara & Kato, 2016; Uchida & 48 
Bürgmann, 2019). Different slip phenomena are separately distributed on the plate boundaries 49 
(e.g., Dixon et al., 2014; Nishikawa et al., 2019; Takemura, Okuwaki, et al., 2020; Vaca et al., 50 
2018). These slips can be captured from geodetic and seismic observations. The total slips of 51 
moderate-to-large earthquakes and small repeating earthquakes can be evaluated by geodetic 52 
fault modeling (e.g., Hori et al., 2021; Okada, 1992) and empirical relationships between seismic 53 
moments and slips (e.g., Nadeau & Johnson, 1998), respectively. However, it is still difficult to 54 
evaluate small deformations due to slow slip events (SSEs), which are geodetic slips of slow 55 
earthquakes with durations of several days to years. SSEs with Mw 5.5 and 6.5 are the detectable 56 
limits in onshore and offshore regions, even when using dense Global Navigation Satellite 57 
System observations in Japan (e.g., Agata et al., 2019; Nishimura et al., 2013; Suito, 2016).  58 

Slow earthquakes can also be observed at seismic stations. Low frequency earthquakes 59 
(LFEs) and tectonic tremors are observed in frequency ranges of 2-8 Hz (e.g., Obara, 2002). 60 
Tremors can be considered superpositions of small LFEs (e.g., Shelly et al., 2007).  Very low 61 
frequency earthquakes (VLFEs) are observed in the lower frequency band (0.02–0.05 Hz) (e.g., 62 
Ghosh et al., 2015; Obara & Ito, 2005). When seismic slow earthquake swarms occur 63 
simultaneously during SSEs, they are called episodic tremor and slip (ETS; Hirose & Obara, 64 
2006; Rogers & Dragert, 2003). Small swarms of tremors and VLFEs without obvious geodetic 65 
signals have often been observed around the world. Such small swarms can be considered 66 
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proxies of SSEs that have Mw smaller than the detectable limits of geodetic observations. Thus, 67 
using dense onshore seismic networks, the characteristics of the swarms of deep LFEs and 68 
tremors, which occur at deeper extensions of megathrust zones, have been investigated (e.g., 69 
Aiken & Obara, 2021; Daiku et al., 2018; Frank & Brodsky, 2019; Passarelli et al., 2021). 70 
Empirical relationships between the geodetic moments of SSEs and seismic moments (or 71 
energies) of swarms have been proposed for the monitoring of slips on plate boundaries.  72 

Slow earthquakes occur at shallower extensions of megathrust zones in the offshore 73 
regions of the Nankai subduction zone (Figure 1). Offshore observations revealed that 74 
spatiotemporal correlation of various-type shallow slow earthquake phenomena (e.g., Araki et 75 
al., 2017; Nakano et al., 2018; Yokota & Ishikawa, 2020). Because very low-frequency surface 76 
waves from shallow VLFEs effectively propagate even in onshore regions and the offshore 77 
observations are still limited, long-term activities of shallow VLFEs, especially in Nankai, have 78 
been investigated from onshore broadband records (e.g., Baba et al., 2020; Takemura, 79 
Matsuzawa, et al., 2019). From comparisons between their long-term catalogs and tectonic 80 
environments, shallow VLFEs tend to be effectively activated by mechanical weakening due to 81 
pore fluid pressure in the areas surrounding strongly locked zones.  82 

To obtain more detailed characteristics of shallow VLFEs, Takemura et al. (2022) 83 
conducted template matching and relocation for shallow VLFEs and evaluated their moment rate 84 
functions southeast of the Kii Peninsula, Japan (Regions A and B in Figure 1). Due to their 85 
techniques, estimations of epicenter locations and moment rate functions were improved from 86 
the previous catalogs (Baba et al., 2020; Takemura, Matsuzawa, et al., 2019). From the spatial 87 
distributions of the cumulative moments of shallow VLFEs, they confirmed a spatial relationship 88 
between the cumulative moment of shallow VLFE and the paleo-Zenisu ridge, which subducted 89 
southeast off the Kii Peninsula. In this study, we extend our previous work (Takemura et al., 90 
2022) to off the Cape Muroto and Kii Channel (Region C in Figure 1) to reveal along-strike 91 
variations in shallow VLFE activity along the Nankai Trough. Then, we investigate the source 92 
characteristics of shallow VLFE swarms, which are candidates for shallow SSEs, using our new 93 
comprehensive moment-rate-function catalog of shallow VLFEs along the Nankai Trough. We 94 
compare the cumulative moments of shallow VLFE swarms with the geodetic moments of the 95 
corresponding shallow SSEs to discuss slip monitoring on the shallow plate boundary.  96 

 97 

2 Data and Methods 98 

We used broadband records from full-range seismograph network stations (F-net; Aoi et 99 
al., 2020) that are operated by the National Research Institute for Earth Science and Disaster 100 
Resilience (NIED), Japan. To avoid microseismic signals, we used a zero-phase Butterworth 101 
filter with frequencies of 0.02–0.05 Hz. The analyzed period in this study ranged from April 102 
2004 to March 2021. The detection and relocation processes of shallow VLFEs were similar to 103 
those in Takemura, Noda, et al. (2019) (see Text S1 and Figure S1 of Takemura et al., 2022). We 104 
conducted template matching analysis using template shallow VLFEs (blue focal spheres in 105 
Figure 1). We divided the study area into three regions: (A) southeast of the Kii Peninsula, (B) 106 
south of the Kii Peninsula, and (C) off the Cape Muroto and Kii Channel (dashed rectangles in 107 
Figure 1).  108 
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After detection and relocation (gray circles in Figure 1), we estimated the moment rate 109 
functions of the shallow VLFEs in Region C, which were constructed using a series of 6-s 110 
Küpper wavelets. The weights of each Küpper pulse were estimated using a Monte-Carlo-based 111 
simulated annealing method (Takemura et al., 2022). In our previous work (Takemura et al., 112 
2022), we already estimated moment rate functions of shallow VLFEs in Regions A and B.  The 113 
synthetic waveforms from sources with a single 6-s Küpper pulse were evaluated by reciprocal 114 
calculations via OpenSWPC (Maeda et al., 2017) using the regional three-dimensional velocity 115 
structure model (Koketsu et al., 2012; Takemura, Yabe, et al., 2020; Tonegawa et al., 2017). 116 
Other technical details are provided in Text S1. An example of the estimated moment rate 117 
function of the shallow VLFEs in Region C is illustrated in Figure S1. The fitness between the 118 
observed and synthetic waveforms improved compared to those from the previous catalog 119 
(Takemura, Matsuzawa, et al., 2019). We also compared the estimated moment rate function 120 
with the velocity waveforms of the tremor band (2–8 Hz) at N.KMTF (Figure S2) and several 121 
Hi-net stations (Figure S3). The envelope shapes of tremors typically correlate with the moment 122 
rate functions of VLFEs (e.g., Ide et al., 2008; Yabe et al., 2019). Although high-frequency 123 
seismograms can be complicated due to small-scale heterogeneities and subducting oceanic 124 
plates (e.g., Furumura & Singh, 2002; Takemura et al., 2017), tremor envelopes also have multi-125 
peak packets. This supports the longer-duration and multi-peak moment rate functions of a 126 
shallow VLFE. The shallow VLFEs with moment rates of approximately 5.0×1012 Nm/s is the 127 
detectable lower limits (Figure 5b of Takemura et al., 2022). 128 

According to a comparison of size distributions between Takemura et al. (2022) and 129 
Nakano et al. (2019), our catalog can stably include shallow VLFEs with Mw ≥ 3.7. 130 
Spatiotemporal distributions of shallow VLFE activity are illustrated in Figure 2. The cumulative 131 
moment of shallow VLFEs at each region or grid was calculated by the sum of seismic moments 132 
of shallow VLFEs with variance reductions (VRs) ≥ 30 % at a certain region or grid. Our new 133 
catalog could catch larger cumulative moment releases than Takemura, Matsuzawa, et al. (2019), 134 
due to template matching and our estimation method of moment rate function, but obtained 135 
spatial variations are roughly similar as in previous studies (Takemura, Matsuzawa, et al., 2019). 136 
The relationship between shallow VLFEs and tectonic environments, such as fluid and 137 
seamounts, have also been discussed in other previous studies (e.g., Sun et al., 2020; Takemura 138 
et al., 2022; Takemura, Matsuzawa, et al., 2019; Toh et al., 2020; Tonegawa et al., 2017). Then, 139 
we focus our attention on characteristics of shallow VLFE swarms. After estimating the moment 140 
rate function for shallow VLFEs in region C, we combined this catalog with our previous catalog 141 
(Takemura et al., 2022; Regions A and B). From new catalog, we detected the shallow VLFE 142 
swarms in each region based on the criteria proposed by Kurihara & Obara (2021). First, we 143 
evaluated the expected inter-event times in each region by dividing the analysis period (17 y) by 144 
the total number of shallow VLFEs in each region. In this study, shallow VLFE swarms were 145 
defined as more than ten consequent shallow VLFEs with inter-event times shorter than the 146 
expected inter-event time in each region. Examples of shallow VLFE swarms are presented in 147 
Figure 2. The shallow VLFE episode from December 2020 was constructed by four shallow 148 
VLFE swarms in regions A and B.  149 

After swarm detection, we evaluated the cumulative moment, swarm duration, activity 150 
areas, and along-strike spreading distance of each shallow VLFE swarm. The swarm durations 151 
were calculated by the difference between the first and last events in each swarm. The swarm 152 
duration of A-14 is illustrated in Figure 3a. The activity areas and along-strike spreading 153 
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distances were calculated using the convex hull in the Python module (red enclosed area in 154 
Figure 2b). To evaluate the cumulative moments and activity areas of the swarms, we used the 155 
shallow VLFEs with VRs equal to or greater than 30%. The signals of shallow VLFEs with VRs 156 
< 30 % tend to be weak compared to the noise signals. It should also be noted that because the 157 
along-dip locations of shallow VLFEs have relatively large uncertainties due to station 158 
distributions (see Figures 1b and 1d of Takemura, Noda, et al., 2019, and Figure S1 of Takemura 159 
et al., 2022), their swarm areas are expected to be overestimated. The epicenter distributions in 160 
the along-dip direction seem to be roughly two times larger than those estimated using ocean 161 
bottom seismometers (Nakano et al., 2018). 162 

 163 
  164 
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 165 

Figure 1. Map of the Nankai region. Blue focal spheres are the template shallow VLFEs, which 166 
are well-constrained centroid moment tensor solutions derived from Takemura, Matsuzawa, et al. 167 
(2019). Gray circles are the epicenters of the detected shallow VLFEs. Shallow VLFEs in 168 
regions A and B are from Takemura et al. (2022). Shallow VLFEs in region C are from this 169 
study. Triangles denote the F-net stations. Stations with solid black and blue triangles were used 170 
for template matching and relocation. Stations represented by solid gray triangles were not used 171 
in the analysis. Moment rate function estimates for the detected VLFEs were derived from the 172 
data of the solid blue triangles. The black rectangle represents the horizontal calculation region 173 
for Green’s functions. Background color in the map represents the shear stress change rate due to 174 
subduction of the Philippine Sea Plate (Noda et al., 2018). The gray dashed line represents the 175 
deformation front (Nankai Trough).  176 

 177 
  178 
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 179 

Figure 2. Spatiotemporal variations of 17 y of shallow VLFE data along the Nankai Trough. (a) 180 
Temporal variations of the cumulative moments of shallow VLFEs in each region. Blue solid, 181 
purple dotted, and red bold lines are cumulative moments of shallow VLFEs in regions A, B, and 182 
C, respectively. (b) Temporal variations of the along-strike shallow VLFE activity. The colors of 183 
each circle in (b) represent the moment rates of individual shallow VLFEs. Gray circles represent 184 
shallow VLFEs with VRs < 30%. (c) Spatial variation of cumulative moments from 17 y of 185 
shallow VLFE data. Spatial smoothing of the cumulative number and moments of shallow 186 
VLFEs were conducted within the region of 0.05° × 0.05° on the map via the gridding algorithm 187 
provided by Generic Mapping Tools (Wessel et al., 2013). The shaded areas represent the 188 
subducted seamounts around this region inferred from dense seismic surveys (Kodaira et al., 189 
2000; Park et al., 2004). 190 

 191 
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 192 

Figure 3. An example of shallow VLFE swarm detection. An example episode occurred in 193 
regions A and B from 6 December 2020 to 14 January 2021 (JST). Gray circles represent 194 
shallow VLFEs with VRs < 30%. (a) Temporal variations of shallow VLFE locations along-195 
strike (X-X’) and along-dip (Y-Y’). Colors represent swarm indices. (b) Map view of the shallow 196 
VLFE swarms from 6 December 2020 to 14 January 2021. The red enclosed area is the convex-197 
hull of the swarm A-14. The intersection point between X-X’ and Y-Y’ in (b) represents X = 0 198 
km and Y = 0 km in (a). 199 

 200 

 201 
  202 
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3 Results 203 

We detected 16, 4, and 9 shallow VLFE swarms in regions A, B, and C, respectively 204 
(Table S1, Figure 4). The catalog of shallow VLFE including swarm index can be referred in 205 
Data Set S1. We discarded the A-01 swarm that started on September 6, 2004 (Figure S4) since 206 
this swarm might be triggered by the Mw 7.4 intraslab earthquake and aftershocks in region A 207 
(light blue square in Figure 4). Figure 4a shows the relationship between the cumulative 208 
moments and areas of the shallow VLFE swarms. Although along-dip locations of the relocated 209 
shallow VLFEs had relatively large uncertainties due to station distributions, the rupture area A 210 
approximately follows a scaling law similar to regular earthquakes and deep SSEs (Mo ∝ A3/2; 211 
Gao et al., 2012; Kanamori & Brodsky, 2004). A similar scaling law between the cumulative 212 
moments and areas irrespective of the regions indicates that stress drops of the shallow VLFE 213 
swarms should be similar in all regions. Regional differences were observed in the relationship 214 
between the cumulative moments and durations of the shallow VLFE swarms. The durations of 215 
the shallow VLFE swarms in region C were almost one order larger than those in region A. It 216 
was recently reported that LFEs, and LFE clusters likely follow Mo ∝ t3 rather than Mo ∝ 217 
t (e.g., Aiken & Obara, 2021; Supino et al., 2020). The durations of the shallow VLFE swarms 218 
in region A roughly followed Mo ∝ t3, rather than Mo ∝ t. The Mo ∝ t is a typical scaling law 219 
of slow earthquake families (Ide et al., 2007). Such studies were difficult in regions B and C 220 
because of the insufficient number of shallow VLFE swarms.  221 

Longer swarm durations in region C also indicate its slower spreading. Figure 4c shows 222 
the relationship between the cumulative moments and apparent spreading speeds, calculated by 223 
dividing the along-strike distances by each swarm duration. These speeds can be considered as 224 
the average along-strike rupture speeds of possible shallow SSEs. The apparent spreading speeds 225 
in region A range from 5 to 10 km/day, corresponding to the typical migration speeds of slow 226 
earthquakes (e.g., Houston et al., 2011;  Obara, 2010). Several rapid (20–30 km/day, like A-15 in 227 
Figure 2) spreading have also been confirmed in this study. Shallow VLFE swarms in region C 228 
exhibit very slow (~1 km/day) spreading or cluster-like occurrences. The apparent spreading 229 
speeds in region B are intermediate between those of regions A and C.  230 

 231 

 232 
  233 
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 234 
Figure 4. Scaling characteristics of shallow VLFE swarms along the Nankai Trough. Blue 235 
circles, purple triangles, and red diamonds are the resultant values in regions A, B, and C, 236 
respectively. The light blue square represents the A-01 shallow VLFE swarm that started on 237 
September 6, 2004, which can be considered as a triggered VLFE swarm due to the Mw 7.4 238 
intraslab earthquake. Cumulative moments versus (a) swarm activity areas, (b) swarm durations, 239 
and (c) apparent spreading speeds. The apparent spreading speed was evaluated by dividing the 240 
along-strike distance by the duration of each shallow VLFE swarm. Along-strike directions were 241 
239º in regions A and B, and 245º in region C.  242 

 243 
  244 
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4. Discussion 245 

Spatiotemporal correlations between seismic and geodetic slow earthquakes have been 246 
found in deep slow earthquakes (e.g., Bartlow et al., 2011; Ito et al., 2007). During shallow SSE 247 
in April 2016, temporal increment in pore-fluid pressure at borehole observatory southeast off 248 
the Kii Peninsula well correlated temporal change in cumulative moments of corresponding 249 
shallow VLFEs (Nakano et al., 2018). Thus, the source characteristics of the shallow VLFE 250 
swarms can correlate with those of the background shallow SSEs. According to the relationship 251 
between cumulative moments and areas of shallow VLFE swarms (Figure 4a), the stress drops of 252 
shallow SSEs are expected to be similar irrespective of regions. However, the rupture velocities 253 
of shallow SSEs are different in the three regions (Figures 4b,c). This difference might be related 254 
to differences in the faulting conditions of each region (e.g., material properties). Pore fluid 255 
pressure may also be important. Laboratory experiments show that a small change in the ratio 256 
between the average fluid pressure and the average normal stress on the fault can induce a large 257 
change in rupture velocity (Passelègue et al., 2020). Tonegawa et al. (2017, 2022) suggested that 258 
pore fluid pressure around the plate boundary in region C is expected to be higher than that in 259 
region A. Observed differences in the migration velocity may also be caused by such fluid 260 
distribution. 261 

To obtain the broadband characteristics of shallow slow earthquakes along the Nankai 262 
Trough, we compared the cumulative moments of shallow VLFE swarms with those of 263 
corresponding shallow SSEs (Table S2). The cumulative moments of shallow VLFEs were 264 
approximately 2–18 % of those of the corresponding shallow SSEs. In this comparison, we also 265 
discarded shallow VLFEs with VRs < 30 %. We note that the effects of shallow VLFEs with 266 
VRs < 30 % on cumulative moment evaluation are limited. In contrast, the cumulative moment 267 
of deep VLFEs was only 0.1% of the corresponding deep SSEs (e.g., Ito et al., 2009). Passarelli 268 
et al. (2021) investigated the seismic productivities of slow earthquakes that were calculated by 269 
dividing the cumulative seismic moments of tremors (or earthquake swarms) by the geodetic 270 
moments of the corresponding SSEs. It was observed that seismic productivity decreases with 271 
increasing depth (Figures 2 and 4 in Passarelli et al., 2021). Daiku et al. (2018) demonstrated the 272 
relationship between the seismic productivities of deep ETSs and thermal structures at depths of 273 
30–40 km in the Nankai Trough. Thus, we think that differences in seismic productivities 274 
between the shallow and deep VLFE swarms in the Nankai Trough may be correlated with depth 275 
differences in temperature, which control the frictional and rheological properties of the faults.  276 

A smaller number of shallow SSEs were reported (see Table S2) compared with the deep 277 
SSEs (see http://www-solid.eps.s.u-tokyo.ac.jp/~sloweq/; Kano et al., 2018). More shallow SSE 278 
fault models will allow us to analyze the quantitative relationship between them and VLFEs. In 279 
the future, the statistical characteristics of seismic productivity of shallow slow earthquakes in 280 
each region shall be obtained. Consequently, we will quantitatively monitor slips on the shallow 281 
plate boundary from seismic slow earthquakes (LFE, tremor, and VLFE). 282 
 283 
  284 
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5 Conclusions 285 

Using continuous broadband records around the Nankai region, Japan, we revealed the 286 
along-strike variations in shallow VLFE activity and source characteristics of shallow VLFE 287 
swarms. Shallow VLFEs actively occur off the Cape Muroto, Kii Channel, and southeast off the 288 
Kii Peninsula (regions A and C). These spatial variations of cumulative moments from shallow 289 
VLFEs were updated and well agreed with the relationships with tectonic environments in 290 
previous studies. Heterogeneous stress and structural properties due to the subducted seamounts 291 
promote shallow slow earthquakes along the Nankai Trough. 292 

We investigated the shallow VLFE swarms in each region, which could be candidates for 293 
shallow SSEs. We conclude that the cumulative moments and activity areas of shallow VLFE 294 
swarms follow a similar scaling law irrespective of region, indicated by similar stress drop 295 
values. However, relationships between the cumulative moments and durations of the shallow 296 
VLFE swarms vary in each region. The apparent spreading speeds are also variable 297 
characteristics. These differences can be explained by regional differences in the faulting 298 
conditions of the shallow slow earthquakes, such as material or hydrological properties.  299 
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