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Text S1: Effect of the number of landmarks.

To explore the effectiveness of the inclusion of radar tie points, we performed a
sensitivity analysis of the results to the number of included landmarks.
In Figure S1 we report the formal uncertainty improvement factor as a function of the number
of observed landmark. Not surprisingly, the improvement factor P depends on the number of
landmarks n as:

1
P(n) ~n2

A consequence of the assumption that the measurements are statistically independent. The
results that we report can be easily scaled to an arbitrary higher number of landmarks.

The increase in the accuracy of the rotational parameters, MOIF and k; shows that, while the
bulk of the information matrix comes from radio tracking data, tie points, being a largely
independent data set, increase the overall information content by a quite significant amount.
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Figure S1 Tie points improvement factor as a function of the number of observed landmarks
for the physical quantities object of our analysis

Text S2: Thermal tides modeling.

In the dynamical model used in our simulations we included the effect of atmospheric thermal
tides. As shown by Bills et al., (2020) the mass transport induced by solar heating of the
atmosphere is not a negligible factor for high precision radioscience experiments at Venus. For
a realistic assessment of the attainable accuracies of VERITAS, we modeled the time-variable
gravity field induced by solar heating-driven pressure variations of the atmosphere.



The spherical harmonics expansion of the total (static plus atmosphere) gravity field can be
written as a function of time ¢ as:

Cim (t) = Cigyy + ACim (1) (52.1)

Cym is the total C coefficient of degree [ and order m of the gravity field, Cj,, is the static
coefficient and ACy,, (t) is the correction due to the time variable mass transport (the same
formulation applies for S;,,, coefficients, here omitted for brevity).

To determine the time variable atmospheric contribution, we employed the model developed
by Garate-Lopez and Lebonnois (2018) for retrieving surface pressure variations induced by
solar heating and then converted these perturbations in the associated gravity field coefficient
with a technique originally developed for Earth (Petrov, 2004) and applied also on Mars
(Genova et al., 2016)). This procedure produces the time series of spherical harmonics
expansions of the atmospheric gravity field. The gravity field perturbation induced by solar
heating is a periodic signal of fundamental frequency f;, equal to the main forcing effect (i.e.
Venus solar day ~116 days). We isolated the contribution of the fundamental frequency and
its 3 first harmonics via a Fourier transform. Thus, we can expand equation (52.1) as:

Com(6) = Cin + ) ACE(©)
n

ACp, = AZ,, cosrfyt) + BE, sin(2rf,t)

Where f,, = nf, withn = 1,2,3,4 and 4, B are coefficients derived from the Fourier analysis
specific for each coefficient, degree and order.

In our simulations we assessed the necessity of including these effects in the dynamical model
of VERITAS as its extremely precise tracking system is sensitive to the main components of the
thermal tides perturbation. In particular, we have assessed that if thermal tides are not
accounted for, significant biases might arise in the gravity field and rotational state solution, in
particular affecting the Love number k,. The most recent works about Venus gravity field
accounted for the atmospheric contribution by forward modelling its effect (Goossens et al.,
2017, Goossens et al., 2018). We have chosen to adopt a conservative approach and account
for the intrinsic uncertainty of the atmospheric model. We have chosen to model the thermal
tide field up to the degree and order that guarantees that the higher degrees produce no
residual signal in the Doppler residuals (i.e. degree and order 18 for f;, 13 for f,, 7 for f; and 10
for f,) and considered the uncertainty associated to the correction coefficients

Aglm,Aglm, Bglm, Bsflm for the frequencies f; through f,.

In our simulation we evaluated the effect on the solution of the assumed apriori knowledge of
the atmospheric model, without delving into a detailed analysis of atmospheric dynamics. In
particular, we explored three cases by setting different apriori uncertainties on the thermal
tides parameters. We considered an accurate model (model uncertainty equal to 10%), a
medium-accuracy model (50% accuracy) and a coarse-accuracy model (100% accuracy). In
table S1 we report the results relative to each of the three assumptions. It is important to note
how the results, when combining tie points radar observation, become significantly less
sensitive to the accuracy of the model, for all the parameters except the tidal response which,
not surprisingly, is significantly sensitive to the atmospheric tides.



Table S1 Results comparison (In terms of formal uncertainties, 3a) for different levels of apriori
knowledge of the atmospheric thermal tides model parameters

10% 50% 100%
Parameter Earth Doppler Tie Points Earth Doppler Tie Points Earth Doppler Tie Points
Only Only Only

ag [arcsec] 2.3 0.36 2.9 0.39 3.1 0.39

dplarcsec] 1.3 0.21 1.6 0.21 1.8 0.21
Tsiq [day] 1.1 x107° 1.5 x 107 1.3 x107° 1.6 x 1075 1.4 x 107° 1.6 x 107°

€ [arcsec] 1.0 0.16 1.3 0.17 1.4 0.17
= 3.2x 1072 51x 1073 3.9 x 1072 54 %1073 43 %1072 5.4 x 1073

[deg/century]

MOIF 8.6 x 1073 1.4 x 1073 1.1 x 1072 1.4 x 1073 1.2 X 1072 1.4 x 1073
k, 9.6 x107* 39x107* 1.4 %1073 78x107* 1.8x 1073 1.3x1073
6k2 [deg] 8.6 x 1072 4.0 x 1072 1.6 x 1071 1.3x 1071 2.5x 1071 2.2%x 107t

Text S3. Uncertainty on Venus’ MOIF from pole precession measurements

In this section we will obtain the equations to express the motion of the pole as a function of
the equatorial coordinates and their time derivatives. Finally, we will show the relation arising
between these latter quantities after neglecting the nutations. This relation will be used in the
simulations as a constraint to improve the measurement of the precession rate and the MOIF.
The Venus ecliptic (V5) and the (usual) Earth ecliptic (Eg) reference frames are represented by
the unit vectors {uy Uy, 2} and {UeyUgy,Ue;} respectively. The equatorial frame is represented
by {ueq,xlueq,y,ueq,z}-

We will use the following coordinates:

e «a(t), 5(t) areright ascension and declination (equatorial J2000 coordinates);
o A(t), B(t) are ecliptic coordinates referred to the Ej reference frame at J2000.0;
o A,(t), By(t) are ecliptic coordinates referred to the V reference frame at J2000.0
We define:
e the direction (as a unit vector) Py, of the Venus' pole;
e the direction (as a unit vector) Py, of the normal to the Venus orbital plane (hereafter
the "orbital pole").




All coordinates above will be referred to the pole position (in particular, By, (t) is the nutation in
obliquity and A, (t) is the sum of the precession and the nutation in longitude.
The direction Py in the three reference frames is:

Py eq = cos[6(t)]cos[a(t)]ueqx + cos[6(t)]sin[a(t)uq, + sin[5(t)|ueg, . (S3.1)
Py g, = cos[B(t)]cos[A(t)]ug x + cos[B(t)]sin[A()]ug, + sin[B(t)]ug, (S3.2)
P,y = cos[By(t)]cos[Ay (O)]Juy » + cos[By (t)]sin[Ay (D)]uy , + sin[py(O)]uy , (53.3)

while the orbital pole direction in the E frame is
Pov gy = SinipsinfdoUg x — sinigcosoug,y + cosigug,
(S3.4)

where iy, = 3.39466189° (inclination) and 2, = 76.67992019° (longitude of the ascending
node), at J2000.0 (Simon et al., 1994).

The transformations of P, from equatorial to E (and vice versa) coordinates are

PV.EE = R_1PV,eq and PV,eq = RPV,EE (S3.5)
where
1 0 0
R=10 cose -—sine (53.6)
0 sine cose

and € = 23.43662deg is the Earth's obliquity.

Eq. 3.5 corresponds to

cos ff cos A = cos x cos & (S3.7)
cos fsinA = cos € cos § sin « + sin € sin § (53.8)
sinf = cose€ sind — sin € cos § sin x (S3.9)

At J2000.0 (t = 0) the equatorial coordinates of the pole of Venus are a, = a(0) 272.76° and
6y = 6(0) = 67.16° (Archinal et al., 2009).

By solving Equations 3.7-3.9, we obtain the pole position at the same epoch in E; coordinates:

Ao = 30.079869° ; B, 88.762332° (53.10)

The wy », uy ,, uy , directions of the Vg, reference frame are:

e The z-axis points towards the pole uy, , = Py;



e The x-axis is the direction of the vernal equinox of Venus: the vernal equinox of Venus
coincides with the coordinates of the ascending node of the orbit of Venus at J2000.0
with respect to the equator of Venus at the same date, so uy, , = Pyy X Py

From Equations 3.2 and 3.4 we obtain

uV'x = uV,xluE,x + uV,xZuE,y + uV'x3uE'Z (53.1 1)

Where

u _ cos Bg cosigsinAg+sin Sy siniy cos g (53.12)
Vixy J1=[sin B, cos iy — cos By sin iy cos(Ag—2¢)]? ’

u _ sin B¢ sinig sin 2y—cos By cosigcos g (53 13)
VX2 J1=[sin By cos iy — cos B sin iy cos(Ag—20)]? )

u __ cos g sinig cos(1g—2¢) (S3.14)
vx3 J1=[sin By cos io— cos B sin iy cos(Ag—2¢)]? )

and

uV’Z = uVrzluE,x + uV,ZZuE'y + uV'Z3uErZ (53.15)

with

Upz1 = Sinig sinQg; uy ,, = —sinip cos Qg ;uy ,, = cosiy (S3.16)

and finally, uy , = uy , X uy .

We define M (at J2000.0) as
Uyx, Ury, Urz 0.531509 —0.84509 0.0576204

M=|UWyx, Uy, Urgz |= 0.846837 0.531678 —0.0136422 (S3.17)
Uyxs UWry; Uvzg —0.0.191066 0.0560461  0.998245

The a(t) and §(t) coordinates as functions of B, (t), A, are given by the following relations

PV,eq (t) = RMPV,VE (t) PV,VE(t) = M_lR_]'PV'eq (t) (53.18)

The pole motion around the orbit pole is (t=0 corresponds to J2000.0)

Ay () = 2,(0) + 02t + 64, (L) (S3.19)
By (&) = By (0) + 6By (t) (53.20)

where 6y, §4, are the nutations in obliquity and in longitude, respectively and 2 is the
precession rate of the Venus pole. The precession rate is the sum of the solar precession
(~44.74"/yr) and the planetary precession (-10"/yr, Simon et al 1994). By solving for By in Eq.
(S3.18b) we get



By (0) = 87.3638°% 4,(0) = 90° (53.21)
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Figure S2. Left: longitude vs. obliquity nutations and precession about the orbit pole (time span: 4
Venus cycles, 972d). The displacement in longitude is about 45"/yr. However, the overall
displacement in the sky is very small. Right: the same path but in equatorial coordinates over the
same interval of time (red: precession only, black: precession and nutations).

By deriving Eq. (18b) with respect to time and neglecting the nutations, we get

a(t) B sin a(t) tan 6(t) (cos € siniycos Qg + sin€ cosiy)

5(t) ~ cosa (t)(cos € sin ipcos Qg + sine€ cosiy) + sin i sin Qg sin a(t)

cos € cos ig—sin ip(sin Qg cosx(t) tan 6 (t)+sin € cos Q)

(53.22)

cos a(t)(cos esinigcos Qp+sine cosig)+sin iy sin Qg sin a(t)

This quantity depends on the geometry of the orbit (io, Qo) and on the pole position but it is

independent of Q).
The link between 2% and Z—f is a consequence of the circular path of the pole. Fort = 0 (i.e. at

dt
J2000.0) we obtain

@(0) = 1.776945(0) (S3.23)

From Eq (18a) we get

CoS § cos @ = Uy x, €cos By cos Ay + Uy, €os Py sindy + uy 5, sinfy
(S3.24)
coséd sina = cose (uV,xz Cos Py cos Ay + Uy, €OS Py sin Ay + uy 5, sin [EV) —
sine (uv_x3 cos By cos Ay + uy ., cos By sindy + uy ,, sin ﬁv) (S3.25)



sin§ = cos Sy cos Ay, (uV,XZ sin€ + uy x, cos 6) + cos By sin Ay, (uV,yz sin€ + uy,, cos 6) +
sin By (uy 4, sine + uy ,, cose)
(S3.26)

The functions a(t), 6(t), obtained by solving Eqgs. $3.24-53.26, can be expanded to first order in
Taylor series around the pole position. We get (units are radians)

a(t) ~ —1.52263 + 2.114238 B, (t) — 0.0672264(5A, (t) + 0t) (53.27)
5(t) ~ 1.17216 — 0.5686725 B, () — 0.0378326(54, (¢) + 2¢) (S3.28)

Finally, we obtain the components of the initial velocity of the pole. The evolution of the Venus'
orbital elements due to planetary effects are already included in our setup, so here we will
consider the solar precession rate only.

Moreover, we neglect the nutations since, to our purposes, they are fast and zero-mean
oscillations. Therefore, neglecting the nutations, the relations between &, § and 2:

@(0) ~ —0.06722640 = —4.62097 x 10~13[rad/s] (S3.29)
8(0) ~ —0.03783260 = —2.60051 x 10~ 3[rad/s] (S3.30)

Finally, the ratio a (0)/6 (0) (Eq. 22) can be used as an apriori constraint between the two

quantities.

Text S4. Tie points simulation

The match covariance matrix is given by
Meoy = kcH™ (203H +35 A0l ) H? (54.1)

Where k. is an empirical constant inferred from Magellan match statistics, I is the identity
matrix, H is the hessian of the match correlation function c(x, y). For a given image offset
(x,y) the hessian is given by

e o
0x%2  9xdy
= 4.2
H=|5e oo (54.2)
dxdy  0y?

A,, is the area in pixel of the marching window, a,, is a measure of the backscatterer difference
between the two images in the matching window

0n = 5, Zaewli (D) — I, = LG = 6) + HB)° (543)

where [, (X) and I, (X) are the pixel intensities for the two images at position X, ¢ is the offset

vector between the images, and I; and I,(3) are mean intensities in the match window. We
approximate the correlation function for a good match by the product of sinc functions given
by:



c(x,y) = sinc [2:;] sinc[ d2d ] (54.4)

O‘my

where a,, and Op,, are the matching accuracy in pixel in the x and y directions. Differentiating
Equation S4.4 twice and evaluating at the peak yields

1 m?
_ E% 0
H = 1 o2 (S4.5)
0 12 a,zny

where a,, and O, dre given by

1 g
qu = 3 kmq - 110X10 1 (S4.6)
G1ox1oTL(1+m)

where q = x,y, ky, are empirical parameters based on Magellan match statistics, SNR is the
signal to noise ratio, N; are the number of looks (number of single look pixel intensities averaged
together in a 30 m multi-looked pixel to reduce thermal and speckle noise, G19x10s 04, ,,2r€
the mean and standard deviation of the backscatter in a 10 by 10 pixel window centered at the
match point obtained from Magellan imagery and where

SNR = Zoao (54.6)
NESO

where NESOis the radar noise equivalent sigma naught (backscatter value where the SNR equals
to 1). To obtain an approximate value for ¢ we use the

op = [\/7510x10< o )] (54.7)

1 1
VNL SNR 5 61010

where k;is an empirical value derived from Magellan match statistics and &,, is the mean X-band
backscatter value for Venus, roughly-10.5 dB.



