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Introduction 17 

Sections S.1 and S.2 provide detailed mathematical steps involved in the derivation of the key 18 

results pertaining to the stream concentration power spectrum (Equations (11-12) and (15)).  19 

Section S.2 includes a generalization of Equation (15) for the case of a gamma advective travel 20 

time distribution.  Section S.3 provides a review of Laplace transforms (from previous literature), 21 

which are involved in the representation of the Green’s function  ;a ag T t T  needed for the 22 

evaluation of the solute TTD (Equation (18)) for finite matrix widths.  Although the integral 23 

(Equation (18)) for the solute TTD can be evaluated exactly only by numerical integration, 24 

analytical approximations can be derived for infinite matrix width in three different 25 

dimensionless time regimes – these analytical approximations are presented in Section S.4, and 26 

provide additional insights into the power-law behavior of solute TTDs.  Calculations of the 27 

stream concentration power spectrum for Lower Hafren, based on alternative parameter sets and 28 

an alternative precipitation concentration spectrum are presented in Section S.5. 29 

  30 
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S.1 Detailed Derivation of the Fourier Transform Solution for fC (Equations 11-12 in the 31 

manuscript) 32 

The transport equation in the fracture is given by: 33 
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 (S1) (Equation 5 in the manuscript) 34 

The inflow boundary condition at the entrance to the streamline ( 0a  ) is: 35 

( 0, ; ) ( )
af a T iC t I C t     (S2) (Equation 6 in the manuscript) 36 

The right-hand side of (S1) may be evaluated by considering the diffusion equation in the rock 37 

matrix: 38 
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  (S3) (Equation 2 in the manuscript) 39 

Boundary conditions for (S3) are: 40 
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(S4) (Equation 3 in the manuscript, 41 

with a in place of s) 42 

The notation ( ), ( ), ( , ; ) and ( , , ; )
a ai o f a T m a TC C C I C z I          is used for the Fourier transforms 43 

of ( ), ( ), ( , ; ) and ( , , ; )
a ai o f a T m a TC t C t C t I C z t I   respectively, with  denoting the angular 44 

frequency. 45 

The first step is to take the Fourier Transform of the matrix diffusion equation (S3) and boundary 46 

conditions (S4), which yields (S5) and (S6): 47 
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where (1 / )b d mR K    is the retardation factor in the matrix and 1i   .  49 
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        

    (S6) 50 

Equations (S5-S6) are then readily solved to obtain mC in terms of fC : 51 
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The Fourier transform of (S1) is: 53 
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The right hand side of (S8) involves the derivative of mC at the fracture-matrix interface ( 0z  ), 55 

which can be obtained from (S7): 56 
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Using (S9) in (S8) yields the following first-order ordinary differential equation for fC : 58 
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Equation (S10) can be rewritten as: 60 
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the solution for fC  is obtained in compact form as: 63 

 ( , ; ) ( ) exp ( )
af a T i aC T I C k T      (S12) (Equation 12 in manuscript) 64 

S.2 Detailed Derivation of the Power Spectrum of Stream Concentration Variations 
o oC CS  65 

or catchment spectral filter /
o o i iC C C CS S  (Equation 15 in the manuscript) 66 

 67 
The Fourier transform of the stream (outflow) concentration, ( )oC  , can be obtained starting 68 

from Equations (13) and (8) in the manuscript: 69 
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1
( ) exp a

a
a a

T
P T

T T

   
 

 (S14) (Equation 8 in the manuscript) 71 

(S14) is the exponential advective travel time distribution with mean advective travel time aT . 72 

Using (S14), the integral in (S13) evaluates to: 73 
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To proceed further, I start from the denominator: 75 
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To evaluate (S16), first note that 77 
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Now, let 79 
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The right side of (S17) can be rewritten after separating the real and imaginary parts, as: 82 
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We can thus write: 85 
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Finally, /
o o i iC C C CS S is obtained by evaluating the integral in Equation (14) of the manuscript, 87 

 (S19) 88 

 89 

Equation (S19) leads to the power spectrum of stream concentration variations as Equation (15) 90 

in the manuscript. 91 

A simpler form of (S19) can be derived for the simpler special case of B  . For this case, the 92 

boundary condition at z = B in (S4) is replaced with the requirement that mC  remains bounded.  93 

This leads to a simpler expression for mC : 94 

     

 

22

0

3/2 22 2 2 2

1
exp ( )

1

1

1 2 2 2 ( ) 2 2

a a a
a

a a a a

k T P T dT
k T

AM T A M N T AN T T




   



 



    



 
 

7 
 

 iuz
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The simpler form of (S11) for this case is: 96 
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The corresponding simpler form of (S17) is:98 

  2 2
1 1 e e

a m a a m a

RD RD
k T T i T T

b b

 
   

   
          

   
  (S22) 99 

The spectral filter /
o o i iC C C CS S is then obtained as: 100 
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It is readily verified that (S19) reduces to (S23) when B  , in which case , 1M N  . 102 

In Dupuit flow systems with significant water table relief (i.e. significant increase in saturated 103 

thickness H from stream to divide), or in the case of deep-circulating groundwater flow, the 104 

exponential distribution is not a suitable model for the advective travel time distribution.  A 105 

gamma distribution (especially with  < 1), which has two parameters, provides a more flexible 106 

model of the advective travel time distribution in such cases.  Equation (14) in the manuscript 107 

can be employed with any advective travel time distribution.  Below, I present the spectral ratio 108 

/
o o i iC C C CS S  for a gamma advective travel time distribution (rewritten in terms of the mean 109 

advective travel time aT ): 110 
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Using (S24) in Equation (14) of the manuscript, the spectral ratio /
o o i iC C C CS S for a gamma 112 

advective travel time distribution is obtained as: 113 
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 (S25) 114 

Equation (S25) shows that matrix diffusion combined with a gamma distributed advective travel 115 

times across streamlines leads to a richer variety of power-law exponents in stream concentration 116 

spectra.  For  = 1, (S25) reduces to (S19).  For strong matrix diffusion (A>>1), the third term in 117 

the denominator dominates and the spectral ratio behaves as 1/   for a large frequency range, 118 

rather than 1/ as in (S19 or Equation 15 in the manuscript).  For pure advection ( 0)A , the 119 

spectral filter reduces to 2 21/ (1 )  , where /aT  ; which is consistent with that of the 120 

gamma distribution and behaves as 21/  at high frequencies.  In general, when matrix diffusion 121 

is strong, the spectral ratio behaves as 1/  , rather than the 21/  behavior of the 122 

corresponding advective travel time distribution, i.e. the power-law exponent of the advective 123 

travel time power spectrum is halved as a result of matrix diffusion. 124 

S.3 Review of the Laplace Transform Solutions to (S1) - (S4), relevant to the catchment 125 

solute TTD h(t) (Equation 18 in the manuscript) 126 

Laplace transform solutions for transport with matrix diffusion in fractured rock date back to 127 

Grisak and Pickens (1980), Tang et al. (1981) and Maloszewski and Zuber (1985).  For 128 

completeness, I present the specific forms of the Laplace transforms used in the manuscript here.  129 
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I use the following notation to denote a Laplace transform ˆ ( )f s  of a function ( )f t  and the 130 

corresponding inverse transform, where t denotes time and s is the Laplace transform variable: 131 

     1

0

ˆ ˆ( ) ( ) ( ) ,   ( ) ( )stf t s f s e f t dt f s t f t


   L L  132 

The Laplace transform of the fracture concentration at the end of a streamline is defined as: 133 

   ˆ( , ; ) ( , ; )
a af a T f a TC T t I s C T s IL  (S24) 134 

The corresponding inverse Laplace transform is defined by: 135 

  1 ˆ ( , ; ) ( , ; )
a af a T f a TC T s I t C T t I L   (S25) 136 

For a Dirac Delta input function, i.e.  ( )iC t t , solving (S1) - (S4) using Laplace transforms 137 

yields: 138 
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  (S26) 139 

where /m ea RD b . 140 

The corresponding inverse Laplace transform is: 141 
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L  (S27) 142 

 where ( )aH t T  is the Heaviside function (0 for at T  and 1 for at T ).  Thus, if the Green’s 143 

function (solution for a Dirac delta input) for the coupled equations (S1-S4) is denoted as 144 

 ( ) ;a a aH t T g T t T  , the function  ;a ag T t T  is defined as: 145 

 ;a ag T t T   1 exp 2 tanh a a
e

Rs
a s B T t T

D
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L   (S28) 146 
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 For B  , the tanh term in (S28) becomes 1 and the inverse Laplace transform 147 

   1 exp 2 a aa sT t T  L  is obtained analytically (Maloszewski and Zuber, 1985) to yield: 148 

 
   

2 2

3/2; expa a
a a

aa

aT a T
g T t T

t Tt T

 
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 (S29) (Equation 17 in the manuscript) 149 

For finite B, the inverse Laplace transform can be written in an integral form (Maloszewski and 150 

Zuber, 1985), but is easier to evaluate by numerical inversion of (S28).  I used a numerical 151 

inversion to evaluate  ;a ag T t T  in (18) for cases with finite matrix width.  The MATLAB 152 

function “talbot_inversion” (McClure, 2020) was used for numerical Laplace transform 153 

inversion.  The implementation of the inversion algorithm was verified by computing 154 

   1 exp 2 a aa sT t T  L  numerically and verifying that it matches the analytical form (S29). 155 

S.4. Non-dimensionalization and Approximate Analytical Forms for the solute TTD ( )h t  156 

with Exponential and Gamma Advective Travel Time Distributions ( )aP T  for infinite 157 

matrix widths ( / aB DeT >>1) 158 

For infinite matrix widths, the general expression (18) for h(t) can be non-dimensionalized and 159 

written in terms of dimensionless total  * / at t T and advective  * /a a aT T T travel times as: 160 

  
      
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  (S30) 161 

Note that  *
ah t T  is the dimensionless solute TTD and  *

a aP T T is the dimensionless advective 162 

travel time distribution.  Also note that /m e a aA RD T b a T  , as defined in Equation (16) in 163 

the main manuscript.  For exponential and gamma advective travel time distributions, the 164 

advective travel time distributions are rewritten in dimensionless form below: 165 
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Exponential:    * *expa a aP T T T      (S31) 166 

Gamma:        1* * *expa a a aP T T T T
  



 


  (S32) 167 

Numerical integration of (S30) was performed using the MATLAB function “integral” to obtain 168 

the exact dimensionless solute TTD. 169 

There are three dimensionless time regimes in which simpler approximations to (S30) can be 170 

developed. 171 

VERY EARLY TIME: As noted in the main manuscript, for very early times ( * 1t  ), 172 

   * *
a ah t T P t T  for any form of the advective travel time distribution, because 173 

   ;a a ag T t T t T    at short times ( , 0)at T  .  In other words, the solute TTD approaches 174 

the advective travel time distribution at very early times. The behavior is confirmed in Figure S1.  175 

ANALYTICAL APPROXIMATION FOR * 1/t A : Approximate analytical forms of (S30) can 176 

be obtained after change of variables and asymptotic approximation of the resulting integral for 177 

* 1/t A  (Hyman et al. 2019): 178 
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  (S34) 180 

where (.,.,.)U  is the confluent hypergeometric function of the second kind (Weisstein, 2021), 181 

also known as the confluent hypergeometric Kummer U function.  It should also be noted that 182 

(S33) is essentially a special case of (S34) for = 1, in as much as the exponential distribution is 183 

a special case of the gamma distribution for  = 1. 184 



 
 

12 
 

Figure S1 shows comparisons between the exact  *
ah t T  obtained by numerical integration of 185 

(S30) and analytical approximations (S33) and (S44).  Figure S1 confirms that (S33) and (S34) 186 

are excellent approximations to the numerical integral of (S30) for * 1/t A . 187 

The expressions (S33) and (S34) can be further approximated in intermediate and late time 188 

regimes.   189 

INTERMEDIATE-TIME ( * 2 21/ 4 /A t A   ) POWER LAW REGIME: An intermediate 190 

power-law regime prevails in the dimensionless time range * 2 21/ 4 /A t A    (note that this 191 

dimensionless time range may not exist for small values of A and larger values of .  This 192 

power-law regime is most clearly evident for A = 10 in Figure S1, but also for A = 5 and = 1, 193 

0.7.  From a MacLaurin series expansion of (S34), this power-law regime can be identified as    194 

     
1

1* * 2
/ 2

1
2

ah t T t
A

 







 


   
 

   (S35) 195 

Equation (S35) is not plotted in Figure S1 to keep it from getting too crowded.  Figure S2 shows 196 

a comparison between (S35) and (S30) for different values of  and A, and confirms its validity, 197 

especially for larger values of A and smaller values of .   198 

LATE-TIME ( * 2t A ) BEHAVIOR AND POWER LAW REGIME: It is also evident from 199 

Figure S1 that at dimensionless times *t A ,  *
ah t T  becomes largely insensitive to the 200 

advective travel time distribution (i.e.  and approaches a limiting distribution (controlled by 201 

matrix diffusion, with little dependence on the advective travel time distribution) for a given A.  202 

A late time power law regime is identified for * 2t A , where further asymptotic expansion of 203 



 
 

13 
 

(S33) and (S44) produces the leading behavior shown in (S36) for any advective travel time 204 

distribution, which is also verified in Figures S1 and S2.    205 

  3/2

*

*a

A
h t T

t
    (S36) 206 

However, this limit appears to be of limited practical value because it is only valid at very late 207 

times when the influence of a finite matrix width may already be manifest. 208 

IN SUMMARY: The general analytical approximations (S33) and (S34) are valid for * 1/t A , 209 

and the approximate power law (S35) is valid for  * 2 21/ 4 /A t A   , when the values of A and 210 

 are such that this time regime exists.  For finite matrix widths, the influence of a finite matrix 211 

is not experienced for  * 2 / aet B D T .  Thus, the power law regime (S35) is valid even for 212 

finite matrix widths, in the dimensionless time range  * 2 2 21/ min( / , 4 / )aeA t B D T A   .  213 

This behavior is evident in Figures 2b and 3b in the main manuscript, where the infinite and 214 

finite matrix width cases follow the same solute TTD for a significant time range. At *t A , 215 

 *
ah t T  becomes largely insensitive to the advective travel time distribution (i.e.  and 216 

approaches a limiting distribution that only depends on A.       217 
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 218 
Figure S1.  Dimensionless solute 219 
TTD  *

ah t T versus dimensionless 220 

time ( *t ) for infinite matrix widths 221 
and different values of A, for 222 
gamma distributions with  = 0.7 223 
(green), 1 (blue) and 1.3 (red).  224 
Note that  =1 corresponds to the 225 
exponential distribution.  Dotted 226 
lines: Dimensionless advective 227 

travel time distributions  *
a aP T T , 228 

Solid lines - Exact  *
ah t T  from 229 

numerical integration of (S30), 230 
Dashed lines – Approximations 231 
(S33) and (S34).  The straight line 232 
representing the late-time 233 

asymptote    3/2* */ah t T A t  234 

(S36) is also shown. 235 
 236 
 237 
 238 
 239 
  240 
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Figure S2.  Dimensionless solute 241 
TTD  *

ah t T versus dimensionless 242 

time ( *t ) for infinite matrix widths 243 
and gamma distributions with 244 
different values of .  For each 245 
value of the behavior is shown 246 
for different values of A,  A = 2 247 
(blue), 5 (magenta) and 10 (red).  248 
The dotted black line in each plot 249 
shows the  advective travel time 250 

distributions  *
a aP T T  for the 251 

corresponding     252 
Solid lines - Exact  *

ah t T  from 253 

numerical integration of (S30), 254 
Dashed lines – intermediate-time 255 
power-law approximation from 256 
(S35) 257 
Dotted lines – very late time 258 

asymptote    3/2* */ah t T A t259 

(S36) 260 
 261 
 262 
 263 
 264 
 265 
 266 
 267 
  268 
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S.5 Stream Concentration Power Spectra Obtained with Alternative Parameter Sets for 269 
Lower Hafren 270 
As noted in the main body of the paper, the power spectral ratio /

o o i iC C C CS S depends on two 271 

parameters, the mean advective travel time aT  and the matrix diffusion parameter  A.   The 272 

dimensionless parameter A involves products and ratios of other physical parameters.  I present 273 

calculations of /
o o i iC C C CS S for two additional sets of parameters below.  The rationale for these 274 

additional sets was simply that I used values of aT = 0.5 and 2 times the value in the base case 275 

included in the main manuscript, and refitted other parameters to match the estimated stream 276 

concentration power spectrum in Figure (3a).  The parameter values are shown in Table S.1. 277 

 
aT (years) m  eD (m2/s) b (m) A 

Base Case 0.01 0.15 1.5e-10 5e-4 2.06 

Half aT  0.005 0.1 1.5e-10 2e-4 2.43 

Double aT  0.02 0.05 1.5e-10 5e-4 0.97 

Table S1. Alternative Parameter Combinations 278 

Figure S3 shows the power spectra obtained with parameters in the second and third rows of 279 

Table S1.  The “Half aT ”parameter set produces an acceptable fit and improves the match to 280 

sample spectra at higher frequencies.  The “Double aT ” parameter set produces an acceptable fit 281 

with a larger mismatch compared to the base case at frequencies > 102 year-1.  The non-282 

uniqueness involved in the estimating catchment-scale matrix diffusion parameters is 283 

acknowledged.  However, the fitted parameter values are within acceptable ranges for these 284 

parameters.  Figure S4 shows the power spectra obtained with the base case parameters and the 285 

alternative precipitation concentration power spectrum 0.340.38 / f  (mg/L)2-yr. 286 

 287 
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 288 

(a) 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

(b) 299 

 300 
 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
 313 
 314 
Figure S3. Stream (concentration power spectra calculated using alternative parameter sets 315 
shown in Table S1. (a) Half aT and (b) Double aT , compared to aT in the base case (Figure 3a in 316 

the main body of the paper).  Color schemes are same as in Figure 3a. Black symbols and lines 317 
represent spectral estimates from Kirchner et al. (2013), magenta dashed line is the power 318 
spectrum corresponding to a gamma distribution ( 0.5,  0.4yr   ), blue lines are power 319 
spectra obtained from the matrix diffusion model (solid – infinite matrix, dashed – B = 0.1m, 320 
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dash-dotted – B = 0.05m), the red solid line indicates a spectral slope of -1.4, and the red dotted 321 
line shows the precipitation concentration spectrum. 322 
 323 
 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

Figure S4. Stream concentration power spectra calculated using alternative precipitation 336 
chloride power spectrum 0.34( ) 0.38 /

i iC CS f f .  Compared to Figure 3a, the differences are 337 

minor.  Color schemes are same as in Figure 3a.  Black symbols and lines represent spectral 338 
estimates from Kirchner et al. (2013), magenta dashed line is the power spectrum corresponding 339 
to a gamma distribution ( 0.5,  0.4yr   ), blue lines are power spectra obtained from the 340 
matrix diffusion model (solid – infinite matrix, dashed – B = 0.1m, dash-dotted – B = 0.05m), 341 
the red solid line indicates a spectral slope of -1.4, and the red dotted line indicates the 342 
precipitation concentration spectrum. 343 


