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Key Points: 7 

 Influence of matrix diffusion on concentration power spectra and catchment solute travel 8 

time distributions is quantified theoretically 9 

 Matrix diffusion is shown to produce fractal scaling in stream concentration power 10 

spectra when combined with variable advective travel times long streamlines 11 

 1/frequency spectral filtering identified in stream chloride power spectrum at Lower 12 

Hafren is reproduced by matrix diffusion model  13 

14 



Abstract 15 

Solute travel time distributions (TTDs) in catchments are relevant to both hydrochemical 16 

response and inference of hydrologic mechanisms.  Time and frequency domain methods have 17 

been employed to estimate solute TTDs and associated power spectra.  Stream concentration 18 

power spectra in some catchments exhibit fractal scaling (~1/frequency, or generally, 19 

1/frequency to a power < 2).  Various mechanisms have been proposed previously for fractal 20 

scaling.  In several catchments, a significant fraction of streamflow is derived from groundwater 21 

in shallow fractured bedrock, where matrix diffusion significantly influences solute transport.  I 22 

present frequency and time domain theoretical analyses of solute transport to quantify the 23 

influence of matrix diffusion on solute TTDs in catchment groundwater systems.  The theoretical 24 

concentration power spectra exhibit fractal scaling, and the corresponding TTDs resemble a 25 

gamma distribution.  An application to the Lower Hafren catchment using site-specific 26 

parameters shows that theoretical spectra match previously reported power spectral estimates 27 

derived from concentration measurements. 28 

Plain Language Summary  29 

A significant fraction of rainfall on catchments flows as groundwater before discharging to a 30 

river. Groundwater in catchments is often hosted in shallow fractured bedrock.  In these systems, 31 

solutes dissolved in rainfall are transported relatively rapidly by water flowing in rock fractures.  32 

However, some of the solute diffuses from fractures into the tiny pores of the rock matrix where 33 

water is stagnant.  This phenomenon is referred to as matrix diffusion and leads to retention and 34 

slow long-term release of solutes.  Solute transport and retention in catchments is relevant to 35 

understanding their response to contamination (e.g. by atmospheric deposition, agricultural 36 

chemicals) and inference of flow processes.  This paper develops theoretical equations to 37 



describe the transport and retention of solutes in catchments underlain by fractured bedrock, and 38 

the delivery of solutes to rivers.  These theoretical equations explain interesting features of 39 

observed solute concentration variations in rivers and can be used to model catchment response 40 

to contamination. 41 

1.  Introduction 42 

The transport and retention of solutes in catchments is influenced by both hydrologic and 43 

biogeochemical processes.  Solute travel time distributions (TTDs) provide insights on integrated 44 

behavior of hydrologic and biogeochemical processes within catchments, although the 45 

distinction between the processes and time scales involved in hydrologic/hydraulic versus 46 

hydrochemical response should be emphasized (Maloszewski and Zuber, 1993;  McGuire and 47 

McDonnell, 2006; Fiori and Russo, 2008; Botter et al. 2010; Birkel et al. 2011; Hrachowitz et al. 48 

2013).  There is a large body of research on TTDs in catchments, which has been synthesized in 49 

review papers (e.g. Maloszewski and Zuber, 1993; McGuire and McDonnell, 2006; Hrachowitz 50 

et al. 2016; Sprenger et al. 2019).  Although TTDs were historically associated with steady flow 51 

systems, they have been generalized to unsteady flow using cumulative discharge transformation 52 

(Niemi, 1977; Rodhe et al. 1996), time variable travel/transit time distributions and storage 53 

selection functions (Sayama and McDonnell, 2009; Hrachowitz et al. 2010; Botter et al. 2011; 54 

van der velde et al. 2012; Harman, 2015). 55 

One feature of catchment solute TTDs that has received much interest is that they often exhibit 56 

longer tails than the exponential distribution, a commonly used model for TTDs.  Kirchner et al. 57 

(2000; 2001) analyzed the relationship between stream and precipitation concentration 58 

fluctuations of chloride in catchments at Plynlimon, U.K.  They suggested that a gamma 59 



distribution,     1 /( ) /th t t e      , with scale parameter  = 0.5 (more generally  < 1), 60 

captures short-term responsiveness and long-tailed behavior and is hence a better model for 61 

solute TTDs than the exponential distribution ( = 1).  Correspondingly, stream concentration 62 

power spectra were observed to exhibit 1/frequency behavior (more generally 1/frequency to a 63 

power < 2), which they referred to as “fractal stream chemistry”.  Similar behavior has been 64 

documented at other catchments (Godsey et al. 2010), and for a variety of solutes (Kirchner et al. 65 

2013), although some catchments do exhibit exponential baseflow TTDs (e.g. McGuire et al. 66 

2005). 67 

Various mechanisms have been proposed to explain fractal stream chemistry.  Kirchner (2001) 68 

showed that a model of advection-dispersion along a one-dimensional flowpath with distributed 69 

solute inputs and a very large dispersivity (on the order of the hillslope length, equivalently 70 

Peclet number (Pe) ~1), produces a solute TTD similar to a gamma distribution with  = 0.5.  71 

Lindgren et al. (2004) proposed that for moderate heterogeneity and dispersion, first-order 72 

mobile-immobile exchange can explain fractal scaling.  Both the above models assume uniform 73 

mean flow and neglect nonuniform flow commonly associated with hillslope hydrologic systems.  74 

Cardenas (2007) demonstrated that advection-dispersion in a nonuniform Tothian hillslope 75 

groundwater flow (with significant variation in advective travel times across streamlines) 76 

produces power-law solute TTDs.  Kollett and Maxwell (2008) employed particle-tracking in 77 

simulated flow fields for a real catchment to demonstrate that power-law stream concentration 78 

spectra result even with very small dispersivities (Pe ~104), due to variations in advective travel 79 

time across streamlines.  They showed that transient vadose zone processes influence the stream 80 

concentration spectra at higher frequencies.  Fiori and Russo’s (2008) simulations of transient 81 

flow and solute transport in a hillslope produced TTDs resembling gamma distributions with  < 82 



1. Haitjema (1995) and Fiori and Russo (2008) showed that transient effects and heterogeneity 83 

have a minor influence on TTDs compared to variations in travel times across streamlines in 84 

steady flow representations.  Ameli et al. (2016) showed that decreasing permeability with depth, 85 

either exponential or due to macroscopic layering, produced a gamma TTD with  close to 0.5.  86 

They also showed that in the absence of such heterogeneity,  is closer to 1.  Harman (2015) 87 

showed that a time-variable uniform TTD with a range parameter that increases with decreasing 88 

storage (inverse storage effect) reproduces 1/frequency spectra.  Lumped parameter 89 

hydrochemical models with multiple compartments have also reproduced gamma TTDs with  < 90 

1 (Hrachowitz et al. 2013; Benettin et al. 2014).  91 

The contribution of shallow groundwater flow through fractured bedrock to streamflow and 92 

solute export in mountain catchments has long been recognized, including at Plynlimon (Neal et 93 

al. 1997; Kirchner et al. 2001) and other recent studies (Godsey et al. 2010, Frisbee et al. 2013; 94 

Manning et al. 2014; Herndon et al. 2015; Hale et al. 2016; Tokunaga et al. 2019; Carroll et al. 95 

2019; 2020).  It is well established that matrix diffusion, a phenomenon first invoked to explain 96 

anomalous tracer ages (Foster, 1975; Neretnieks, 1981), significantly influences the travel time 97 

of tracers in fractured rock.  The potential influence of matrix diffusion on catchment 98 

hydrochemical response and tracer ages was further highlighted by Maloszewski and Zuber 99 

(1993) and Shapiro (2011).  However, few models of catchment-scale solute TTDs explicitly 100 

incorporate the influence of matrix diffusion.  In this paper, I present frequency domain and time 101 

domain analyses of the combined influence of variable advective travel times and matrix 102 

diffusion on solute transport in a catchment/hillslope groundwater system hosted in fractured 103 

bedrock.  I show that the theoretical power spectrum of stream concentration variations 104 

inherently exhibits fractal scaling, and that the solute TTD strongly resembles a gamma 105 



distribution with  < 1.  I also present an application to the Lower Hafren catchment at 106 

Plynlimon. 107 

2. Conceptual Model and Transport Equations 108 

The catchment-scale groundwater flow system is represented as a steady saturated flow in 109 

fractured bedrock, receiving spatially uniform recharge.  Figure 1 shows a schematic 110 

representation (adapted from Haitjema, 1995).  Fluid flow is assumed to occur only in fractures 111 

with stagnant water in the rock matrix.  Solutes undergo rapid advection along streamlines 112 

through permeable fractures, while simultaneously diffusing in and out of the rock matrix.  The 113 

fracture density is assumed to be high so that an equivalent porous medium representation is 114 

employed for flow (but not for transport).  Thus, the water table and hydraulic head field are 115 

assumed to be well defined and smooth.  Isochrones 
aTI  denote contours of equal advective 116 

travel time aT  from the water table to the outflow at the stream, and 
aT  denotes the surface area 117 

contained within 
aTI .  Advective travel times aT  along streamlines (streamsurfaces) from the 118 

water table to the stream are assumed to increase monotonically with 
aT .  The streamtube 119 

originating from the surface element
aTd in Figure 1a is bounded by isochrones 

aTI and 
a aT dTI  , 120 

comprising streamlines along which advective travel times to the stream range from aT  to 121 

a aT dT .  It is important to emphasize the distinction between advective and total solute travel 122 

times: the total travel time along a streamline is also influenced by matrix diffusion and thus 123 

much longer than the advective travel time.  The catchment-scale solute TTD is derived by 124 

considering the distribution of total travel times across all streamlines. 125 



Previous studies suggest that when advective travel times across streamlines vary over a 126 

large range, the influence of heterogeneity and dispersion is secondary (Gelhar, 1993; Duffy and 127 

Gelhar, 1986; Haitjema, 1995; Fiori and Russo, 2008).  I therefore neglect streamline tortuosity 128 

and dispersion in the analysis presented below.  Heterogeneity will lead to additional random 129 

variations in advective travel times and may be incorporated using modified advective travel 130 

time distributions as in the Lagrangian stochastic frameworks of Cvetkovic et al. (1999), Simic 131 

and Destouni (1999) and Cvetkovic et al. (2012).  I assume one-dimensional diffusion with an 132 

effective matrix width B (Figure 1b), which may either be related to the block size or an 133 

accessible weathered matrix thickness adjacent to fractures.  Although matrix blocks in fractured 134 

rock exhibit complex geometries, simplified solutions that assume one-dimensional matrix 135 

diffusion (e.g. Tang et al. 1981; Maloszewski and Zuber, 1985) and various effective models 136 

(Carrera et al. 1998; Cvetkovic et al. 1999; Haggerty et al. 2000; Berkowitz et al. 2006) are 137 

widely used and have provided useful insights.  Multi-dimensional diffusion in matrix blocks is 138 

similar to one-dimensional diffusion with modified parameters, as discussed by Barker et al. 139 

(1985). 140 

For the above flow system, solute transport equations along a streamline and the stagnant 141 

matrix domain adjacent to it are presented below, following Grisak and Pickens, (1980), Tang et 142 

al. (1981), and Maloszweski and Zuber (1985).  The fracture concentration at time t, at location s 143 

along a streamline that originated at isochrone
aTI  (Figure 1) is denoted by ( , ; )

af TC s t I ; and the 144 

concentration in the adjacent rock matrix is denoted by ( , , ; )
am TC s z t I , where z is the distance 145 

from the fracture matrix interface (see Figure 1b).  The fracture transport equation is: 146 
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where su is the solute velocity along the streamline, b  is the fracture aperture; m  and eD  are the 148 

matrix porosity and effective diffusivity respectively.  The parameters b , m and eD  are 149 

assumed as constant catchment-scale average values, while su  varies across the flow system.  150 

The diffusion equation in the rock matrix is: 151 
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t z
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  
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   (2) 152 

where  and b dK are respectively the bulk density of solids and the distribution coefficient in the 153 

rock matrix.  The lateral boundary conditions for (2) are: 154 
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 (3) 155 

The streamline coordinate s in (1) may be replaced with an advective travel time coordinate 156 

(Gelhar and Collins, 1971; Duffy and Gelhar, 1986; Cvetkovic et al. 1999): 157 

0 ( )
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  (4) 158 

Correspondingly, the fracture and matrix concentrations may be written as functions of a , i.e.159 

( , ; )
af a TC t I  and ( , , ; )

am a TC z t I , and (1) can be rewritten as (Cvetkovic et al. 1999): 160 
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   (5) 161 

I use (5), together with (2) and (3) to relate the stream concentration to the input concentration.  162 

At the inflow end of a streamline (s = 0, a = 0), concentration inputs ( )iC t  are assumed to be 163 

uniform across the catchment area (i.e. all streamlines), but vary with time: 164 



( 0, ; ) ( )
af a T iC t I C t      (6) 165 

At the outflow boundary, the stream concentration ( )oC t  is obtained by mixing of concentrations 166 

from all streamlines.  The fraction of the total outflow that originates within the streamtube
aTd  167 

is denoted as ( )
a aT Tw I d , where ( )

aTw I  is a flux-weighting function.  If aT  increases 168 

monotonically with 
aT , the fraction ( )

a aT Tw I d may also be represented using the advective 169 

travel time probability density function across streamlines, ( )aP T , as ( )a aP T dT .  Thus ( )oC t  may 170 

be written in terms of an integral over either 
aT or aT : 171 

       
0

( ) , ; , ;
a a a a

total a

o f a T T T f a T a a
T

C t C T t I w I d C T t I P T dT


 
          (7) 172 

If the fluid flux and velocity are assumed to be constant across the depth of the flow system at 173 

the outflow as in a Dupuit model, ( ) 1
aT totalw I   , a constant. Additionally assuming spatially 174 

uniform recharge and an approximately constant saturated thickness (H), ( )aP T  is an exponential 175 

distribution (Gelhar and Wilson, 1974; Maloszewski and Zuber, 1982; Haitjema, 1995): 176 

1
( ) exp a

a
a a

T
P T

T T

   
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  (8) 177 

In (8), aT is the mean advective travel time, given by aH r , where a is the active porosity 178 

corresponding to the hydrologically responsive fracture flow system and  r is the recharge rate.  179 

The exponential advective travel time distribution is also applicable to hillslope flow systems 180 

with a sloping base, under the assumption of uniform recharge and constant saturated thickness.  181 

The relationship for 
aT corresponding to (8) is (Haitjema, 1995): 182 



  1 exp
a

aT total aT T      (9) 183 

3. Frequency Domain Analysis: Stream Concentration Power Spectrum  184 

To relate the power spectra of stream and precipitation concentrations, the transport equations 185 

are solved in the frequency domain (SI, Sections S.1-2).  The Fourier transforms of 186 

( ), ( ), ( , ; ) 
ai o f a TC t C t C t I and ( , , ; )

am a TC z t I are denoted by ( ), ( ), ( , ; )
ai o f a TC C C I       and 187 

( , , ; )
am a TC z I   respectively, where   is the angular frequency.   For random concentration 188 

variations, the Fourier-Stieltjes spectral representation (Duffy and Gelhar, 1985, 1986; Gelhar, 189 

1993), is more rigorous than the Fourier transform (Kirchner, 2000).  However, both 190 

interpretations involve the same mathematical manipulations and lead to identical concentration 191 

power spectra.  The Fourier transforms of (2-3) are solved to express ( , , ; )
am a TC z I  in terms of192 

( , ; )
af a TC I   (S7 in SI).  Using this relationship in the Fourier transform of (5) produces a 193 

differential equation (S8 in SI) for ( , ; )
af a TC I  : 194 

( ) 0f
f

a

dC
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
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where (S10-11 in SI): 196 
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  (11) 197 

In (11), 1i   and (1 / )b d mR K    denotes the retardation factor in the rock matrix. 198 



Solving (10) and using the transform of (6), the Fourier transform of the fracture concentration at 199 

the outflow end of a streamline ( a aT  ) is: 200 

  ( , ; ) ( )exp ( )
af a T i aC T I C k T        (12) 201 

The Fourier transform of the stream concentration is then obtained from (7): 202 

 
0

( ) ( ) exp ( ) ( )o i a a aC C k T P T dT  


     (13) 203 

Correspondingly, the stream ( ( )
o oC CS  ) and precipitation ( ( )

i iC CS  ) concentration power spectra 204 

are related by: 205 
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2

0

( ) ( ) exp ( )
o o i iC C C C a a aS S k T P T dT  



     (14) 206 

Equation (14) generalizes a relationship presented by Duffy and Gelhar (1985) and Gelhar 207 

(1993) for pure advection ( ( )k i  ), by incorporating matrix diffusion and reformulating the 208 

integral in terms of ( )aP T .  In general, any appropriate advective travel time distribution 209 

(obtained from an analytical or numerical groundwater flow model) can be employed in (14). 210 

For the exponential advective travel time distribution, the stream concentration power spectrum 211 

is obtained by using (11) and (8) in (14) (Section S.2 in SI):  212 
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where 214 
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  (16) 215 

Equation (15) is written in terms of a dimensionless frequency ( aT ) to highlight the 216 

dimensionless parameters that regulate the influence of matrix diffusion.  The dimensionless 217 

parameter A is a measure of the strength of matrix diffusion.  It may also be viewed as a ratio 218 

between a characteristic matrix storage over a time scale on the order of the mean advective 219 

travel time and the fracture storage.  The parameter / /e aB D T R  represents the influence of 220 

matrix thickness.  If B  >> the characteristic matrix diffusion length ( /e aD T R ), the behavior is 221 

identical to that obtained with an infinite rock matrix thickness (M, N   1, Section S.2 in SI). 222 

When the influence of matrix diffusion is strong (large A; M, N close to 1), the catchment 223 

spectral filter /
o o i iC C C CS S  from (15) exhibits 1/frequency behavior (i.e. the third term in the 224 

denominator of (15) dominates).  More generally, (15) can produce stream concentration power 225 

spectra with a range of apparent decay exponents > -2 (fractal scaling).  When 0A  (negligible 226 

matrix diffusion) or 0B  (negligible matrix thickness), (15) reduces to 227 

22( ) ( ) / (1 )
o o i iC C C C aS S T    , which corresponds to pure advection with an exponential 228 

advective travel time distribution across streamlines (Gelhar, 1993).  The well-mixed reservoir 229 

model also produces the same behavior (Gelhar and Wilson, 1974, Duffy and Gelhar, 1985, 230 

Gelhar, 1993, Kirchner et al. 2000).          231 



Figure 2a shows the behavior of the spectral ratio /
o o i iC C C CS S  for different values of A (0, 232 

2, 5 and 10) and / aB DeT  (5, 10 and ) for A = 5, assuming no sorption ( 1)R  .  For context, 233 

A = 5 would be obtained with 100.05, 10m eD   m2/s, 410b  m, 12aT  days, which are 234 

realistic values.  The mean total travel time is  1 2 /a mT B b   612 and 1212 days for 235 

/ aB DeT = 5 and 10, respectively.  For an infinite matrix, the mean total travel time is 236 

theoretically unbounded.  For A = 5 and 10, the slope of the spectral ratio is close to -1 over 237 

several orders of magnitude in frequency.  For A = 2, the spectral ratio exhibits an apparent slope 238 

close to -1 at intermediate dimensionless frequencies, approaching -1.5 at higher dimensionless 239 

frequencies.  In general, the spectral ratio in Figure 2a exhibits curvature and deviates from true 240 

linear behavior in a log-log plot.  However, the curvature is relatively mild at dimensionless 241 

frequencies > 0.1.  The scatter inherent in spectral estimates from noisy real-world data may 242 

obscure such curvature and accommodate acceptable straight-line fits.  A finite matrix width 243 

does not influence the spectral ratio at high frequencies corresponding to time scales smaller than 244 

the diffusion time scale across the width. At lower frequencies, spectral ratios for a finite matrix 245 

width deviate from that for an infinite matrix and become steeper.  This steepening could in fact 246 

produce a closer tendency to straight-line behavior when estimating spectra from noisy data (see 247 

1/f line plotted in Figure 2a). 248 

A generalization of (15) for a gamma advective travel time distribution (e.g. representing 249 

non-Dupuit flow) is presented in SI (S25, Section S.2).  With a scale parameter  , the 21/ 250 

scaling in the spectral ratio of the advective travel time distribution is modified to 1/   by 251 

matrix diffusion.  For a sorbing solute, (15) predicts that in the frequency range where the third 252 



term in the denominator is dominant, the stream concentration power spectrum is 1/R times that 253 

for a passive solute.  This is consistent with the behavior suggested by Feng et al. (2004).     254 

4.  Time Domain Analysis: Solute Travel Time Distribution 255 

The solute TTD ( )h t  is the solution for ( )oC t  corresponding to a unit impulse (Dirac 256 

delta) input, i.e.  ( )iC t t , and can be obtained from (7).  The solution for ( , ; )
af a TC T t I at the 257 

outflow end of a streamline due to a unit impulse at the inflow, can be expressed in the form 258 

 ( ) ;a a aH t T g T t T  , where ( )aH t T  is the Heaviside function.  The function g depends on 259 

both the advective travel time aT  and the time since advective breakthrough, at T .  It has a 260 

simple analytical form for an infinite matrix (Maloszewski and Zuber, 1985; Section S.4 in SI): 261 

 
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   (17) 262 

where /m ea RD b .  However,  ;a ag T t T  can only be expressed as an implicit integral or 263 

obtained by numerical Laplace transform inversion for finite matrix widths (Maloszewski and 264 

Zuber, 1985; Section S.4 in SI).  In either case, ( )h t can be expressed from (7) as: 265 

       
0 0

( ) ( ) ; ;
t

a a a a a a a a ah t H t T g T t T P T dT g T t T P T dT


        (18) 266 

At any time t after input, the solute TTD (18) only includes contributions from streamlines for 267 

which the advective travel time to the stream aT t .  The solute TTD in (18) accounts for the 268 

combined influence of variable advective travel times across streamlines (with any appropriate 269 

form for ( )aP T ) and matrix diffusion.  Cvetkovic et al. (1999), Simic and Destouni (1999), 270 

Cvetkovic and Haggerty (2002), Lindgren et al. (2004) and Cvetkovic et al. (2012) employed 271 



similar approaches to combine the influence of retention with advective travel time distributions 272 

generated by heterogeneity. 273 

Figure 2b shows the dimensionless solute TTD  / a ah t T T  obtained by numerical integration of 274 

(18) with the exponential ( )aP T  from (8). Analytical approximations can be derived for large 275 

times in the case of infinite matrix widths (SI Section S.4, for exponential and gamma ( )aP T ).  276 

The TTD for A = 0 (no matrix diffusion) is the exponential distribution.  For any value of A,  at 277 

very early times ( , 0)at T  ,    ;a a ag T t T t T    and ( ) ( )h t P t , the advective travel time 278 

distribution.  As A increases, solute breakthrough is attenuated to a greater extent by matrix 279 

diffusion.  A power-law behavior 1/2( ) ~h t t , similar to the gamma distribution with  = 0.5, 280 

arises in an intermediate time regime for larger values of A (S35, SI Section S.4).    For an 281 

infinite matrix, the late-time tail behaves as 3/2( ) ~h t t  (SI Section S.4) and the mean total travel 282 

time is unbounded.  For finite matrix widths (shown for A=5), the solute TTD coincides with that 283 

for an infinite width at times smaller than a characteristic diffusion time scale across the matrix 284 

width.  It then levels off first, due to back-diffusion of solute from the matrix, and subsequently 285 

decreases exponentially as solute is flushed out, thus producing overall behavior resembling a 286 

gamma distribution with  = 0.5.  As noted above, the mean total travel time for finite matrix 287 

widths is  1 2 /a mT B b .  Due to the explicit dependence of g on aT , flowpaths with shorter aT  288 

are less affected by matrix diffusion than flowpaths with longer aT .  As a result, ( )h t exhibits 289 

both short-term responsiveness and long-term memory, which are highlighted as salient 290 

properties of TTDs at Plynlimon (Krichner et al. 2000).   291 

5. Application to the Lower Hafren Catchment 292 



Neal et al. (1997) describe the hydrology and geology of the Hafren catchment.  Storm 293 

runoff is dominated by groundwater and interflow, and groundwater levels are highly responsive 294 

to rainfall.  The shallow groundwater system is hosted in highly fractured shale, mudstone, and 295 

greywacke rocks, overlain by relatively thin soils (~0.7m). Typical water table depths are around 296 

5m.  Although groundwater is estimated to occur down to 30m below the stream, rapid 297 

circulation and significant groundwater storage only occurs down to 9m depth, suggesting a 298 

saturated thickness ( H ) of ~4m for the active portion of the groundwater system.  The net 299 

recharge rate ( r) is about 2 m/year. 300 

Kirchner (2000) and Kirchner et al. (2013) presented stream and precipitation power 301 

spectra for chloride at Lower Hafren.  The spectra presented by Kirchner et al. (2013) differ from 302 

those of Kirchner (2000), due to refined spectral analysis methods and additional and longer 303 

datasets.  Both analyses suggest that the power spectral ratio ( ) / ( )
o o i iC C C CS S  exhibits close to 304 

1/ behavior.  To represent this behavior, Kirchner et al. (2000) proposed a gamma distribution 305 

for the solute TTD, for which 2 2 2( ) / ( ) 1 (1 4 )
o o i iC C C CS f S f f    , where 2f   is the 306 

frequency. Kirchner et al. (2000) fitted values of 0.48,  1.9yr   to the observed power 307 

spectra; which corresponds to a mean total travel time of 0.91yr  .  The power spectra of 308 

Kirchner et al. (2013) are better fit with 0.5,  0.4yr   (Figure 3a), which corresponds to a 309 

shorter mean travel time of 0.2 years.  Kirchner et al. (2013) reported that the precipitation 310 

chloride spectrum exhibits 0.411/ f behavior.  From a precipitation spectrum based on a subset of 311 

the full dataset (Harman, 2015), I obtained a best fit of 0.340.38 / f  (mg/L)2-yr, and with the 312 

exponent fixed at 0.41, I obtained a best fit 0.410.42 / f (mg/L)2-yr, which I used in the 313 

calculations below.  These two alternative forms for the precipitation chloride spectra do not 314 



produce major differences in calculated stream concentration spectra (compare Figure 3a with 315 

Figure S4 in SI). 316 

The power spectral ratio (15, 16) depends on two key variables: the mean advective 317 

travel time aT  and the matrix diffusion parameter A.   Because A contains products and ratios of 318 

other physical parameters, these parameters cannot be fit uniquely.  My intention here is not to 319 

produce a “best-fit” parameter set, but rather to present reasonable parameter values that are 320 

consistent with the site description and match the spectral estimates of Kirchner et al. (2013).  I 321 

assume an exponential advective travel time distribution (8).  Estimation of aT  requires an 322 

estimate of the effective fracture porosity a  associated with the hydrologically responsive flow 323 

system at the scale of the watershed, which is a highly uncertain parameter.  Assuming a value of 324 

a = 0.005, the mean advective travel time is estimated as a aT H r = 0.01 years (3.65 days).  325 

To put this estimate in context, a regular arrangement of cubic matrix blocks with 0.3m sides, 326 

interspersed with b = 0.5mm wide connected fractures, would produce a  = 0.005.  The one-327 

dimensional accessible matrix width B in (15,16) could be smaller than the block size for two 328 

reasons – first, Barker’s (1985) analysis suggests an effective one-dimensional width equal to 1/6 329 

of the block size for cubical blocks, and secondly, significant matrix diffusion is often restricted 330 

to the weathered periphery of matrix blocks. Values for the matrix porosity ( m  = 0.15), and 331 

effective diffusivity for chloride ( eD 1.5x10-10 m2/s), were assigned to fall within the ranges 332 

reported for shale and mudstone (Manger, 1963; Barone et al. 1992). These parameter values 333 

result in A = 2.06. 334 



Figure 3a compares ( )
o oC CS f  calculated using 0.41( ) 0.42 /

i iC CS f f  and the above 335 

parameter values in (15),  the gamma model with 0.5,  0.4yr   , and the power spectral 336 

estimates from Figure S7 in Kirchner et al. (2013).  Both the matrix diffusion and the fitted 337 

gamma models produce reasonable matches to the estimated stream concentration spectra and 338 

the -1.4 slope estimated by Kirchner et al. (2013).  Because of the relatively short aT , even an 339 

accessible matrix thickness as small as B = 0.05m ( / aB DeT = 7.27) produces only a minor 340 

deviation of the power spectral ratio from that for the infinite matrix case.  All models approach 341 

the precipitation concentration spectrum at frequencies < 0.1 yr-1.  At the high frequency end (> 342 

20 yr-1), the matrix diffusion models underestimate the spectral power slightly.  This is likely 343 

because the analysis assumes steady flow and will thus miss the influence of hydrologic 344 

transients on solute transport.  Alternative sets of parameter values that produce reasonable 345 

matches with the estimated stream concentration spectra are presented in SI (Figure S3).  As 346 

noted above, compensatory variations among the physical parameters that occur in A preclude 347 

unique parameter estimates. 348 

The solute TTDs corresponding to the power spectral models presented in Figure 3a are 349 

shown in Figure 3b.  For finite matrix widths (B = 0.05 and 0.1m), the solute TTDs obtained 350 

with the matrix diffusion model are comparable to the fitted gamma distribution, which exhibits 351 

1/ 2t  power law behavior at intermediate times.  The tails of the solute TTDs are longer for larger 352 

B, and for very large B, there is a tendency towards 3 / 2t  behavior at late time.  The mean solute 353 

travel times corresponding to the finite width matrix diffusion models are 0.31 years (B=0.05m) 354 

and 0.61 years (B=0.1m).  Greater differences between the matrix diffusion models and the fitted 355 



gamma model are evident in the TTD tails than in the low frequency behavior of the power 356 

spectra.    357 

6. Discussion 358 

Although the role of matrix diffusion in influencing environmental solute ages has been 359 

recognized previously, it is seldom explicitly considered in investigations and interpretations of 360 

catchment solute TTDs.  This paper quantitatively demonstrates that matrix diffusion in fractured 361 

bedrock can generate fractal stream chemistry, and power-law behavior and long-term memory 362 

in solute TTDs.   The general relationships (14) and (18) provide a framework for quantifying 363 

catchment-scale stream concentration power spectra and solute TTDs, by superposing the 364 

influence of matrix diffusion on any general advective travel time distribution derived from 365 

analytical or numerical subsurface flow models (e.g. Ameli et al. 2016; Kollett and Maxwell, 366 

2008; Carroll et al. 2020).  Availability of concentration data for multiple solutes will facilitate 367 

inverse estimation of catchment-scale matrix diffusion parameters.  The matrix diffusion 368 

mechanism is physically consistent with the large residual or passive storage component inferred 369 

while calibrating compartmental models of catchment hydrochemical response (e.g. Birkel et al. 370 

2011, Benettin et al. 2014).  The analysis presented here can be extended to incorporate 371 

alternative representations of matrix diffusion and retention (e.g., multi-rate models or memory 372 

functions) and heterogeneity within the fracture flow system (Cvetkovic and Haggerty, 2002; 373 

Shapiro, 2001; Zhou et al. 2007), and layered hydrostratigraphy.  One limitation of the analysis 374 

is the neglect of transient flow effects and vadose zone processes, although some previous 375 

studies (e.g. Fiori and Russo, 2008; Cvetkovic et al. 2012, Carroll et al. 2020) suggest that steady 376 

state approximations are adequate for the dominant subsurface flow paths.  Numerical models of 377 

unsaturated-saturated flow and transport (e.g. Kollett and Maxwell, 2008; Carroll et al. 2020) can 378 



be augmented to include matrix diffusion for more comprehensive evaluation of solute TTDs.  379 

Interpretation of solute TTDs, especially in mountain catchments with fractured bedrock, should 380 

consider the potential influence of matrix diffusion in addition to other factors. 381 
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 588 
Figure 1. Schematic conceptual model of catchment-scale groundwater flow and transport. 589 
(a) Plan view showing total area total and area 

aT bounded by isochrone 
aTI from which the 590 

advective travel time to the stream is aT .  (b) Vertical cross-section along x-x' in (a), showing 591 

streamlines from the surface, through the water table to the stream.  The streamline coordinate is 592 
denoted by s, and z denotes the distance from the fracture-matrix interface.  One-dimensional 593 
matrix diffusion is assumed, with an accessible matrix width B. 594 
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 630 
Figure 2. Influence of the matrix diffusion parameter A.  (a) Dimensionless power spectral ratio631 

 /
o o i iC C C CS S (15) plotted against dimensionless angular frequency ( aT ).  Black lines indicate 632 

various power-law slopes.  For A=0 (solid black), 
22/ ( ) (1 )

o o i iC C C C aS S T   .  (b) 633 

Dimensionless solute TTD ( / )a ah t T T  from (18) with an exponential ( )aP T , plotted against 634 

dimensionless time ( / at T ).  Solid lines correspond to different values of A and an infinite matrix.  635 

The dashed and dash-dotted magenta lines correspond to / e aB D T = 5 and 10 respectively, for 636 

A=5.  Black dotted lines show intermediate (~ 1/21/ t ) and late-time (~ 3/21/ t ) power-law regimes.   637 
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Figure 3. (a) Chloride power spectrum and (b) solute travel time distribution (TTD) for Lower 658 
Hafren, based on the matrix diffusion model ( 10 20.15, 1.5 10 m /s,m eD    45 10 mb   , 659 

0.01yraT  ) and matrix widths 0.05 ,0.1  and B m m  ; and a gamma model ( 0.5, 0.4yr   ) 660 

fit to the power spectral estimates from Kirchner et al. (2013). A line with the fitted power law 661 
slope of -1.4 (Kirchner et al. 2013) is also shown in (a). Dotted and dash-dotted lines in (b) 662 
respectively show the intermediate (~ 1/21/ t ) and late-time (~ 3/21/ t ) power-law regimes.   663 
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