References
Aldana-Jague, E., G. Heckrath, A. Macdonald, B. van Wesemael and K. Van Oost (2016). ”UAS-based soil carbon mapping using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations.” Geoderma275 : 55-66. https://doi.org/10.1016/j.geoderma.2016.04.012.
Anderson, K., B. Ryan, W. Sonntag, A. Kavvada and L. Friedl (2017). ”Earth observation in service of the 2030 Agenda for Sustainable Development.” Geo-spatial Information Science 20 (2): 77-96. https://doi.org/10.1080/10095020.2017.1333230.
Angelopoulou, T., N. Tziolas, A. Balafoutis, G. Zalidis and D. Bochtis (2019). ”Remote sensing techniques for soil organic carbon estimation: A review.” Remote Sensing 11 (6): 676. https://doi.org/10.3390/rs11060676.
Barnes, E. M., K. A. Sudduth, J. W. Hummel, S. M. Lesch, D. L. Corwin, C. Yang, C. S. Daughtry and W. C. Bausch (2003). ”Remote-and ground-based sensor techniques to map soil properties.”Photogrammetric Engineering & Remote Sensing 69 (6): 619-630. https://doi.org/10.14358/PERS.69.6.619.
Bartholomeus, H. (2009). The influence of vegetation cover on the spectroscopic estimation of soil properties .
Bartholomeus, H., L. Kooistra, A. Stevens, M. van Leeuwen, B. van Wesemael, E. Ben-Dor and B. Tychon (2011). ”Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy.”International Journal of Applied Earth Observation and Geoinformation 13 (1): 81-88. https://doi.org/10.1016/j.jag.2010.06.009.
Bartholomeus, H., M. E. Schaepman, L. Kooistra, A. Stevens, W. Hoogmoed and O. Spaargaren (2008). ”Spectral reflectance based indices for soil organic carbon quantification.” Geoderma 145 (1-2): 28-36. https://doi.org/10.1016/j.geoderma.2008.01.010.
Bayer, A. D., M. Bachmann, D. Rogge, A. Muller and H. Kaufmann (2016). ”Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9 (9): 3997-4010. https://doi.org/10.1109/JSTARS.2016.2585674.
Bellon-Maurel, V., E. Fernandez-Ahumada, B. Palagos, J.-M. Roger and A. McBratney (2010). ”Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy.” TrAC Trends in Analytical Chemistry29 (9): 1073-1081. https://doi.org/10.1016/j.trac.2010.05.006.
Ben-Dor, E., S. Chabrillat, J. A. M. Demattê, G. R. Taylor, J. Hill, M. L. Whiting and S. Sommer (2009). ”Using Imaging Spectroscopy to study soil properties.” Remote Sensing of Environment 113 : S38-S55. https://doi.org/10.1016/j.rse.2008.09.019.
Brook, A. and E. B. Dor (2011). ”Supervised vicarious calibration (SVC) of hyperspectral remote-sensing data.” Remote Sensing of Environment 115 (6): 1543-1555. https://doi.org/10.1016/j.rse.2011.02.013.
Capolupo, A., L. Kooistra, C. Berendonk, L. Boccia and J. Suomalainen (2015). ”Estimating Plant Traits of Grasslands from UAV-Acquired Hyperspectral Images: A Comparison of Statistical Approaches.”ISPRS International Journal of Geo-Information 4 (4): 2792-2820. https://doi.org/10.3390/ijgi4042792.
Castaldi, F., R. Casa, A. Castrignanò, S. Pascucci, A. Palombo and S. Pignatti (2014). ”Estimation of soil properties at the field scale from satellite data: a comparison between spatial and non‐spatial techniques.” European Journal of Soil Science 65 (6): 842-851. https://doi.org/10.1111/ejss.12202.
Castaldi, F., S. Chabrillat, A. Jones, K. Vreys, B. Bomans and B. Van Wesemael (2018). ”Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database.”Remote Sensing 10 (2): 153. https://doi.org/10.3390/rs10020153.
Castaldi, F., A. Hueni, S. Chabrillat, K. Ward, G. Buttafuoco, B. Bomans, K. Vreys, M. Brell and B. van Wesemael (2019). ”Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands.” ISPRS Journal of Photogrammetry and Remote Sensing147 : 267-282. https://doi.org/10.1016/j.isprsjprs.2018.11.026.
Castaldi, F., A. Palombo, F. Santini, S. Pascucci, S. Pignatti and R. Casa (2016). ”Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon.” Remote Sensing of Environment 179 : 54-65. https://doi.org/10.1016/j.rse.2016.03.025.
Croft, H., N. Kuhn and K. Anderson (2012). ”On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems.” Catena 94 : 64-74. https://doi.org/10.1016/j.catena.2012.01.001.
Demattê, J. A. M., A. C. Dotto, L. G. Bedin, V. M. Sayão and A. B. e Souza (2019). ”Soil analytical quality control by traditional and spectroscopy techniques: Constructing the future of a hybrid laboratory for low environmental impact.” Geoderma 337 : 111-121. https://doi.org/10.1016/j.geoderma.2018.09.010.
Demattê, J. A. M., C. T. Fongaro, R. Rizzo and J. L. Safanelli (2018). ”Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images.”Remote Sensing of Environment 212 : 161-175. https://doi.org/10.1016/j.rse.2018.04.047.
Denis, A., A. Stevens, B. van Wesemael, T. Udelhoven and B. Tychon (2014). ”Soil organic carbon assessment by field and airborne spectrometry in bare croplands: accounting for soil surface roughness.”Geoderma 226-227 : 94-102. https://doi.org/10.1016/j.geoderma.2014.02.015.
Diek, S., M. Schaepman and R. de Jong (2016). ”Creating Multi-Temporal Composites of Airborne Imaging Spectroscopy Data in Support of Digital Soil Mapping.” Remote Sensing 8 (11). https://doi.org/10.3390/rs8110906.
Eswaran, H., E. Van Den Berg and P. Reich (1993). ”Organic carbon in soils of the world.” Soil science society of America journal57 (1): 192-194. https://doi.org/10.2136/sssaj1993.03615995005700010034x.
Franceschini, M. H. D., J. A. M. Demattê, F. da Silva Terra, L. E. Vicente, H. Bartholomeus and C. R. de Souza Filho (2015). ”Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy.” International Journal of Applied Earth Observation and Geoinformation 38 : 358-370. https://doi.org/10.1016/j.jag.2015.01.019.
Frazier, B. and Y. Cheng (1989). ”Remote sensing of soils in the eastern Palouse region with Landsat Thematic Mapper.” Remote Sensing of Environment 28 : 317-325. https://doi.org/10.1016/0034-4257(89)90123-5.
Gallo, B., J. Demattê, R. Rizzo, J. Safanelli, W. Mendes, I. Lepsch, M. Sato, D. Romero and M. Lacerda (2018). ”Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology.” Remote Sensing 10 (10). https://doi.org/10.3390/rs10101571.
Gehl, R. J. and C. W. Rice (2007). ”Emerging technologies for in situ measurement of soil carbon.” Climatic change 80 (1): 43-54. https://doi.org/10.1007/s10584-006-9150-2.
Geladi, P. (2003). ”Chemometrics in spectroscopy. Part 1. Classical chemometrics.” Spectrochimica Acta Part B: Atomic Spectroscopy58 (5): 767-782. https://doi.org/10.1016/S0584-8547(03)00037-5.
Gholizadeh, A., D. Žižala, M. Saberioon and L. Borůvka (2018). ”Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging.” Remote Sensing of Environment 218 : 89-103. https://doi.org/10.1016/j.rse.2018.09.015.
Gomez, C., R. A. V. Rossel and A. B. McBratney (2008). ”Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study.” Geoderma146 (3-4): 403-411. https://doi.org/10.1016/j.geoderma.2008.06.011.
Guanter, L., H. Kaufmann, K. Segl, S. Foerster, C. Rogass, S. Chabrillat, T. Kuester, A. Hollstein, G. Rossner and C. Chlebek (2015). ”The EnMAP spaceborne imaging spectroscopy mission for earth observation.” Remote Sensing 7 (7): 8830-8857. https://doi.org/10.3390/rs70708830.
Guerschman, J. P., M. J. Hill, L. J. Renzullo, D. J. Barrett, A. S. Marks and E. J. Botha (2009). ”Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors.” Remote Sensing of Environment113 (5): 928-945. https://doi.org/10.1016/j.rse.2009.01.006.
Hbirkou, C., S. Pätzold, A.-K. Mahlein and G. Welp (2012). ”Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale.” Geoderma 175-176 : 21-28. https://doi.org/10.1016/j.geoderma.2012.01.017.
Homolová, L., M. E. Schaepman, P. Lamarque, J. G. Clevers, F. de Bello, W. Thuiller and S. Lavorel (2014). ”Comparison of remote sensing and plant trait‐based modelling to predict ecosystem services in subalpine grasslands.” Ecosphere 5 (8): 1-29. https://doi.org/10.1890/ES13-00393.1.
Jakob, S., R. Zimmermann and R. Gloaguen (2017). ”The Need for Accurate Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing Drone-Borne Hyperspectral Data.” Remote Sensing 9 (1). https://doi.org/10.3390/rs9010088.
Jandl, R., M. Rodeghiero, C. Martinez, M. F. Cotrufo, F. Bampa, B. van Wesemael, R. B. Harrison, I. A. Guerrini, D. d. Richter Jr and L. Rustad (2014). ”Current status, uncertainty and future needs in soil organic carbon monitoring.” Science of the total environment468 : 376-383. https://doi.org/10.1016/j.scitotenv.2013.08.026.
Jobbágy, E. G. and R. B. Jackson (2000). ”The vertical distribution of soil organic carbon and its relation to climate and vegetation.”Ecological applications 10 (2): 423-436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
Keesstra, S. D., J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A. Cerdà, L. Montanarella, J. N. Quinton, Y. Pachepsky, W. H. van der Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen and L. O. Fresco (2016). ”The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals.”SOIL 2 (2): 111-128. https://doi.org/10.5194/soil-2-111-2016.
Kühnel, A. and C. Bogner (2017). ”I n‐situ prediction of soil organic carbon by vis–NIR spectroscopy: an efficient use of limited field data.” European Journal of Soil Science 68 (5): 689-702. https://doi.org/10.1111/ejss.12448.
Labate, D., M. Ceccherini, A. Cisbani, V. De Cosmo, C. Galeazzi, L. Giunti, M. Melozzi, S. Pieraccini and M. Stagi (2009). ”The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission.” Acta Astronautica 65 (9-10): 1429-1436. https://doi.org/10.1016/j.actaastro.2009.03.077.
Lagacherie, P., F. Baret, J.-B. Feret, J. Madeira Netto and J. M. Robbez-Masson (2008). ”Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements.”Remote Sensing of Environment 112 (3): 825-835. https://doi.org/10.1016/j.rse.2007.06.014.
Li, W., Z. Niu, H. Chen, D. Li, M. Wu and W. Zhao (2016). ”Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system.” Ecological Indicators 67 : 637-648. https://doi.org/10.1016/j.ecolind.2016.03.036.
Liakos, K. G., P. Busato, D. Moshou, S. Pearson and D. Bochtis (2018). ”Machine learning in agriculture: A review.” Sensors18 (8): 2674. https://doi.org/10.3390/s18082674.
Lipper, L., P. Thornton, B. M. Campbell, T. Baedeker, A. Braimoh, M. Bwalya, P. Caron, A. Cattaneo, D. Garrity and K. Henry (2014). ”Climate-smart agriculture for food security.” Nature climate change 4 (12): 1068-1072. https://doi.org/10.1038/nclimate2437.
Lobsey, C., R. Viscarra Rossel, P. Roudier and C. Hedley (2017). ”rs‐local data‐mines information from spectral libraries to improve local calibrations.” European Journal of Soil Science68 (6): 840-852. https://doi.org/10.1111/ejss.12490.
McGwire, K. C., M. A. Weltz, J. A. Finzel, C. E. Morris, L. F. Fenstermaker and D. S. McGraw (2012). ”Multiscale assessment of green leaf cover in a semi-arid rangeland with a small unmanned aerial vehicle.” International Journal of Remote Sensing 34 (5): 1615-1632. https://doi.org/10.1080/01431161.2012.723836.
Minu, S., A. Shetty, B. Gopal and L. H. Filchev (2016). ”Review of preprocessing techniques used in soil property prediction from hyperspectral data.” Cogent Geoscience 2 (1). https://doi.org/10.1080/23312041.2016.1145878.
Mirzaee, S., S. Ghorbani-Dashtaki, J. Mohammadi, H. Asadi and F. Asadzadeh (2016). ”Spatial variability of soil organic matter using remote sensing data.” Catena 145 : 118-127. https://doi.org/10.1016/j.catena.2016.05.023.
Mohamed, E., A. Saleh, A. Belal and A. A. Gad (2018). ”Application of near-infrared reflectance for quantitative assessment of soil properties.” The Egyptian Journal of Remote Sensing and Space Science 21 (1): 1-14. https://doi.org/10.1016/j.ejrs.2017.02.001.
Mondal, A., D. Khare, S. Kundu, S. Mondal, S. Mukherjee and A. Mukhopadhyay (2017). ”Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data.” The Egyptian Journal of Remote Sensing and Space Science 20 (1): 61-70. https://doi.org/10.1016/j.ejrs.2016.06.004.
Mulder, V., S. De Bruin, M. E. Schaepman and T. Mayr (2011). ”The use of remote sensing in soil and terrain mapping—A review.” Geoderma162 (1-2): 1-19. https://doi.org/10.1016/j.geoderma.2010.12.018.
Nocita, M., A. Stevens, C. Noon and B. van Wesemael (2013). ”Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy.” Geoderma 199 : 37-42. https://doi.org/10.1016/j.geoderma.2012.07.020.
Nocita, M., A. Stevens, B. van Wesemael, M. Aitkenhead, M. Bachmann, B. Barthès, E. B. Dor, D. J. Brown, M. Clairotte and A. Csorba (2015). ”Soil spectroscopy: An alternative to wet chemistry for soil monitoring.” Advances in agronomy 132 : 139-159. https://doi.org/10.1016/bs.agron.2015.02.002.
Omran, E. (2017). ”Rapid prediction of soil mineralogy using imaging spectroscopy.” Eurasian Soil Science 50 (5): 597-612. https://doi.org/10.1134/S106422931705012X.
Ontl, T. A. and L. A. Schulte (2012). ”Soil carbon storage.”Nature Education Knowledge 3 (10).
Pádua, L., J. Vanko, J. Hruška, T. Adão, J. J. Sousa, E. Peres and R. Morais (2017). ”UAS, sensors, and data processing in agroforestry: A review towards practical applications.” International journal of remote sensing 38 (8-10): 2349-2391. https://doi.org/10.1080/01431161.2017.1297548.
Peng, X., T. Shi, A. Song, Y. Chen and W. Gao (2014). ”Estimating soil organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods.”Remote Sensing 6 (4): 2699-2717. https://doi.org/10.3390/rs6042699.
Peón, J., C. Recondo, S. Fernández, J. F. Calleja, E. De Miguel and L. Carretero (2017). ”Prediction of Topsoil Organic Carbon Using Airborne and Satellite Hyperspectral Imagery.” Remote Sensing9 (12). https://doi.org/10.3390/rs9121211.
Roberts, D. A., D. A. Quattrochi, G. C. Hulley, S. J. Hook and R. O. Green (2012). ”Synergies between VSWIR and TIR data for the urban environment: An evaluation of the potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey mission.” Remote Sensing of Environment 117 : 83-101. https://doi.org/10.1016/j.rse.2011.07.021.
Romero, D. J., E. Ben-Dor, J. A. Demattê, A. B. e Souza, L. E. Vicente, T. R. Tavares, M. Martello, T. F. Strabeli, P. P. da Silva Barros and P. R. Fiorio (2018). ”Internal soil standard method for the Brazilian soil spectral library: Performance and proximate analysis.” Geoderma312 : 95-103. https://doi.org/10.1016/j.geoderma.2017.09.014.
Rossel, R. V., D. Walvoort, A. McBratney, L. J. Janik and J. Skjemstad (2006). ”Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties.” Geoderma 131 (1-2): 59-75. https://doi.org/10.1016/j.geoderma.2005.03.007.
Scharlemann, J. P., E. V. Tanner, R. Hiederer and V. Kapos (2014). ”Global soil carbon: understanding and managing the largest terrestrial carbon pool.” Carbon Management 5 (1): 81-91. https://doi.org/10.4155/cmt.13.77.
Schillaci, C., L. Lombardo, S. Saia, M. Fantappiè, M. Märker and M. Acutis (2017). ”Modelling the topsoil carbon stock of agricultural lands with the Stochastic Gradient Treeboost in a semi-arid Mediterranean region.” Geoderma 286 : 35-45. https://doi.org/10.1016/j.geoderma.2016.10.019.
Schwartz, G., E. Ben-Dor and G. Eshel (2012). ”Quantitative analysis of total petroleum hydrocarbons in soils: comparison between reflectance spectroscopy and solvent extraction by 3 certified laboratories.”Applied and Environmental Soil Science 2012 . https://doi.org/10.1155/2012/751956.
Steinberg, A., S. Chabrillat, A. Stevens, K. Segl and S. Foerster (2016). ”Prediction of Common Surface Soil Properties Based on Vis-NIR Airborne and Simulated EnMAP Imaging Spectroscopy Data: Prediction Accuracy and Influence of Spatial Resolution.” Remote Sensing8 (7). https://doi.org/10.3390/rs8070613.
Stenberg, B., R. A. V. Rossel, A. M. Mouazen and J. Wetterlind (2010). ”Visible and near infrared spectroscopy in soil science.” Advances in agronomy 107 : 163-215. https://doi.org/10.1016/S0065-2113(10)07005-7.
Stevens, A., M. Nocita, G. Tóth, L. Montanarella and B. van Wesemael (2013). ”Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy.” PloS one8 (6): e66409. https://doi.org/10.1371/journal.pone.0066409.
Stevens, A., T. Udelhoven, A. Denis, B. Tychon, R. Lioy, L. Hoffmann and B. van Wesemael (2010). ”Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy.” Geoderma158 (1-2): 32-45. https://doi.org/10.1016/j.geoderma.2009.11.032.
Stevens, A., B. van Wesemael, H. Bartholomeus, D. Rosillon, B. Tychon and E. Ben-Dor (2008). ”Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils.”Geoderma 144 (1-2): 395-404. https://doi.org/10.1016/j.geoderma.2007.12.009.
Stuart, B. H. (2004). Infrared spectroscopy: fundamentals and applications , John Wiley & Sons.
Stuffler, T., C. Kaufmann, S. Hofer, K. Förster, G. Schreier, A. Mueller, A. Eckardt, H. Bach, B. Penné and U. Benz (2007). ”The EnMAP hyperspectral imager—An advanced optical payload for future applications in Earth observation programmes.” Acta Astronautica61 (1-6): 115-120. https://doi.org/10.1016/j.actaastro.2007.01.033.
Tóth, G., T. Hermann, M. R. da Silva and L. Montanarella (2018). ”Monitoring soil for sustainable development and land degradation neutrality.” Environmental monitoring and assessment190 (2): 1-4. https://doi.org/10.1007/s10661-017-6415-3.
Toth, G., A. Jones and L. Montanarella (2013). ”The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union.” Environ Monit Assess185 (9): 7409-7425. https://doi.org/10.1007/s10661-013-3109-3.
Tziolas, N., N. Tsakiridis, E. Ben-Dor, J. Theocharis and G. Zalidis (2019). ”A memory-based learning approach utilizing combined spectral sources and geographical proximity for improved VIS-NIR-SWIR soil properties estimation.” Geoderma 340 : 11-24. https://doi.org/10.1016/j.geoderma.2018.12.044.
Usha, K. and B. Singh (2013). ”Potential applications of remote sensing in horticulture—A review.” Scientia horticulturae 153 : 71-83. https://doi.org/10.1016/j.scienta.2013.01.008.
Vaudour, E., J.-M. Gilliot, L. Bel, J. Lefevre and K. Chehdi (2016). ”Regional prediction of soil organic carbon content over temperate croplands using visible near-infrared airborne hyperspectral imagery and synchronous field spectra.” International Journal of applied earth observation and geoinformation 49 : 24-38. https://doi.org/10.1016/j.jag.2016.01.005.
Vaudour, E., C. Gomez, Y. Fouad and P. Lagacherie (2019). ”Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems.” Remote Sensing of Environment223 : 21-33. https://doi.org/10.1016/j.rse.2019.01.006.
Vohland, M., M. Ludwig, S. Thiele-Bruhn and B. Ludwig (2017). ”Quantification of Soil Properties with Hyperspectral Data: Selecting Spectral Variables with Different Methods to Improve Accuracies and Analyze Prediction Mechanisms.” Remote Sensing 9 (11). https://doi.org/10.3390/rs9111103.
Wang, B., C. Waters, S. Orgill, J. Gray, A. Cowie, A. Clark and D. Li Liu (2018). ”High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.” Science of the Total Environment 630 : 367-378. https://doi.org/10.1016/j.scitotenv.2018.02.204.
Whitehead, K. and C. H. Hugenholtz (2014). ”Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges.” Journal of Unmanned Vehicle Systems 2 (3): 69-85. https://doi.org/10.1139/juvs-2014-0006.
Woodcock, C. E., R. Allen, M. Anderson, A. Belward, R. Bindschadler, W. Cohen, F. Gao, S. N. Goward, D. Helder and E. Helmer (2008). ”Free access to Landsat imagery.” SCIENCE VOL 320: 1011 .
Wu, H. and Z. L. Li (2009). ”Scale issues in remote sensing: a review on analysis, processing and modeling.” Sensors (Basel)9 (3): 1768-1793. https://doi.org/10.3390/s90301768.
Xu, Y., S. E. Smith, S. Grunwald, A. Abd-Elrahman and S. P. Wani (2017). ”Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields.” ISPRS journal of photogrammetry and remote sensing 123 : 1-19. https://doi.org/10.1016/j.isprsjprs.2016.11.001.
Zhang, C. and J. M. Kovacs (2012). ”The application of small unmanned aerial systems for precision agriculture: a review.” Precision agriculture 13 (6): 693-712. https://doi.org/10.1007/s11119-012-9274-5.