References
Aldana-Jague, E., G. Heckrath, A. Macdonald, B. van Wesemael and K. Van
Oost (2016). ”UAS-based soil carbon mapping using VIS-NIR (480–1000 nm)
multi-spectral imaging: Potential and limitations.” Geoderma275 : 55-66.
https://doi.org/10.1016/j.geoderma.2016.04.012.
Anderson, K., B. Ryan, W. Sonntag, A. Kavvada and L. Friedl (2017).
”Earth observation in service of the 2030 Agenda for Sustainable
Development.” Geo-spatial Information Science 20 (2):
77-96. https://doi.org/10.1080/10095020.2017.1333230.
Angelopoulou, T., N. Tziolas, A. Balafoutis, G. Zalidis and D. Bochtis
(2019). ”Remote sensing techniques for soil organic carbon estimation: A
review.” Remote Sensing 11 (6): 676.
https://doi.org/10.3390/rs11060676.
Barnes, E. M., K. A. Sudduth, J. W. Hummel, S. M. Lesch, D. L. Corwin,
C. Yang, C. S. Daughtry and W. C. Bausch (2003). ”Remote-and
ground-based sensor techniques to map soil properties.”Photogrammetric Engineering & Remote Sensing 69 (6):
619-630. https://doi.org/10.14358/PERS.69.6.619.
Bartholomeus, H. (2009). The influence of vegetation cover on the
spectroscopic estimation of soil properties .
Bartholomeus, H., L. Kooistra, A. Stevens, M. van Leeuwen, B. van
Wesemael, E. Ben-Dor and B. Tychon (2011). ”Soil Organic Carbon mapping
of partially vegetated agricultural fields with imaging spectroscopy.”International Journal of Applied Earth Observation and
Geoinformation 13 (1): 81-88.
https://doi.org/10.1016/j.jag.2010.06.009.
Bartholomeus, H., M. E. Schaepman, L. Kooistra, A. Stevens, W. Hoogmoed
and O. Spaargaren (2008). ”Spectral reflectance based indices for soil
organic carbon quantification.” Geoderma 145 (1-2):
28-36. https://doi.org/10.1016/j.geoderma.2008.01.010.
Bayer, A. D., M. Bachmann, D. Rogge, A. Muller and H. Kaufmann (2016).
”Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in
a Semiarid Environment.” IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing 9 (9): 3997-4010.
https://doi.org/10.1109/JSTARS.2016.2585674.
Bellon-Maurel, V., E. Fernandez-Ahumada, B. Palagos, J.-M. Roger and A.
McBratney (2010). ”Critical review of chemometric indicators commonly
used for assessing the quality of the prediction of soil attributes by
NIR spectroscopy.” TrAC Trends in Analytical Chemistry29 (9): 1073-1081.
https://doi.org/10.1016/j.trac.2010.05.006.
Ben-Dor, E., S. Chabrillat, J. A. M. Demattê, G. R. Taylor, J. Hill, M.
L. Whiting and S. Sommer (2009). ”Using Imaging Spectroscopy to study
soil properties.” Remote Sensing of Environment 113 :
S38-S55. https://doi.org/10.1016/j.rse.2008.09.019.
Brook, A. and E. B. Dor (2011). ”Supervised vicarious calibration (SVC)
of hyperspectral remote-sensing data.” Remote Sensing of
Environment 115 (6): 1543-1555.
https://doi.org/10.1016/j.rse.2011.02.013.
Capolupo, A., L. Kooistra, C. Berendonk, L. Boccia and J. Suomalainen
(2015). ”Estimating Plant Traits of Grasslands from UAV-Acquired
Hyperspectral Images: A Comparison of Statistical Approaches.”ISPRS International Journal of Geo-Information 4 (4):
2792-2820. https://doi.org/10.3390/ijgi4042792.
Castaldi, F., R. Casa, A. Castrignanò, S. Pascucci, A. Palombo and S.
Pignatti (2014). ”Estimation of soil properties at the field scale from
satellite data: a comparison between spatial and non‐spatial
techniques.” European Journal of Soil Science 65 (6):
842-851. https://doi.org/10.1111/ejss.12202.
Castaldi, F., S. Chabrillat, A. Jones, K. Vreys, B. Bomans and B. Van
Wesemael (2018). ”Soil organic carbon estimation in croplands by
hyperspectral remote APEX data using the LUCAS topsoil database.”Remote Sensing 10 (2): 153.
https://doi.org/10.3390/rs10020153.
Castaldi, F., A. Hueni, S. Chabrillat, K. Ward, G. Buttafuoco, B.
Bomans, K. Vreys, M. Brell and B. van Wesemael (2019). ”Evaluating the
capability of the Sentinel 2 data for soil organic carbon prediction in
croplands.” ISPRS Journal of Photogrammetry and Remote Sensing147 : 267-282.
https://doi.org/10.1016/j.isprsjprs.2018.11.026.
Castaldi, F., A. Palombo, F. Santini, S. Pascucci, S. Pignatti and R.
Casa (2016). ”Evaluation of the potential of the current and forthcoming
multispectral and hyperspectral imagers to estimate soil texture and
organic carbon.” Remote Sensing of Environment 179 :
54-65. https://doi.org/10.1016/j.rse.2016.03.025.
Croft, H., N. Kuhn and K. Anderson (2012). ”On the use of remote sensing
techniques for monitoring spatio-temporal soil organic carbon dynamics
in agricultural systems.” Catena 94 : 64-74.
https://doi.org/10.1016/j.catena.2012.01.001.
Demattê, J. A. M., A. C. Dotto, L. G. Bedin, V. M. Sayão and A. B. e
Souza (2019). ”Soil analytical quality control by traditional and
spectroscopy techniques: Constructing the future of a hybrid laboratory
for low environmental impact.” Geoderma 337 : 111-121.
https://doi.org/10.1016/j.geoderma.2018.09.010.
Demattê, J. A. M., C. T. Fongaro, R. Rizzo and J. L. Safanelli (2018).
”Geospatial Soil Sensing System (GEOS3): A powerful data mining
procedure to retrieve soil spectral reflectance from satellite images.”Remote Sensing of Environment 212 : 161-175.
https://doi.org/10.1016/j.rse.2018.04.047.
Denis, A., A. Stevens, B. van Wesemael, T. Udelhoven and B. Tychon
(2014). ”Soil organic carbon assessment by field and airborne
spectrometry in bare croplands: accounting for soil surface roughness.”Geoderma 226-227 : 94-102.
https://doi.org/10.1016/j.geoderma.2014.02.015.
Diek, S., M. Schaepman and R. de Jong (2016). ”Creating Multi-Temporal
Composites of Airborne Imaging Spectroscopy Data in Support of Digital
Soil Mapping.” Remote Sensing 8 (11).
https://doi.org/10.3390/rs8110906.
Eswaran, H., E. Van Den Berg and P. Reich (1993). ”Organic carbon in
soils of the world.” Soil science society of America journal57 (1): 192-194.
https://doi.org/10.2136/sssaj1993.03615995005700010034x.
Franceschini, M. H. D., J. A. M. Demattê, F. da Silva Terra, L. E.
Vicente, H. Bartholomeus and C. R. de Souza Filho (2015). ”Prediction of
soil properties using imaging spectroscopy: Considering fractional
vegetation cover to improve accuracy.” International Journal of
Applied Earth Observation and Geoinformation 38 : 358-370.
https://doi.org/10.1016/j.jag.2015.01.019.
Frazier, B. and Y. Cheng (1989). ”Remote sensing of soils in the eastern
Palouse region with Landsat Thematic Mapper.” Remote Sensing of
Environment 28 : 317-325.
https://doi.org/10.1016/0034-4257(89)90123-5.
Gallo, B., J. Demattê, R. Rizzo, J. Safanelli, W. Mendes, I. Lepsch, M.
Sato, D. Romero and M. Lacerda (2018). ”Multi-Temporal Satellite Images
on Topsoil Attribute Quantification and the Relationship with Soil
Classes and Geology.” Remote Sensing 10 (10).
https://doi.org/10.3390/rs10101571.
Gehl, R. J. and C. W. Rice (2007). ”Emerging technologies for in situ
measurement of soil carbon.” Climatic change 80 (1):
43-54. https://doi.org/10.1007/s10584-006-9150-2.
Geladi, P. (2003). ”Chemometrics in spectroscopy. Part 1. Classical
chemometrics.” Spectrochimica Acta Part B: Atomic Spectroscopy58 (5): 767-782.
https://doi.org/10.1016/S0584-8547(03)00037-5.
Gholizadeh, A., D. Žižala, M. Saberioon and L. Borůvka (2018). ”Soil
organic carbon and texture retrieving and mapping using proximal,
airborne and Sentinel-2 spectral imaging.” Remote Sensing of
Environment 218 : 89-103.
https://doi.org/10.1016/j.rse.2018.09.015.
Gomez, C., R. A. V. Rossel and A. B. McBratney (2008). ”Soil organic
carbon prediction by hyperspectral remote sensing and field vis-NIR
spectroscopy: An Australian case study.” Geoderma146 (3-4): 403-411.
https://doi.org/10.1016/j.geoderma.2008.06.011.
Guanter, L., H. Kaufmann, K. Segl, S. Foerster, C. Rogass, S.
Chabrillat, T. Kuester, A. Hollstein, G. Rossner and C. Chlebek (2015).
”The EnMAP spaceborne imaging spectroscopy mission for earth
observation.” Remote Sensing 7 (7): 8830-8857.
https://doi.org/10.3390/rs70708830.
Guerschman, J. P., M. J. Hill, L. J. Renzullo, D. J. Barrett, A. S.
Marks and E. J. Botha (2009). ”Estimating fractional cover of
photosynthetic vegetation, non-photosynthetic vegetation and bare soil
in the Australian tropical savanna region upscaling the EO-1 Hyperion
and MODIS sensors.” Remote Sensing of Environment113 (5): 928-945.
https://doi.org/10.1016/j.rse.2009.01.006.
Hbirkou, C., S. Pätzold, A.-K. Mahlein and G. Welp (2012). ”Airborne
hyperspectral imaging of spatial soil organic carbon heterogeneity at
the field-scale.” Geoderma 175-176 : 21-28.
https://doi.org/10.1016/j.geoderma.2012.01.017.
Homolová, L., M. E. Schaepman, P. Lamarque, J. G. Clevers, F. de Bello,
W. Thuiller and S. Lavorel (2014). ”Comparison of remote sensing and
plant trait‐based modelling to predict ecosystem services in subalpine
grasslands.” Ecosphere 5 (8): 1-29.
https://doi.org/10.1890/ES13-00393.1.
Jakob, S., R. Zimmermann and R. Gloaguen (2017). ”The Need for Accurate
Geometric and Radiometric Corrections of Drone-Borne Hyperspectral Data
for Mineral Exploration: MEPHySTo—A Toolbox for Pre-Processing
Drone-Borne Hyperspectral Data.” Remote Sensing 9 (1).
https://doi.org/10.3390/rs9010088.
Jandl, R., M. Rodeghiero, C. Martinez, M. F. Cotrufo, F. Bampa, B. van
Wesemael, R. B. Harrison, I. A. Guerrini, D. d. Richter Jr and L. Rustad
(2014). ”Current status, uncertainty and future needs in soil organic
carbon monitoring.” Science of the total environment468 : 376-383.
https://doi.org/10.1016/j.scitotenv.2013.08.026.
Jobbágy, E. G. and R. B. Jackson (2000). ”The vertical distribution of
soil organic carbon and its relation to climate and vegetation.”Ecological applications 10 (2): 423-436.
https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
Keesstra, S. D., J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A.
Cerdà, L. Montanarella, J. N. Quinton, Y. Pachepsky, W. H.
van der Putten, R. D. Bardgett, S. Moolenaar, G. Mol, B. Jansen and L.
O. Fresco (2016). ”The significance of soils and soil science towards
realization of the United Nations Sustainable Development Goals.”SOIL 2 (2): 111-128.
https://doi.org/10.5194/soil-2-111-2016.
Kühnel, A. and C. Bogner (2017). ”I n‐situ prediction of soil organic
carbon by vis–NIR spectroscopy: an efficient use of limited field
data.” European Journal of Soil Science 68 (5): 689-702.
https://doi.org/10.1111/ejss.12448.
Labate, D., M. Ceccherini, A. Cisbani, V. De Cosmo, C. Galeazzi, L.
Giunti, M. Melozzi, S. Pieraccini and M. Stagi (2009). ”The PRISMA
payload optomechanical design, a high performance instrument for a new
hyperspectral mission.” Acta Astronautica 65 (9-10):
1429-1436. https://doi.org/10.1016/j.actaastro.2009.03.077.
Lagacherie, P., F. Baret, J.-B. Feret, J. Madeira Netto and J. M.
Robbez-Masson (2008). ”Estimation of soil clay and calcium carbonate
using laboratory, field and airborne hyperspectral measurements.”Remote Sensing of Environment 112 (3): 825-835.
https://doi.org/10.1016/j.rse.2007.06.014.
Li, W., Z. Niu, H. Chen, D. Li, M. Wu and W. Zhao (2016). ”Remote
estimation of canopy height and aboveground biomass of maize using
high-resolution stereo images from a low-cost unmanned aerial vehicle
system.” Ecological Indicators 67 : 637-648.
https://doi.org/10.1016/j.ecolind.2016.03.036.
Liakos, K. G., P. Busato, D. Moshou, S. Pearson and D. Bochtis (2018).
”Machine learning in agriculture: A review.” Sensors18 (8): 2674. https://doi.org/10.3390/s18082674.
Lipper, L., P. Thornton, B. M. Campbell, T. Baedeker, A. Braimoh, M.
Bwalya, P. Caron, A. Cattaneo, D. Garrity and K. Henry (2014).
”Climate-smart agriculture for food security.” Nature climate
change 4 (12): 1068-1072.
https://doi.org/10.1038/nclimate2437.
Lobsey, C., R. Viscarra Rossel, P. Roudier and C. Hedley (2017).
”rs‐local data‐mines information from spectral libraries to improve
local calibrations.” European Journal of Soil Science68 (6): 840-852. https://doi.org/10.1111/ejss.12490.
McGwire, K. C., M. A. Weltz, J. A. Finzel, C. E. Morris, L. F.
Fenstermaker and D. S. McGraw (2012). ”Multiscale assessment of green
leaf cover in a semi-arid rangeland with a small unmanned aerial
vehicle.” International Journal of Remote Sensing 34 (5):
1615-1632. https://doi.org/10.1080/01431161.2012.723836.
Minu, S., A. Shetty, B. Gopal and L. H. Filchev (2016). ”Review of
preprocessing techniques used in soil property prediction from
hyperspectral data.” Cogent Geoscience 2 (1).
https://doi.org/10.1080/23312041.2016.1145878.
Mirzaee, S., S. Ghorbani-Dashtaki, J. Mohammadi, H. Asadi and F.
Asadzadeh (2016). ”Spatial variability of soil organic matter using
remote sensing data.” Catena 145 : 118-127.
https://doi.org/10.1016/j.catena.2016.05.023.
Mohamed, E., A. Saleh, A. Belal and A. A. Gad (2018). ”Application of
near-infrared reflectance for quantitative assessment of soil
properties.” The Egyptian Journal of Remote Sensing and Space
Science 21 (1): 1-14.
https://doi.org/10.1016/j.ejrs.2017.02.001.
Mondal, A., D. Khare, S. Kundu, S. Mondal, S. Mukherjee and A.
Mukhopadhyay (2017). ”Spatial soil organic carbon (SOC) prediction by
regression kriging using remote sensing data.” The Egyptian
Journal of Remote Sensing and Space Science 20 (1): 61-70.
https://doi.org/10.1016/j.ejrs.2016.06.004.
Mulder, V., S. De Bruin, M. E. Schaepman and T. Mayr (2011). ”The use of
remote sensing in soil and terrain mapping—A review.” Geoderma162 (1-2): 1-19.
https://doi.org/10.1016/j.geoderma.2010.12.018.
Nocita, M., A. Stevens, C. Noon and B. van Wesemael (2013). ”Prediction
of soil organic carbon for different levels of soil moisture using
Vis-NIR spectroscopy.” Geoderma 199 : 37-42.
https://doi.org/10.1016/j.geoderma.2012.07.020.
Nocita, M., A. Stevens, B. van Wesemael, M. Aitkenhead, M. Bachmann, B.
Barthès, E. B. Dor, D. J. Brown, M. Clairotte and A. Csorba (2015).
”Soil spectroscopy: An alternative to wet chemistry for soil
monitoring.” Advances in agronomy 132 : 139-159.
https://doi.org/10.1016/bs.agron.2015.02.002.
Omran, E. (2017). ”Rapid prediction of soil mineralogy using imaging
spectroscopy.” Eurasian Soil Science 50 (5): 597-612.
https://doi.org/10.1134/S106422931705012X.
Ontl, T. A. and L. A. Schulte (2012). ”Soil carbon storage.”Nature Education Knowledge 3 (10).
Pádua, L., J. Vanko, J. Hruška, T. Adão, J. J. Sousa, E. Peres and R.
Morais (2017). ”UAS, sensors, and data processing in agroforestry: A
review towards practical applications.” International journal of
remote sensing 38 (8-10): 2349-2391.
https://doi.org/10.1080/01431161.2017.1297548.
Peng, X., T. Shi, A. Song, Y. Chen and W. Gao (2014). ”Estimating soil
organic carbon using VIS/NIR spectroscopy with SVMR and SPA methods.”Remote Sensing 6 (4): 2699-2717.
https://doi.org/10.3390/rs6042699.
Peón, J., C. Recondo, S. Fernández, J. F. Calleja, E. De Miguel and L.
Carretero (2017). ”Prediction of Topsoil Organic Carbon Using Airborne
and Satellite Hyperspectral Imagery.” Remote Sensing9 (12). https://doi.org/10.3390/rs9121211.
Roberts, D. A., D. A. Quattrochi, G. C. Hulley, S. J. Hook and R. O.
Green (2012). ”Synergies between VSWIR and TIR data for the urban
environment: An evaluation of the potential for the Hyperspectral
Infrared Imager (HyspIRI) Decadal Survey mission.” Remote Sensing
of Environment 117 : 83-101.
https://doi.org/10.1016/j.rse.2011.07.021.
Romero, D. J., E. Ben-Dor, J. A. Demattê, A. B. e Souza, L. E. Vicente,
T. R. Tavares, M. Martello, T. F. Strabeli, P. P. da Silva Barros and P.
R. Fiorio (2018). ”Internal soil standard method for the Brazilian soil
spectral library: Performance and proximate analysis.” Geoderma312 : 95-103.
https://doi.org/10.1016/j.geoderma.2017.09.014.
Rossel, R. V., D. Walvoort, A. McBratney, L. J. Janik and J. Skjemstad
(2006). ”Visible, near infrared, mid infrared or combined diffuse
reflectance spectroscopy for simultaneous assessment of various soil
properties.” Geoderma 131 (1-2): 59-75.
https://doi.org/10.1016/j.geoderma.2005.03.007.
Scharlemann, J. P., E. V. Tanner, R. Hiederer and V. Kapos (2014).
”Global soil carbon: understanding and managing the largest terrestrial
carbon pool.” Carbon Management 5 (1): 81-91.
https://doi.org/10.4155/cmt.13.77.
Schillaci, C., L. Lombardo, S. Saia, M. Fantappiè, M. Märker and M.
Acutis (2017). ”Modelling the topsoil carbon stock of agricultural lands
with the Stochastic Gradient Treeboost in a semi-arid Mediterranean
region.” Geoderma 286 : 35-45.
https://doi.org/10.1016/j.geoderma.2016.10.019.
Schwartz, G., E. Ben-Dor and G. Eshel (2012). ”Quantitative analysis of
total petroleum hydrocarbons in soils: comparison between reflectance
spectroscopy and solvent extraction by 3 certified laboratories.”Applied and Environmental Soil Science 2012 .
https://doi.org/10.1155/2012/751956.
Steinberg, A., S. Chabrillat, A. Stevens, K. Segl and S. Foerster
(2016). ”Prediction of Common Surface Soil Properties Based on Vis-NIR
Airborne and Simulated EnMAP Imaging Spectroscopy Data: Prediction
Accuracy and Influence of Spatial Resolution.” Remote Sensing8 (7). https://doi.org/10.3390/rs8070613.
Stenberg, B., R. A. V. Rossel, A. M. Mouazen and J. Wetterlind (2010).
”Visible and near infrared spectroscopy in soil science.” Advances
in agronomy 107 : 163-215.
https://doi.org/10.1016/S0065-2113(10)07005-7.
Stevens, A., M. Nocita, G. Tóth, L. Montanarella and B. van Wesemael
(2013). ”Prediction of soil organic carbon at the European scale by
visible and near infrared reflectance spectroscopy.” PloS one8 (6): e66409.
https://doi.org/10.1371/journal.pone.0066409.
Stevens, A., T. Udelhoven, A. Denis, B. Tychon, R. Lioy, L. Hoffmann and
B. van Wesemael (2010). ”Measuring soil organic carbon in croplands at
regional scale using airborne imaging spectroscopy.” Geoderma158 (1-2): 32-45.
https://doi.org/10.1016/j.geoderma.2009.11.032.
Stevens, A., B. van Wesemael, H. Bartholomeus, D. Rosillon, B. Tychon
and E. Ben-Dor (2008). ”Laboratory, field and airborne spectroscopy for
monitoring organic carbon content in agricultural soils.”Geoderma 144 (1-2): 395-404.
https://doi.org/10.1016/j.geoderma.2007.12.009.
Stuart, B. H. (2004). Infrared spectroscopy: fundamentals and
applications , John Wiley & Sons.
Stuffler, T., C. Kaufmann, S. Hofer, K. Förster, G. Schreier, A.
Mueller, A. Eckardt, H. Bach, B. Penné and U. Benz (2007). ”The EnMAP
hyperspectral imager—An advanced optical payload for future
applications in Earth observation programmes.” Acta Astronautica61 (1-6): 115-120.
https://doi.org/10.1016/j.actaastro.2007.01.033.
Tóth, G., T. Hermann, M. R. da Silva and L. Montanarella (2018).
”Monitoring soil for sustainable development and land degradation
neutrality.” Environmental monitoring and assessment190 (2): 1-4. https://doi.org/10.1007/s10661-017-6415-3.
Toth, G., A. Jones and L. Montanarella (2013). ”The LUCAS topsoil
database and derived information on the regional variability of cropland
topsoil properties in the European Union.” Environ Monit Assess185 (9): 7409-7425.
https://doi.org/10.1007/s10661-013-3109-3.
Tziolas, N., N. Tsakiridis, E. Ben-Dor, J. Theocharis and G. Zalidis
(2019). ”A memory-based learning approach utilizing combined spectral
sources and geographical proximity for improved VIS-NIR-SWIR soil
properties estimation.” Geoderma 340 : 11-24.
https://doi.org/10.1016/j.geoderma.2018.12.044.
Usha, K. and B. Singh (2013). ”Potential applications of remote sensing
in horticulture—A review.” Scientia horticulturae 153 :
71-83. https://doi.org/10.1016/j.scienta.2013.01.008.
Vaudour, E., J.-M. Gilliot, L. Bel, J. Lefevre and K. Chehdi (2016).
”Regional prediction of soil organic carbon content over temperate
croplands using visible near-infrared airborne hyperspectral imagery and
synchronous field spectra.” International Journal of applied earth
observation and geoinformation 49 : 24-38.
https://doi.org/10.1016/j.jag.2016.01.005.
Vaudour, E., C. Gomez, Y. Fouad and P. Lagacherie (2019). ”Sentinel-2
image capacities to predict common topsoil properties of temperate and
Mediterranean agroecosystems.” Remote Sensing of Environment223 : 21-33. https://doi.org/10.1016/j.rse.2019.01.006.
Vohland, M., M. Ludwig, S. Thiele-Bruhn and B. Ludwig (2017).
”Quantification of Soil Properties with Hyperspectral Data: Selecting
Spectral Variables with Different Methods to Improve Accuracies and
Analyze Prediction Mechanisms.” Remote Sensing 9 (11).
https://doi.org/10.3390/rs9111103.
Wang, B., C. Waters, S. Orgill, J. Gray, A. Cowie, A. Clark and D. Li
Liu (2018). ”High resolution mapping of soil organic carbon stocks using
remote sensing variables in the semi-arid rangelands of eastern
Australia.” Science of the Total Environment 630 :
367-378. https://doi.org/10.1016/j.scitotenv.2018.02.204.
Whitehead, K. and C. H. Hugenholtz (2014). ”Remote sensing of the
environment with small unmanned aircraft systems (UASs), part 1: A
review of progress and challenges.” Journal of Unmanned Vehicle
Systems 2 (3): 69-85.
https://doi.org/10.1139/juvs-2014-0006.
Woodcock, C. E., R. Allen, M. Anderson, A. Belward, R. Bindschadler, W.
Cohen, F. Gao, S. N. Goward, D. Helder and E. Helmer (2008). ”Free
access to Landsat imagery.” SCIENCE VOL 320: 1011 .
Wu, H. and Z. L. Li (2009). ”Scale issues in remote sensing: a review on
analysis, processing and modeling.” Sensors (Basel)9 (3): 1768-1793. https://doi.org/10.3390/s90301768.
Xu, Y., S. E. Smith, S. Grunwald, A. Abd-Elrahman and S. P. Wani (2017).
”Incorporation of satellite remote sensing pan-sharpened imagery into
digital soil prediction and mapping models to characterize soil property
variability in small agricultural fields.” ISPRS journal of
photogrammetry and remote sensing 123 : 1-19.
https://doi.org/10.1016/j.isprsjprs.2016.11.001.
Zhang, C. and J. M. Kovacs (2012). ”The application of small unmanned
aerial systems for precision agriculture: a review.” Precision
agriculture 13 (6): 693-712.
https://doi.org/10.1007/s11119-012-9274-5.