
A Review on Soil Organic Carbon Estimation via Remote Sensing
Approaches

HIGHLIGHTS:

• Soil reflectance spectroscopy used for estimation of soil organic carbon
content.

• Visible near infrared-shortwave infrared sensors based on energy-matter
interaction.

• Demand of multivariate statistical procedures to study soil characteristics.

ABSTRACT

Current review focuses on developments during past time on RS practices in
VNIR-SWIR regions designed for estimation of soil organic carbon (SOC) con-
tent. Soil reflectance spectroscopy finds extensive applications such as sensors
set-up on satellites, aircrafts as well as Unmanned Aerial System (UAS). This
review briefly discusses research as well as studies on soil organic carbon analy-
sis by employing RS practices. It is detected that prediction correctness lessens
from Unmanned Aerial Systems (UASs) towards satellite platforms, although,
machine learning help in superior production of calibration models. For coping
with numerous challenges related to SOC observation of large region, hyper-
spectral sensors set-up on forthcoming satellite missions, airplanes as well as
Unmanned Aerial System (UAS) provide special potential. Additionally, mer-
its as well as demerits of individual approach are also briefly discussed here.

Keywords: Remote Sensing (RS), Soil Organic Carbon (SOC), Visible near
infrared-shortwave infrared (VNIR-SWIR), Spaceborne, Airborne, Unmanned
Aerial System (UAS).

1. Introduction

Soil is a mixture of organic as well as inorganic parts and their amount change
from place to place or within the same place (Jandl, Rodeghiero et al. 2014).
Owing to this, estimation of soil components (both quantitative as well as qual-
itative) is a burdensome process (Gehl and Rice 2007). Some logical as well as
coherent datum intended to obtain information regarding soil organic carbon
content (SOC) estimation must be required for the purpose to optimize moni-
toring as well as mapping capacity (Angelopoulou, Tziolas et al. 2019). SOC
holds an integral part on carbon cycle and approximately 1500 Gt of carbon is
stored in soils at 1 m depth (Jobbágy and Jackson 2000), (Scharlemann, Tanner
et al. 2014). Additionally, SOC is a part of Organic Matter (OM) and has in-
fluence on physical, chemical, biological characteristics of soil ecosystem (Ontl
and Schulte 2012). Eswaran et al., (Eswaran, Van Den Berg et al. 1993) stated
some hurdles to estimate correct global carbon content. These are because of
high spatial changeability of soil organic carbon, variableness of soil kinds which
contains unpredictable estimates, inaccessibility of valid data as well as changes
in plants and land usage.
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Various traditional processes were used for SOC monitoring but they are labori-
ous as well as expensive (Omran 2017). Studies were conducted to explore and
apply other revolutionary procedures for all types of environments and all kinds
of soil (Jandl, Rodeghiero et al. 2014) i.e., use of Remote Sensing (RS) practice
is efficient, low cost in addition to environmentally sound aspect for analysis of
various soil characteristics (Xu, Smith et al. 2017) such as SOC estimation etc.
(Vaudour, Gilliot et al. 2016). Visible near infrared-shortwave infrared (VNIR-
SWIR) sensors (find RS usages) work on principle of energy-matter interaction
(Schwartz, Ben-Dor et al. 2012). Part of electromagnetic radiations (falling
on soil exterior) that is reflected from soil surface is recorded as a spectrum
which is enough to produce information (both qualitative as well as quantita-
tive) regarding soil characteristics (Nocita, Stevens et al. 2015). In VNIR-SWIR,
characteristic vibrations take place (Mohamed, Saleh et al. 2018) in visible re-
gion (400-700nm) i.e., electronic transitions occur which produce absorption
bands linked to chromophore while on the other hand, in NIR-SWIR (700-2500
nm) weak overtones or such vibrations take place owing to extending as well as
bending of some bonds such as N-H, O-H, as well as C-H bonds etc. (Rossel,
Walvoort et al. 2006), (Stuart 2004). Association amongst SOC as well as
electromagnetic radiations in VNIR, SWIR region has already been reported in
laboratory conditions (Bartholomeus, Schaepman et al. 2008), (Stevens, Nocita
et al. 2013), (Nocita, Stevens et al. 2013). In addition to laboratory trials,
numerous studies have also been conducted in real field conditions founded on
manned as well as unmanned airborne system, and satellite platforms (Gomez,
Rossel et al. 2008). However, these practices have restrictions for direct SOC
estimation including vegetation cover, soil wetness etc. (Nocita, Stevens et al.
2013), (Bartholomeus 2009). Furthermore, there is a demand of some multivari-
ate statistical procedures called Chemometrics to associate spectral signatures
with soil characteristics (Geladi 2003).

One of the most widely employed practice is application of partial least squares
regression (PLSR) for reporting direct association among variables (Peng, Shi
et al. 2014). That’s the basic reason of increased usage of machine learning
algorithms for correlation procedures (Stenberg, Rossel et al. 2010), (Liakos,
Busato et al. 2018).

This review article emphasizes on current research of remote sensing procedures,
state-of- art procedures as well as instruments for current SOC estimation.

2. Remote sensing data sources

For renewal as well as monitoring of SOC crossways VNIR-SWIR spectral span,
remote sensing (RS) via various sources gave statistics streams. Various kinds
of sensors (in case of imaging spectroscopy) are set up on airborne (Castaldi,
Chabrillat et al. 2018) or else spaceborne platforms. As a result, Unmanned
Aerial Systems (UASs) are widely used to perform succeeding generation of
hand-sized hyperspectral imagers (Aldana-Jague, Heckrath et al. 2016). Brief
explanation of remote sensors requirements for SOC estimations are given below:
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2.1. Spaceborne

Spaceborne remotely sensed imagery possess the power to generate spatial maps
of higher soil horizon due to association of soil’s definite chemical bonds as well
as electromagnetic radiations. With inauguration of first satellite in 1980s, op-
tical satellite multispectral imagery finds extensive applications in SOC estima-
tion (quantitative) (Frazier and Cheng 1989). Additionally, owing to availabil-
ity of Hyperion spaceborne system, usage of hyperspectral data also increased
(Castaldi, Casa et al. 2014). However, their application for soil study was
restricted owing to essential atmospheric, geometric, radiometric data amend-
ment, obstacles in uncovering naked regions in one image (Demattê, Fongaro et
al. 2018), as well as hurdles associated with vegetation cover (Barnes, Sudduth
et al. 2003). Owing to these reasons studies on SOC estimation via satellite
sensors are not many (Croft, Kuhn et al. 2012). Nowadays there is a remarkable
change in SOC estimation as well as mapping founded on spaceborne data. One
of the major achievements in this regard is relevant USGS policy variation (for
dispersion of Landsat data freely) (Woodcock, Allen et al. 2008). Additionally,
upcoming hyperspectral sensors i.e., Environmental Mapping and Analysis Pro-
gram (EnMAP) shortly give unprecedental statistics for SOC estimation across
VNIR-SWIR spectral span (Stuffler, Kaufmann et al. 2007).

2.2. Airborne

Spatial evaluation of soil environment gives correct mapping of changeability in
agricultural field via Airborne hyperspectral imaging (Stevens, van Wesemael
et al. 2008). It is also useful for data collection to divide a place in agreement
with soil heterogeneity (Mulder, De Bruin et al. 2011). Airborne set-up sensors
exhibit flexibleness for a specific measurement time window giving power to
choose optimal flight condition and work under an extraordinary-cloud coverage
(Usha and Singh 2013).

2.3. Unmanned Aerial System (UAS)

From past few years, UAS is an efficient as well as low price platform for en-
vironmental monitoring (Whitehead and Hugenholtz 2014). Owing to usage
of innovative sensors, low cost, development in sensor’s size as well as spectral
resolution UASs have wide range of uses. Both spaceborne characteristics (i.e.,
brief revisit period) as well as airborne platforms (including an extraordinary
resolution) are combined in UAS, and it is the distinctive characteristic of UAS
to give resolution required on the way to protect diversity of agri-environmental
landscapes (Pádua, Vanko et al. 2017). Inspite of these merits, research related
to soil characteristics analysis is restricted owing to restricted payload, restricted
flight duration as well as issues of image processing (Zhang and Kovacs 2012).

3. Review

3.1. Uses of remote sensing statistics in SOC estimation

For mapping soil characteristics, statistics via satellite sensors find its uses as
auxiliary variables. On behalf of this purpose, forecasting of SOC spatial change-
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ability as well as progress of high-quality maps via combination of geostatistical
methods with variety of remote sensed variables is more correct as compared
to simple Kriging (Mirzaee, Ghorbani-Dashtaki et al. 2016), (Wang, Waters et
al. 2018). Schillaci et al., (Schillaci, Lombardo et al. 2017) customized set of
topographical as well as environmental covariates with a Stochastic Gradient
Treeboost for assessment of SOC stocks-Landsat 7ETM+ was used to get RS
data and results showed that panchromatic Band 8 resulted in superior forecast-
ing as compared to NDVI. Modal et al., (Mondal, Khare et al. 2017) founded
from RS data that variables such as radiance, moisture, as well as plant vege-
tation condition indication affect SOC dispersal to a great extent. Castaldi et
al., (Castaldi, Palombo et al. 2016) studied power of 3 upcoming satellite hy-
perspectral imagers (EnMAP, PRISMA (Labate, Ceccherini et al. 2009) as well
as HyspIRI (Roberts, Quattrochi et al. 2012)) in comparison with ALI besides
Hyperion (EO-1) for SOC estimation. For stimulation of spectral statistics via
upcoming satellite imagers, spectra in laboratory set-up were resampled in accor-
dance with sensor’s spectral as well as radiometric requirements. Owing to this
a regional soil spectral library having 160 samples and datum from LUCAS soil
database were used. On behalf of result analysis, PLSR was employed intended
for model standardization Ratio of Performance to Interquartile Range (RPIQ)
(Bellon-Maurel, Fernandez-Ahumada et al. 2010). For local database results
from resampled data are superior varied as of 𝑅2 = 0.36 for Sentinel-2 and 𝑅2

= 0.51 for PRISMA. Outcomes obtained from LUCAS database have lesser 𝑅2

i.e., varied from 0.06 to 0.26 for Hyperion as well as PRISMA correspondingly
(Angelopoulou, Tziolas et al. 2019).

Steinberg et al., (Steinberg, Chabrillat et al. 2016) worked on estimation and
study of prediction correctness via simulated statistics of forthcoming satellite
sensor EnMAP in comparison with airborne AHS-160. Results confirmed simi-
larity among soil spectral reflectivity obtained via sensors beside satellite sensor.
To make progress in simulated EnMAP statistics, resolution of sampling strat-
egy is crucial. For forecasting soil as well as soil organic matter characteristics,
Gallo et al., (Gallo, Demattê et al. 2018) employed PLSR algorithm on da-
tum obtained from naked soil composite image. Gholizadeh et al., (Gholizadeh,
Žižala et al. 2018) stated that for obtaining an extraordinary-quality informa-
tion on fluctuations in SOC, Sentinel-2 is more reliable as compared to airborne
sensors. For that reason, they used modest SVM model to direct prediction
models over spectral signature of Sentinel-2 as well as a set of spectral marks.
B4 as well as B5 after B11 and B12 gave superior SOC as well as Sentinel-2
spectral band association. Additionally, some other spectral marks i.e., BI, BI2,
GNDVI as well as SATVI also resulted in strong association with SOC. Castaldi
et al., (Castaldi, Hueni et al. 2019) observed that to express SOC changeability
at both inside area as well as at geographical level spectral resolution as well
as spectral properties are sufficient. For variety of pilot sites, they established
Partial Least Square Regression (PLSR) as well as Random Forest (RF) mod-
els by making use of Sentinel-2 RPD values obtained by this way varied from
1.0-2.6. Vaudour et al., (Vaudour, Gomez et al. 2019) also reported identical
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results. Table 1 summarizes SOC analysis by employing spaceborne platforms.

3.2. Airborne

Power of airborne hyperspectral sensor 160 (AHS, Caravan International Cor-
poration, USA) for SOC content estimation for naked place of soil kinds was
assessed by Stevens et al., (Stevens, Udelhoven et al. 2010). Spectral span
changes from 430 nm to 2540 nm. Received spectra were linked through 325
soil samples having SOC content varied from 7-61 gC/ kg. Owing to hetero-
geneousness in mineralogy as well as soil humid content, there was decline in
reflectance from sandy to colluvial-alluvial soils. When findings of PLSR, Pe-
nalized Spline Regression (PSR) as well as SVM for worldwide calibration were
matched, it became clear that SVM was the most efficient as well as suitable
approach (𝑅2 = 0.74) owing to large datum.

There is a demand of atmospheric amendments as well as suitable weather cir-
cumstances in case of airborne data since large pixel size as well as changing stan-
dard of sensor’s strength in addition to sensitivity may cause numerous problems
(Brook and Dor 2011). Hbirkou et al., (Hbirkou, Pätzold et al. 2012) worked on
assessing power of airborne hyperspectral sensor HyMap (Integrated Spectron-
ics, Sydney, Australia) in addition to studied consequences of soil raggedness as
well as vegetation cover towards SOC projection models at field level. Complete
experiment is carried out in dry weather. PLSR models from thorough datum
(n = 204) produced results with 𝑅2 = 0.83 which in specific places varied from
0.34-0.73. Soil raggedness greatly affect model’s correctness as most negative
conditions giving 𝑅2 = 0.34. Comparable findings were reported by Lagacherie
et al., (Lagacherie, Baret et al. 2008).

Applications of RS techniques have numerous restrictions (Ben-Dor, Chabrillat
et al. 2009) however, research on naked soil is recommend for data achieved
via airborne mounted sensors (Denis, Stevens et al. 2014). Franceschini et al.,
(Franceschini, Demattê et al. 2015) worked on spectral combination of naked soil
having photosynthetic as well as non-photosynthetic vegetation. Statistics was
achieved via ProSpecTIR V-S sensor (SpecTIR LLC, Reno, N). Guerschman et
al., (Guerschman, Hill et al. 2009) suggested linear unmixing methodology for
naked soil fractional cover analysis. There were 89 collected samples which were
split into four categories in accordance with naked soil fractional cover quartile.
PLSR models were employed for individual category. From results it became ob-
vious that soil spectral albedo reduces by upsurging in organic matter (OM) as
well as clay content. However, forecasting of OM content in laboratory environ-
ment having 𝑅2 = 0.70 was more correct in contrast to airborne hyperspectral
sensors having 𝑅2 = 0.33. Residual Spectral Unmixing (RSU), a spectral unmix-
ing practice was established by Bartholomeus et al., (Bartholomeus, Kooistra et
al. 2011) for elimination of vegetation effect of mixed pixels as well as enhancing
SOC changeability analysis in enclosed maize fields.

Diek et al., (Diek, Schaepman et al. 2016) produced multi-temporal composites
via Airborne Prism Experiment (APEX) in addition to making use of crop rota-
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tion to escalate naked soil regions. For hiding of green vegetation as well as for
non-agricultural places, various spectral evidence in addition to renovated agri-
cultural field block map was employed consecutively. Nevertheless, for XOM
analysis, 𝑅2 value was 0.39 ± 0.04 which showed that besides vegetation cover,
some other elements need to be considered such as soil wetness as well as ragged-
ness. Bayer et al., (Bayer, Bachmann et al. 2016) suggested a feature-founded
forecasting model for SOC estimation founded on naked soil field spectra in
HyMap’s spectra resolution. Iterative Spectral Mixture Approach was employed
for resolving problem of mixed pixels giving 45.4 % upsurge in model range. Lit-
tle predictions were due to various kinds of vegetation, low spatial resolution
as well as decreased correctness of geo-correction applications. Castaldi et al.,
(Castaldi, Chabrillat et al. 2018) suggested bottom practice for SOC estima-
tion purposes by making use of existing advanced great soil spectral collections.
Owing to this LUCAS topsoil datum (Toth, Jones et al. 2013) was merged
along with APEX sensor statistics. Correctness of model was examined via en-
tirely independent verified datum producing comparable RMSE of 4.3 gC/ kg
to conventional procedures (RMSE = 3.6 gC/ kg).

Vohland et al., (Vohland, Ludwig et al. 2017) examined various spectral vari-
able selection procedures such as Competitive Adaptive Reweighted Sampling
(CARS) (an approach that “iteratively retains informative variables”) as well
as genetic algorithm (GA) to enhance predictions. Results showed that PLSR
models based on fuel spectrum produced inferior findings when compared with
spectral variable selection i.e., GA provided 𝑅2 = 0.85 for airborne dimensions
in case of SOC estimation. Peón et al., (Peón, Recondo et al. 2017) corre-
lated predictions obtained via Hyperion as well as AHS consecutively. They
concluded that both sensors have comparable spectral associations in red region
chiefly at 610 as well as 679-681 nm. Main findings regarding SOC estimation
employing usage of airborne platforms are summarized in table 2.

3.3. Unmanned Aerial Systems (UASs)

For variety of environmental as well as climate variable estimation founded on
UAS applications development was made (McGwire, Weltz et al. 2012), (Li,
Niu et al. 2016), (Capolupo, Kooistra et al. 2015) but these platforms are not
employed for soil environment observing. As far as there is just 1 finding for SOC
estimation (Aldana-Jague, Heckrath et al. 2016) by employing multispectral
Mini-MCA6 from Tetracam Inc. (450-1050 nm) (Chatsworth, CA, USA) on-
board a UAS platform on the way to assess its effectiveness for SOC predictions.
Optimum conditions for flight compaign were cloudless sky, little vegetation
shelter, as well as dehydrated soil. Suggested procedure has excellent power for
SOC monitoring employing an algorithm producing mean SVM coefficient of
determination of 0.95 as well as a RMSE of 0.21 % in cross authentication in
comparison with dry combustion laboratory procedures. Table 3 showed SOC
estimation study via UAS.

4. Discussion
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4.1. Summary of remote sensing technique

There are various kinds of RS practices founded on their three-dimensional, spec-
tral, chronological as well as radiometric resolution and platforms on where they
are set-up (shown in Fig. 1). Based on type of use, property to be quantified,
as well as correctness of results, suitable approach is selected.

Rapid as well as extensive uses of these applications are due to developments in
sensors requirements. Sensors set-up on satellite platforms have upgraded from
panchromatic towards multispectral as well as upcoming hyperspectral i.e., En-
MAP, HyspIRI as well as PRISMA. Owning to availability of such hyperspectral
sensors, essential information regarding soil’s condition, SOC estimation can be
obtained via RS applications. Additionally, to meet present as well as upcoming
demands for soil monitoring essential datum for correct up-to-date soil maps can
also be obtained via RS practice. RS practices have merits that these are en-
vironmentally sound practices to obtain data related to soil properties, provide
data of those sites/ places that are inaccessible, provide concise information and
lower the chances of laborious soil sampling work (Angelopoulou, Tziolas et al.
2019).

RS practices have issues that they possess little signal to noise proportion (Minu,
Shetty et al. 2016), little spectral resolution (Gomez, Rossel et al. 2008), as well
as undergo geometric and atmospheric manipulations (Jakob, Zimmermann et al.
2017). There exists another problem i.e., scale effects, for example, variations
take place when retrieval models as well as algorithms are derived at small
and large levels (Wu and Li 2009). Additionally, external parameters like soil
wetness, structure, raggedness, vegetation greatly affect correct quantitative
estimation via RS practices (Wu and Li 2009). Table 4 summarized some merits
as well as demerits of RS platforms for SOC monitoring (Angelopoulou, Tziolas
et al. 2019).

Multivariate statistical practices find applications for model calibration employ-
ing PLSR, and pre-processing practices changes in each study. However, for
generating prediction models for soil characteristics, there is significant interest
in connection with machine learning approaches having power to outperform
PLSR as shown in Fig. 2 (Angelopoulou, Tziolas et al. 2019).

4.2. Future of soil spectroscopy in SOC estimation

To reduce global as well as local level threats, capability of all stakeholders in
agricultural sections must be enhanced resulting in elimination of negative en-
vironmental pressures (Lipper, Thornton et al. 2014). Research is continued
for establishing SSLs. Production of SSLs take place at low price and with
little effort in comparison to analytical wet chemical procedures (accountable
for environmental issues owning to chemicals used in them) (Demattê, Dotto
et al. 2019), however, usage of SSLs was restricted on behalf of confined es-
timations. Nowadays confined regression procedures involving application of
spectral sources as well as geographical proximity were established for improv-
ing SOC estimation (Lobsey, Viscarra Rossel et al. 2017), (Tziolas, Tsakiridis et
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al. 2019). Additionally, lack in comparability among various studies is another
challenge. This is because of reason that similar procedures are not employed
for model assessment as well as correctness and particular data required for
making comparison between them is also missing in studies (Romero, Ben-Dor
et al. 2018).

Importance of RS platforms cannot be exaggerated for establishing new ob-
servational modalities and enhancing computing, observation, and description
practices at different levels in context of manageable progress objectives set by
United Nations (Anderson, Ryan et al. 2017). Hence, purpose of RS data is as a
proxy designed for SOC estimation resulting in large level maps within frame of
soil related indicators such as SDG indicator 15.3 (Tóth, Hermann et al. 2018),
(Keesstra, Bouma et al. 2016). Possibly, SSLs proved to be excellent founda-
tion for upcoming hyperspectral remote sensing of soils from space (Guanter,
Kaufmann et al. 2015) because they could find uses in support of Copernicus
program as well as for collaborative usage with mobile proximal soil (Kühnel
and Bogner 2017) besides airborne sensors (Castaldi, Chabrillat et al. 2018).

5. Conclusions

Current review focuses on development during past time on RS practices in
VNIR-SWIR regions designed for estimation of soil organic carbon (SOC) con-
tent. From this review paper, we summarized that for coping with numerous
challenges related to SOC observation of large region, hyperspectral sensors
set-up on forthcoming satellite missions, airplanes as well as Unmanned Aerial
System (UAS) provide special potential. Numerous studies have been conducted
regarding development in machine learning as well as exploring effectiveness of
soil spectroscopy application for studying soil characteristics. However, some
parameters like roughness, soil wetness, vegetation cover etc. affect satellite
imagery to a great extent. For this reason, a combination of both remote as
well as proximal sensing technologies should be taken into consideration for es-
tablishing low price as well as effective monitoring solutions having high spatial
resolution.
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Table 1

Summary of SOC analysis by employing spaceborne platforms.

Reference Sensor Spectral series (nm) Algorithm/ multivariate approach R2 RMSE (g/ kg) RPD
(Gomez, Rossel et al. 2008) Hyperion 400-2500 PLSR 0.51 0.73 1.43
(Mirzaee, Ghorbani-Dashtaki et al. 2016) Landsat ETM+ 450-2350 ANNSK 0.63 0.27 -
(Castaldi, Palombo et al. 2016) EnMAP 420-2500 PLSR 0.25-0.67 0.20-0.48 1.17-1.80
(Castaldi, Palombo et al. 2016) PRISMA 400-2500 PLSR 0.26-0.65 0.21-0.48 1.17-1.65
(Castaldi, Palombo et al. 2016) HyspIRI 380-2510 PLSR 0.23-0.60 0.22-0.48 1.15-1.45
(Steinberg, Chabrillat et al. 2016) EnMAP 420-2500 AutoPLSR 0.67 2.8 1.7
(Castaldi, Hueni et al. 2019) Sentinel-2 440-2200 PLSR/ RF - 1.9-25.2/ 2.0-18.6 1.1-2.6/ 1.0-2.2
(Vaudour, Gomez et al. 2019) Sentinel-2 440-2200 PLSR 0.56 1.23 1.51
(Gholizadeh, Žižala et al. 2018) Sentinel-2 440-2200 SVM - 0.0.8-0.24 1.60-1.92

Table 2

Summary of main findings regarding SOC estimation employing usage of air-
borne platforms.

@ >p(- 12) * >p(- 12) * >p(- 12) * >p(- 12) * >p(- 12) * >p(- 12) *
>p(- 12) * @ Reference & Sensor & Spectral series (nm) & Algorithm/
multivariate approach & R2 & RMSE (g/ kg) & RPD
(Stevens, Udelhoven et al. 2010) & AHS-160 & 430–2540 & PLSR, PSR, SVMR
& 0.53–0.89 & 3.13–6.22 & 1.47-3.15
(Stevens, van Wesemael et al. 2008) & AHS-160 & 430–2540 & PLSR &
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•

& 1.7 & 1.47
(Hbirkou, Pätzold et al. 2012) & HyMap & 450–2500 & PLSR & 0.34–0.83 &
0.76–1.10 & 1.14-2.32
(Franceschini, Demattê et al. 2015) & ProSpec TIR V-S & 400–2500 & PLSR
& 0.33 & 3.82 & 1.25
(Bartholomeus, Kooistra et al. 2011) & AHS-160 & 430–2540 & PLSR & 0.62
& 1.34 & 1.8
(Vaudour, Gilliot et al. 2016) & AISA-Eagle & 400–1000 & PLSR & 0. 44 &
4.05 & 1.4
(Peón, Recondo et al. 2017) & AHS-160 & 430–2540 & PLSR & 0.27–0.60 &
6.44–8.70 & 1.18-1.60
(Homolová, Schaepman et al. 2014) & AISA Dual system & 400–2450 & SLR,
SMLR, PLSR & 0.73 & 8.4 &

•

(Castaldi, Chabrillat et al. 2018) & APEX & 400–2500 & PLSR &

•

& 4.3 & 2.5
(Vohland, Ludwig et al. 2017) & HyMap & 450–2500 & PLSR & 0.73–0.85 &
0.19–0.25 & 1.94-2.62

Table 3

SOC estimation study via UAS.

Reference Sensor Spectral series (nm) Algorithm/ multivariate approach R2 RMSE (g/ kg) RPD
(Aldana-Jague, Heckrath et al. 2016) Mini-MCA6 450–1050 SVM 0.95 0.21 -

Table 4

Summary of merits as well as demerits of RS platforms for SOC monitoring
(Angelopoulou, Tziolas et al. 2019).

Platform Merits Demerits
Satellites Short revisit time, produced auxiliary records, gave free of cost information besides data of unreachable places Low signal to noise proportion, demand for geometric as well as atmospheric amendments, atmospheric absorption affecting with spectral quantities
Airborne Extraordinary spatial resolution, gave data of unreachable places, tools available in the range of (1000–2500 nm) Extraordinary working complication, expensive, demand for meteorological environment for remote sensing usage, official limitations for flight
Unmanned Aerial Systems (UASs) Extraordinary spatial resolution, designing of flight strategy by taking weather situations into consideration Restricted payloads, restricted flight period, demand for geometric as well as atmospheric amendments
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Fig. 1. An overview of various RS practices founded on their three-dimensional,
spectral, chronological as well as radiometric resolution for SOC estimation.
Black bordered signs represent upcoming remote sensing systems whereas x
symbol represent that Hyperion is not in working position. Reproduced with
permission from (Angelopoulou, Tziolas et al. 2019).

Fig. 2. Number of articles involving use of multivariate calibration technique
in each EO domain (PLSR stands for Partial Least Squares Regression, SMLR
stands for Stepwise Multiple Linear Regression, SVM stands for Support Vector
Machines, SLR stands for Simple Linear Regression, ANN stands for Artificial
Neural Networks, PSR stands for Penalized-spline Signal Regression and MLR
stands for Multiple Linear Regression). Reproduced with permission from (An-
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gelopoulou, Tziolas et al. 2019)
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