Cardiopulmonary diseases are leading causes of death worldwide, accounting for nearly 15 million deaths annually. Accurate diagnosis and routine monitoring of these diseases by auscultation are crucial for early intervention and treatment. However, auscultation using a conventional stethoscope is low in amplitude and subjective, leading to possible missed or delayed treatment. My research aimed to develop a stethoscope called SmartScope powered by machine-learning to aid physicians in rapid analysis, confirmation, and augmentation of cardiopulmonary auscultation. Additionally, SmartScope helps patients take personalized auscultation readings at home effectively as it performs an intelligent selection of auscultation points interactively and quickly using the reinforcement learning agent: Deep Q-Network. SmartScope consists of a Raspberry Pi-enabled device, machine-learning models, and an iOS app. Users initiate the auscultation process through the app. The app communicates with the device using MQTT messaging to record the auscultation, which is augmented by an active band-pass filter and an amplifier. Additionally, the auscultation readings are refined by a Gaussian-shaped frequency filter and segmented by a Long Short-Term Memory Network. The readings are then classified using two Convolutional Recurrent Neural Networks. The results are displayed within the app and LCD. After the machine-learning models were trained, 90% accuracy for cardiopulmonary diseases was achieved, and the number of auscultation points was reduced threefold. SmartScope is an affordable, comprehensive, and user-friendly device that patients and physicians can widely use to monitor and accurately diagnose diseases like COPD, COVID-19, Asthma, and Heart Murmur instantaneously, as time is a critical factor in saving lives.