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Key Points: 15 

 We introduce a 26-year record of entirely remotely sensed volumetric channel water 16 

storage anomaly.  17 

 Storage climatology amplitude represents (0.05-13.8%) terrestrial water storage 18 

variability but just just 0.2% of basin area. 19 

 This new measurement can be used to analize river spatial storage paderns in a way that 20 

was previously unprecedented. 21 

  22 

mailto:coss.31@osu.edu)


manuscript submitted to Geophysical Research Letters 

 

 23 

Abstract 24 

River channels store large volumes of water globally, critically impacting ecological and 25 

biogeochemical processes. Despite the importance of river channel storage, there is not yet an 26 

observational constraint on this quantity. We introduce a 26-year record of entirely remotely 27 

sensed volumetric channel water storage anomaly (VCWS) on 26 major world rivers.  We find 28 

mainstem VCWS climatology amplitude (VCWSCA) represents an appreciable amount of basin-29 

wide terrestrial water storage variability (median 2.2%, range 0.05-13.8% across world rivers), 30 

despite the fact that mainstem rivers themselves represent an average of just 0.2% of basin 31 

area. We find that two global river routing schemes coupled with land surface models 32 

reasonably approximate VCWSCA (within ±50%) in only 19.2 % and 23.1 % of rivers considered 33 

(by model).  These findings demonstrate VCWS is a useful measurement for assessing global 34 

hydrological model performance, and for advancing understanding of spatial patterns in global 35 

hydrology. 36 

Plain Language Summary 37 

Rivers are a critical part of global hydrology, but until now the variation in how much water 38 

rivers store has not been observed directly on the global scale. We created a 25 year recored of 39 

this measurement across 26 of the worlds largest rivers. We found that the storage variation in 40 

river main channels can represent up to 13% of the total water variation in a river basin despite 41 

only representing 0.2% of the total surface area. We also find that current methods to estimate 42 

this quantity through modeling (global river routing schemes coupled with land surface models) 43 

are only representing this quantity within 50% of the measured value on between 19.2% to 44 

23.1% of the rivers we studied. This demonstrates that this new measurement has value in 45 

assessing model proformance and advancing the way we think about how rivers function as 46 

water storage vessals. 47 
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1 Introduction 48 

While spaceborne sensors have revolutionized our understanding of global hydrology, some 49 

terms in the global water cycle remain poorly observed (Lettenmaier et al., 2015). For example, 50 

while the Gravity Recovery And Climate Experiment (GRACE; Tapley et al., 2004, 2019) and 51 

GRACE Follow-On satellite missions have provided invaluable measurements of global water 52 

storage variability (Rodell et al., 2018), they measure the total terrestrial water storage (TWS) 53 

anomaly, but do not provide information on the dynamics of individual TWS components such 54 

as soil moisture, snow, ground and surface water. 55 

Surface water storage (SWS) in natural and artificial reservoirs, floodplains, wetlands and river 56 

channels is critical to human society and ecosystems, but a complete picture of surface water 57 

storage dynamics from remote sensing measurements has remained elusive (Döll et al., 2012; 58 

Oki & Kanae, 2006).   Getirana et al. (2017) modeled SWS globally (neglecting anthropogenic 59 

impacts ) and estimated that on average, SWS contributes just 8% of overall TWS variability; it is 60 

thus difficult to estimate SWS by difference, i.e. by subtracting estimates of other storage terms 61 

from GRACE TWS measurements (e.g., Llovel et al., 2010; Swenson et al., 2008; Syed et al., 62 

2008).  Remote sensing measurements have shed light on storage change in major world 63 

floodplains (Papa et al., 2013; 2015), and on storage in global lakes and reservoirs (Gao et al., 64 

2012; Tortini et al., 2020).  However, an observation-based quantification of storage change in 65 

rivers has been lacking.  66 

A comprehensive dataset of observations of volumetric changes of water in rivers has not been 67 

previously presented, despite the potential value of such observations and the relative 68 

simplicity with which such variations can be measured. Time-varying river storage changes 69 
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would have value in understanding global water balance and within-watershed variations in 70 

TWS. Kim et al. (2009) demonstrated that rivers are major contributors (between 0 and 70%) to 71 

TWS variation by modeling river (channel and sub-surface), snow and soil moisture 72 

contributions to TWS; however, their work did not separate surface water from underground 73 

flow. As noted above, Getirana et al. (2017) found that in most basins the SWS:TWS variability 74 

ratio was low, but its maximum value (27%) for the Amazon basin indicated that, for some 75 

regions, surface water can play a major role in storage dynamics. We hypothesize that rivers 76 

are frequently hotspots of water storage variability, a part of watersheds where much greater 77 

water storage change tends to occur than elsewhere. E.g., major rivers typically exhibit 78 

seasonal water level measuring several meters, while GRACE TWS seasonal changes are usually 79 

< 100 mm across the entire basin. The global measurements of river storage presented in this 80 

paper let us quantify these dynamics and help validate model estimates of rivers, which 81 

increasingly simulate global river processes (Emery et al., 2018; Getirana, Kumar, et al., 2017; 82 

Yamazaki et al., 2011). Finally, storage variations of water in rivers is crucial for ecological and 83 

biogeochemical processes. Indeed, storage variations are driven by the same basic hydrologic 84 

quantities that drive hyporheic exchange: variations in river depth and surface area.  Because 85 

water surface elevations (Calmant et al., 2008; Coss et al., 2020; Tourian et al., 2016) and river 86 

surface water extent (Allen & Pavelsky, 2018; Huang et al., 2012; Yamazaki et al., 2015) datasets 87 

exist, long-term storage variations in rivers can be measured directly, by simply combining 88 

water surface elevation (WSE) and width observations, both of which are measured entirely 89 

from satellite platforms. 90 
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Here, we present the first published data product of volumetric river channel water storage 91 

anomaly (VCWS) over 26 of the world’s largest rivers using remotely sensed river WSEs and 92 

widths in the Global River Radar Altimetry Time Series 1 Kilometer Daily (GRRATS1kd, Coss et 93 

al., 2019a). In the context of VCWS we define “anomaly” as the difference between a value at a 94 

particular time, and some reference time, t (e.g. the first date in our dataset).  Storage change 95 

is the time derivative of storage, and can be calculated from the time derivative of the storage 96 

anomaly. GRACE TWS is also either a storage anomaly or storage change measurement; in this 97 

paper we use “TWS” to refer to storage anomaly. We use the new GRRATS1kd dataset to 98 

address three questions: How large are storage variations within river mainstems compared to 99 

basin storage variations measured by GRACE? What controls spatial patterns of storage 100 

variations in rivers? How do measured river storage variations compare to modeled values?  101 

2 Methods and Datasets 102 

 103 

GRRATS1kd is a one kilometer-one day resolution interpolated dataset spanning 26 of the 104 

world’s largest rivers  (Coss et al., 2019a); a list of the rivers is given in Table 1.  GRRATS1kd 105 

comprises satellite altimetry measurements of river WSE interpolated to 1 km daily resolution, 106 

and VCWS estimates computed from interpolated WSE and width. The virtual station data 107 

GRRATS (Coss et al., 2019b), is further described in (Coss et al., 2020). In this section, we briefly 108 

describe the datasets and major steps used to compute VCWS.  109 

The primary input datasets used to create GRRATS1kd are measurements of river WSE at the 110 

intersection of radar altimeter ground tracks and rivers, known as virtual stations (VS)  111 

(GRRATS, described by (Coss et al., 2020)), and river width measurements obtained using 112 
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RivWidthCloud, a Landsat processing algorithm for measuring river width based on Google 113 

Earth Engine (Yang et al., 2019).We use a total of 914 GRRATS VSs spanning 1992-2018 114 

leveraging seven altimeters (ERS-1, TOPEX/Poseidon, ERS-2, JASON-1, Envisat, OSTM/Jason-2, 115 

Jason-3). (https://doi.org/10.5067/PSGRA-SA2V1). Note that Coss et al. (2020) describes 116 

version 1 of GRRATS, which included only 2 altimeters. The VSs processed by Coss et al. (2020) 117 

included all locations on ocean-draining main-stem rivers with a mean width of 900m or 118 

greater. The 26 rivers used for this study are those with enough data density to interpolate a 119 

daily 1km resolution WSE (26 of 39).  RivWidthCloud was used to process a total of 53,924 120 

Landsat images in order to generate a total of 115.2 million (2.2 million after 1km averaging and 121 

quality filtering) channel width measurements.  122 

In GRRATS1kd, VCWS is computed as follows. First, we statistically reprocess the GRRATS VS 123 

data to remove outliers using a moving window t-test (Coss et al., 2020). Second,  we 124 

interpolate VS WSEs to 1 km daily resolution, by grouping VS data by altimeter constellation, 125 

bilinear interpolation of anomaly on a flow distance-time grid, smoothing, adding back a digital 126 

elevation model (DEM) value to convert back to absolute WSE (DEM selection is identical to the 127 

description in Coss et al., (2020)), and finally forcing WSEs to decrease downriver at each time 128 

step. Third, for each 1 km location downstream, we create a piecewise-linear relationship 129 

between WSE and width (𝑊) as described in the supplemental material (S1). These piecewise 130 

linear relationships between W and WSE can be represented as: = 𝑓𝑥(𝑊𝑆𝐸) .  131 

VCWS in units of km3 can be calculated by integrating the W-WSE relationships at location 𝑥: 132 

 𝑉𝐶𝑊𝑆𝑥,𝑡 = ∆𝑥 ∫ 𝑓𝑥(𝑊𝑆𝐸)𝑑𝑊𝑆𝐸
𝑊𝑆𝐸𝑥,𝑡
𝑊𝑆𝐸𝑥,𝑡1

, (1) 133 

https://doi.org/10.5067/PSGRA-SA2V1
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where the 𝑥 subscript indicates that these values (as well as the piecewise linear relationships 134 

between WSE and W) are specific to one 1 km segment, and ∆𝑥 is the segment resolution, and 135 

𝑡1 is the initial time in the series (typically a date in April 1992). Thus, VCWS has dimensions of 136 

cubic volume, and can be thought of as the product of river cross-sectional area anomaly (the 137 

integral term in Eq. 1, units of m2) and ∆𝑥. When we present timeseries of river total VCWS  138 

values, we simply sum 𝑉𝐶𝑊𝑆𝑥,𝑡 over all spatial locations 𝑥(Figure 1A). Note that reservoirs are 139 

flagged and removed.  140 

For model comparisons (described below)), we analyzed data from two global SWS datasets. 141 

Both the Hydrological Modeling and Analysis Platform (Getirana et al., 2012; Getirana, Peters-142 

Lidard, et al., 2017) and the Catchment-based Macro-scale Floodplain model (Yamazaki et al., 143 

2011; 2014) are river routing schemes capable of simulating river and floodplain dynamics. 144 

They are forced with surface runoff and baseflow simulated by land surface models. For the 145 

data we analyzed, temporal resolution is daily, spatial resolution is1° ( ~100 km) for HyMAP and 146 

0.1 ° (~10 km) for CaMa-Flood, and the temporal domain is 2002-2017 for HyMAP and 2000-147 

2011 for CaMa-Flood. 148 

 149 

Below, we present three separate analyses of climatologies constructed from our data. First we 150 

compare with GRACE long-term average TWS climatology. The GRACE data presented is from 151 

the Center for Space Research at the University of Texas at Austin ( 152 

http://www2.csr.utexas.edu/grace). The Data are monthly Mascon solutions spanning 2002-153 

2018, with a 0.25 degree resolution, with an 11 month gap from July of 2017- May of 2018 154 

between GRACE missions (Hosseini-Moghari et al., 2020; Save et al., 2016). For each basin, we 155 

http://www2.csr.utexas.edu/grace/
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create a 26 year VCWS climatology (VCWSC) summed over the length of the river (Figure 2B). 156 

We then measure the amplitude of VCWSC (VCWSCA). Some analyses below present VCWSCA 157 

normalized by basin drainage area (i.e. we divide the VCWSC amplitude value by the basin 158 

drainage area); we refer to this quantity as channel water storage (CWS) following the 159 

definition for GRACE TWS, CWS is presented with units of mm, and is comparable to GRACE. 160 

Figure 1 for example, shows the Mississippi VCWSCA is 7.12 km3 while the drainage are is 161 

3,244,506 km2. Dividing VCWSCA by drainage area results in a CWS of ~2.2mm. Basin areas are 162 

from the United Nations Chief Executive Officer Water Mandate (2016) and World Bank Major 163 

River Basins (2017)datasets. 164 

 In our discussion of the relationship of CWS to GRACE we reference mean slope data from 165 

(Coss et al., 2019b, 2020) and calculate an aridity index from net radiation from Clouds and the 166 

Earth's Radiant Energy System (CERES; Loeb et al., 2018; Wielicki et al., 1996) and Global 167 

Precipitation Climatology Project (GPCP; Adler et al., 2003). 168 

Second, we relate VCWSCA, mean river width, and basin area at 1km resolution and test if 169 

different basin area groups have different CWSA/width relationships. To compare VCWSCA 170 

regimes, we relate our VCWSCA data to basin drainage area from Frasson et al., (2019). We first 171 

distinguished groups by large increases in flow accumulation to avoid comparison across large 172 

tributaries. We then re-assimilate any divisions that did not achieve a change in basin drainage 173 

area>10%. Finally, we plot VCWSCA and mean width by 1 km section and perform a simple least 174 

squares liner regression on each group. To verify that their slopes are appreciably different, we 175 

use the Z test outlined in Paternoster et al.,(1998), with a threshold of 2 for failing the null 176 

hypotheses (slopes are the same). Third, we compare with global models by scaling the 177 
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GRRATS1kd data up to the model grid resolution (1 or 0.1 degrees), by summing all of our 1 km 178 

VCWS data points that fall within each model grid cell. We then examine two criteria: 1) The 179 

VCWSCA for all cells overlapping measured channel; 2) Correlation coefficient of each model 180 

cell, with the average measured VCWSCA from those measured sections that fell within the cell. 181 

3 Results and Discussion 182 

3.1 The magnitude of main stem CWS as it relates to GRACE TWS 183 

CWS ranges from 0.02 mm to 21.9 mm (on the Zambezi and Ayeyarwada rivers, respectively), 184 

with a mean value of 5.36 mm (Figure 2). As expected, the largest values are primarily from 185 

tropical basins. Table 1 shows the ratio of CWS  compared with GRACE TWS (CWS:TWS ratio 186 

hereafter) climatology data constructed from Save et al. (2016) for each of the study river 187 

basins Note that for GRACE comparison the Ganges and Brahmaputra basins have been 188 

combined.  CWS:TWS ratio ranges from 0.05% to 13.8% (on the Zambezi and Uruguay Rivers 189 

respectively), with an average of 3.5 % of GRACE TWS being measured in river main stems. That 190 

the main stem river contribute an average of several percent of all basin storage variability is 191 

perhaps surprising when considering that mainstem rivers constitute on average just 0.2% of 192 

total basin area (Table 1). This analysis highlights rivers as storage hotspots, parts of major 193 

drainage basins where an oversized fraction of storage variation takes place.  194 

CWS:TWS varies over two orders of magnitude on study rivers, evincing tremendous diversity 195 

across global basins in rivers’ role in overall basin storage. As the mainstem combines both 196 

upstream hydrologic processes and river hydraulics, we explored the role of basin aridity index 197 

(AI, defined as the ratio of long-term average potential evaporation to precipitation; see 198 

(McMahon et al., 2013) and mainstem slope in the CWS:TWS. We hypothesized that basins with 199 
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high AI would have a lower total runoff, and thus a lower CWS:TWS ratio, and that basins with 200 

low slope would likely have slower flow velocities, longer channel residence times, and thus 201 

larger CWS:TWS ratios. Note AI is presented for only 18 of the 25 basins due to data availability. 202 

Overall, we found that these hypotheses bear out in generally, but a predictive relationship was 203 

not identified. Specifically, we found that all three rivers with a CWS:TWS ratio above 5.5% 204 

were both low slope (<2727 cm/km) and low AI (<0.88). Similarly, 6 of the 8 rivers with a 205 

CWS:TWS ratio below 2% had a relatively high AI (>1). Neither slope nor AI correlated linearly 206 

with the CWS :TWS ratio, however. For example, the Tocantins and St Lawrence rivers have low 207 

AI (<  1), but still have a but still have a low CWS:TWS ratio (approximately 1%). We speculate 208 

that other factors such as spatiotemporal variability of precipitation patterns and snow storage 209 

also play a role; the Congo, for instance has a two peak hydrograph due to its position under 210 

the inter-tropical convergence zone (e.g., Alsdorf et al., 2016)), limiting the predictive power of 211 

the AI on basin hydrology (e.g. McMahon et al., 2013).). The human influence due to dams, and 212 

storage of water in large floodplains likely also play a role. As a final effort to understand 213 

CWS:TWS ratio, we hypothesized simply that basins with larger proportion of their surface area 214 

represented by the mainstem would similarly also have a larger CWS:TWS ratio. A linear 215 

relationship was identified between these quantities (see Table 1), with R2 = 0.54 and p = 0, but 216 

this is in part due to the Uruguay river, which can be considered an outlier, with CWS :TWS of 217 

nearly 14%. Excluding the Uruguay, R2 = 0.1717 and p = 0.042. This result means that the 218 

correlation between measured area and CWS:TWS ratio is only significant, when the Uruguay is 219 

included.  In summary, rivers are storage hotspots within major drainage basins, manifesting 220 

orders of magnitude larger storage variability than on average. There is significant variability 221 
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among river basins in how large a role the mainstem plays in basinwide storage dynamics, 222 

however, it is unclear what factors drive this variability. 223 

3.2 VCWSCA Regimes 224 

While we might expect VCWSCA to increase monotonically with distance downstream, this is 225 

frequently not the case. As we can see from the Congo (Figure 2) we sometimes see the 226 

opposite, and most frequently find that VCWSCA hotspots occur in a variety of locations on the 227 

mainstem of a river (Amazon, Mississippi). Controls on spatial patterns of VCWSCA in rivers are 228 

diverse and complex. The Amazon, for example, has large flood plain lakes that suppress 229 

surface elevation variation (Bonnet et al., 2008).  In an effort to quantify this phenomenon, we 230 

compare the relationship between VCWSCA  and mean channel width, and basin drainage area 231 

at 1 km resolution for 19 of the rivers for which drainage area data are available from Frasson 232 

et al. (2019). Generally, as width increases, the VCWSCA increases as well (Figure 4). This is not 233 

a uniformly applicable principle, however. Relative Amplitude (e.g. Figure 1a) does not increase 234 

uniformly in all rivers as they widen downstream. This means consideration of variation in 235 

space is critical for understanding individual rivers’ VCWS signature. However, some rivers 236 

further show distinct relationships that can be explained by drainage area. Because of the river 237 

sections being analyzed, only 15 of the 19 rivers can be subdivided into 2 or more 238 

distinguishable (drainage area difference > 10%) groups. For these 15 rivers, we are able to 239 

isolate two distinct patterns in the relationship between VCWSCA, mean width, and drainage 240 

area. For the first pattern (exemplified by Figure 4a), the slope of the VCWSCA: width 241 

relationship does not change with drainage area; for the second pattern (e.g. Figure 4b), the 242 

slope changes significantly. We find that 9 rivers show significant changes their VCWSCA: width 243 
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relationship with variation in drainage area (Table 1). While the basins with changing slope are 244 

broadly geographically distributed, all but one of the non-changing slope basins (Columbia) are 245 

near-equatorial (within 30°N of the equator). One possible explanation for this result is that as 246 

noted above, large floodplain lakes and floodplain-mainstem interaction in many equatorial 247 

basins control water level variation so dramatically, that changes in drainage area downstream 248 

produce no distinct change in the spatial patterns of storage variations. 249 

3.3 Model Comparisons 250 

While comparison of GRRATS1kd with HyMAP and CaMa-flood reveals promising similarity 251 

between model and measured data on some rivers (Figure 3), HyMAP and CaMa-flood 252 

reasonably approximate VCWSCA  in 23.1% and 19.2% of the rivers respectively. We define 253 

“reasonable” as having a climatology amplitude within ±50% (Wrzesien et al., 2017). We show 254 

the cumulative distribution function  of these amplitude comparisons for all rivers in Figure 3D 255 

(amplitude ratios<4) to provide a more comprehensive view of these data. With few 256 

exceptions, the model and measurements are generally in phase; Figure 3c is an exception. To 257 

assess the capabilities of the models to represent spatial patterns in VCWSCA, we also 258 

compared the Spatial Normalized VCWSCA, that is the spatial series of measured and modeled 259 

VCWSCA, after gridding GRRATS1kd onto the model grid. In general, we found that the models 260 

represent the seasonal amplitude better than spatial patterns. At the grid cell level, we 261 

compared seasonal amplitude from the models and our measurements. For CaMa-flood we find 262 

that 50% of rivers (26.9% that were statistically significant) have an average cell correlation >0 263 

(12% >0.5), with a maximum value of 0.8. HyMAP results show 62% of rivers (12.5% that were 264 

statistically significant) with an average cell correlation >0 (15% >0.5), with a maximum value of 265 
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0.9. Overall these results demonstrate that while models often represent the magnitude of this 266 

signal well, they tend to misrepresent the location of the water. Variation in scaling and model 267 

precipitation inputs could be responsible for many of the differences we see between the 268 

models and measured values. In some extreme cases, we looked at the VCWS components 269 

(width and height variation) from the model in greater depth and found that the standard 270 

deviation of height is often much higher than measured. It is possible that overestimation of 271 

height variation and simplified width variation heavily impact where this variation happens in 272 

the models. 273 

5 Conclusions 274 

Here we use a new remote sensing dataset (VCWS) to explore the role of major world rivers in 275 

the global water cycle. We find that rivers are storage hotspots, parts of major drainage basins 276 

where an exceptionally large fraction of total storage variation takes place. Specifically, by 277 

comparing our dataset with GRACE, we showed that the mainstem river accounted for a highly 278 

variable percentage (0.05%-13.8%) of all water storage changes within the basin, among the 279 

drainage basins analyzed. We hypothesize that a complex array of factors, including basin 280 

hydrology and river hydraulics, govern the ratio of river to total water storage change among 281 

basins; our preliminary results show that basic factors such as basin-averaged aridity index and 282 

river slope do not explain these variations. 283 

We find that within-river spatial patterns in channel water storage climatology anomaly are 284 

highly complex, and do not simply increase monotonically with distance downstream as we 285 

hypothesized they would. Frequently the opposite pattern emerges, though highly variable 286 

hotspot patterns are most common. We find that while the width and channel water storage 287 



manuscript submitted to Geophysical Research Letters 

 

climatology relationship generally changes with flow accumulation (expected behavior), this is 288 

not always the case (40% do not). The expected behavior generally occurs in near equatorial 289 

basins, highlighting that complex hydraulics (tributary backwater, ice jams etc.) might be a 290 

much more significant cause of storage variation in rivers at higher latitudes. Third, we find 291 

global river routing schemes tend to capture the amplitude of river storage variations more 292 

successfully than they represent the spatial nature of how rivers store their water. We find that 293 

models represent channel water storage climatology anomaly reasonably (±50%) in only 19.2% 294 

and 23.1% of rivers considered (by model). We also find that model cells significantly correlate 295 

spatially with measured data on just 26% and 12.5% of rivers (by model). We did not diagnose 296 

the cause of these discrepancies, but hypothesize that effects of anthropogenic management 297 

(not simulated by the models) play an important role. Future work should explore assimilation 298 

of channel water storage into such models, as well as integration with existing datasets 299 

measuring floodplains and reservoirs. Such work is even more important, given recent and 300 

future datasets that represent improved height and inundated area measurements from 301 

sensors such as Planet, Sentinel -2, Landsat 8+9 and the upcoming SWOT mission (Boshuizen et 302 

al., 2014; Drusch et al., 2012; Fu et al., 2009; MarkhamM et al., 2019; Roy et al., 2014). 303 
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Figure 1.  455 

 456 

Figure 1. Mississippi VCWS time series. Panel A is the complete record, while panel B shows 457 

constructed climatology (VCWSC). The Mississippi climatology amplitude (VCWSCA) is 7.1245 458 

km3 while the drainage area is 3,244,506 km2. Dividing VCWSCA by drainage area results in a 459 

CWS of ~2.2mm.  460 
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Figure 2.  461 

 462 

Figure 2.  CWS (basin normalized VCWSCA in mm) shown in greyscale. Individual 1km VCWSCA 463 

segment data shown in blue-yellow color scale rescaled between zero and 1 (following formula 464 

S1)  to highlight where rivers store their water. Every 100th point shown. 465 
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Figure 3.  467 

 468 

Figure 3 Storage change climatology plots for the Brahmaputra (A), Mississippi (B), and Indus (C) 469 

Rivers. HyMAP data is shown in solid blue, CaMa-flood is shown in dashed blue, and Measured 470 

VCWSCA is shown in red panel D shows the CDF of amplitude ratio comparisons from both 471 

models (amplitude ratios<4). 472 

 473 

Figure 4.  474 

 475 
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  476 
 477 

Figure 4. VCWSCA and mean width plots for the Amazon (A) and Uruguay (B) basins. Data is 478 

plotted by drainage area and fit with a least squares regression line per catchment regime. Data 479 

is grouped by large increases in in flow accumulation to avoid comparison across large 480 

tributaries. We then re-assimilated any divisions that did not achieve a change in basin drainage 481 

area>10 %. 482 

 483 

 484 

Table 1.  485 

Table 1 Percentage of GRACE TWS measure in main-stem CWS 486 

River 
% GRACE 

TWS 

Basin drainage 

area (km^2) 

CWS 

measured 

area 

(km^2) 

GRWL 

inundated 

area 

(km^2) 

CWS/ Width 

slope change 

with drainage 

area 

Amazon 2.50 5,888,268 12,702 60,673 No 

Amur 5.69 2,101,598 3,808 10,194 Yes 

Ayeyarwada 5.29 385,438 1,449 3,199 No 

Columbia 0.21 712,035 634 4,543 No 

Congo 2.19 3,689,187 8,362 18,813 Yes 

Ganges-

Brahmaputra 
3.02 1,792,035 5,293 

15,160 No 

Indus 2.20 864,062 935 4,330 - 

Kolyma 2.43 657,254 1,928 5,150 - 

Lena 0.51 2,467,695 9,507 20,836 - 

Mackenzie 2.57 1,805,884 2,559 14,749 - 

Mekong 2.89 773,231 2,244 18,197 Yes 

Mississippi 1.69 3,244,506 2,709 17,002 Yes 

Niger 0.45 2,115,246 642 7,019 - 



manuscript submitted to Geophysical Research Letters 

 

 487 

 488 

Ob 1.71 2,929,051 4,757 15,176 - 

Orinoco 4.96 937,352 2,899 7,537 No 

Parana 1.12 2,639,954 6,096 20,843 Yes 

SaoFrancisco 0.30 634,842 1,132 4,088 Yes 

StLawrence 1.15 1,055,756 1,531 6,606 - 

Tocantins 0.41 769,445 2,000 6,914 - 

Uruguay 13.81 265,786 1,872 2,183 Yes 

Volga 3.24 1,410,756 4,787 17,857 - 

Yangtze 7.62 1,908,837 4,460 15,550 Yes 

Yenisei 2.50 2,518,211 4,305 23,558 - 

Yukon 1.42 1,373,188 2,067 6,687 - 

Zambezi 0.05 1,373,188 504 7,186 Yes 


