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5. Solution after shut-in

After shut-in, self-similarity is broken. Moreover, fault slip undergoes

a transition from crack-like to pulse-like rupture (left plots). The more
critically stressed the fault is, the further the rupture propagates before
arresting. We determine the arrest time ¢ _and the arrest radius of the
rupture R , as function of the fault stress parameter T (right plot).
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Constraining the moment release associated with injection-induced
fault slip is of first importance to assess the seismic hazard of
subsurface fluid injections in the geo-energy industry. Experimental
and observational studies suggest that a significant part of the
moment release during injections may be due to aseismic motion.
Current models of injection-induced aseismic moment do not
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* Physics-based estimate of the radius at
arrest of injection-induced aseismic ruptures.
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Our model has the following assumptions:

* Predictions are in good agreement with
estimates of fluid injections from laboratory
experiments to industrial applications.

6. Aseismic moment

At the shut-in time, the moment release is calculated analytically for
the limiting cases of critically-stressed (T small) and marginally-
pressurized faults (T large), and numerically for intermediate cases
(left plot). The contribution of the shut-in stage to the aseimic moment
is computed numerically as function of T (right plot).

* Planar fault in an unbounded linearly elastic solid.

+ Slip plane slides with a constant friction coefficient.

* Fault zone has a constant permeability and no leak-off.

* Line-fluid source at constant injection rate followed by shut-in.
* Uniform in-situ stress tensor and pore pressure field.

We solve the problem via a fully-implicit boundary-element-based
method with elasto-plastic-like interfacial constitutive law.
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where f is the constant friction coefficient, a is the fault hydraulic diffusivity,
106 , n is the fluid dynamic viscosity, kw is the fault hydraulic transmissivity,
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Here, fault slip is self-similar (and diffusive). The rupture radius evolves as R(t) = AL(t)

where L(t) = v4at is the nominal position of the pore-pressure front (with a the fault

Aseismic moment, My [Nm)]
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Amplification factor, A = R(t)/L(t) r=r/R(t)
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