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Key Points:

e Pseudo global warming simulations used to dynamically downscale future climate
projections over Great Lakes Region.

e Future population growth can more than double population-adjusted heat stress above
high heat stress thresholds.

e Humidity change in the future amplified outdoor moist heat stress exposure in the region
across models.

Abstract

There are large uncertainties in our future projections of climate change at the regional scale,
with spatial variabilities not resolved adequately by coarse-grained Earth System Models
(ESMs). In this study, we use pseudo global warming simulations driven by end of the century
upper end RCP (Representative Concentration Pathway) 8.5 projections from 11 state-of-the-
art ESMs to examine changes in summer heat stress extremes using physiologically relevant
heat stress metrics (heat index and wet bulb globe temperature) over the Great Lakes Region
(GLR). These simulations, generated from a cloud-resolving model, are at a fine
spatiotemporal resolution to detect heterogeneities relevant for human heat exposure. These
downscaled climate projections are combined with gridded future population estimates to
isolate population versus warming contributions to population-adjusted heat stress in this
region. Our results show that a significant portion of summer will be dominated by critical

outdoor heat stress levels within GLR for this scenario. Additionally, regions with higher heat
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stress generally have disproportionately higher population densities. Humidity change

generates positive feedback on future heat stress, generally amplifying heat stress (by 24.2%
to 79.5%) compared to changing air temperature alone, with the degree of control of humidity
depending on the heat stress metric used. The uncertainty of the results for future heat stress
are quantified based on multiple ESMs and heat stress metrics used in this study. Overall, our
study shows the importance of dynamically resolving heat stress at population-relevant scales

to get more accurate estimates of future heat risk in the region.

Plan Language Summary

Global models used to predict future climate usually run over grids that are too large to
examine regional variations. So, here we use a numerical model driven by several global
models to predict future changes over the Great Lakes Region for smaller grids. These
predictions are then combined with predictions of future population change to show that
population growth will have a large impact on heat stress in the region. We also find that
humidity change will make extreme heat worse than if there was only increase in air
temperature. Our results show the importance of using smaller grid sizes to provide
information about future heat stress that might be more relevant for people living in these

regions than can be found from global models.
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1. Introduction

The Great Lakes Region (GLR) is the largest megalopolis in the world, home to almost 100
million people, and an ecologically important area of both the United States and Canada (Lang
& Knox, 2009; Wuebbles et al., 2019). It also plays a critical role in both country’s economies,
with major industries such as manufacturing, agriculture, and tourism (Krantzberg & De Boer,
2008; Bhavsar et al., 2010). The region is facing several challenges due to climate change,
including the threat of future extreme heat (Byun & Hamlet, 2018; Wuebbles et al., 2019). As
global temperatures continue to rise, the region is expected to experience more heat wave
days (Lopez et al., 2018). These heat waves can have serious consequences for human
health, as they can lead to heat stroke, dehydration, and other heat-related illnesses (Ebi et al.,
2021). They can also have negative impacts on the environment, such as through increased
droughts and wildfire (Kerr et al., 2018; Brown et al., 2021; Gamelin et al., 2022).

In addition to direct health and environmental risks, extreme heat can have indirect negative
impacts. Extreme heat can harm the region's agriculture industry by reducing crop yields and
by harming livestock (Tubiello et al., 2007; Jin et al., 2017). It can also affect tourism, as high
heat stress can make outdoor activities unpleasant and can lead to the closure of beaches and
other attractions (Matthews et al., 2021). Additionally, warming can put a strain on the region's
energy infrastructure, as increased air conditioning use can lead to higher demand for
electricity (Obringer et al., 2022; Tan et al., 2022).

To address these challenges and become resilient to future warming, it is important to develop
strategies for mitigating and adapting to future heat stress. This involves both improving heat
warning systems and emergency response plans, as well as implementing measures to reduce
heat-related health risks. It could also involve investing in technologies and infrastructure that
can help to reduce the impact of extreme heat. Planning relevant mitigation and adaptation
strategies require accurate estimates of future extreme heat. However, projections of extreme
heat from Earth System Model (ESMs) are frequently too coarse to appropriately resolve
regional warming signals (Pierce et al., 2009; Lloyd et al., 2021). For instance, populations in
the GLR are concentrated around the Great Lakes, but the coarse resolution at which ESMs

are run cannot isolate climate change at those relevant scales (Byun & Hamlet, 2018).



77 While statistical downscaling is often used to get regional warming signals from coarse ESM
78  outputs (Hayhoe et al., 2010; Byun & Hamlet, 2018), these methods presuppose an

79  unchanged distribution of the underlying data under different climate conditions (Spak et al.,
80 2007; Dixon et al., 2016; Lanzante et al., 2018), which is not useful for examining

81 discontinuous climatology, as often seen near water bodies, or for dealing with weather

82 extremes. Additionally, most future projections focus on air temperature, even though heat
83 stress depends on multiple additional factors, including humidity, wind speed, and radiation
84  (Anderson et al., 2013; Heo et al., 2019). To address these gaps, we use a pseudo global
85 warming (PGW) approach to estimate the range of end-of-the-century extreme heat stress
86 over the GLR for the shared socio-economic pathway 5 (SSP5), which is the worst-case

87  scenario equivalent to fossil fueled Representative Concentration Pathways (RCP) 8.5

88  scenario (Riahi et al., 2011). Our PGW approach uses data from 11 Coupled Model

89 Intercomparison Project phase 6 (CMIP6) ESMs to provide future projected changes to the
90 initial and boundary conditions (derived from reanalysis data) to the Weather Research and
91 Forecasting (WRF) model, which can be run at spatiotemporal scales relevant for isolating
92 regional climate change. We then combine these dynamically downscaled model outputs with
93  corresponding population projections to examine population-level heat stress exposure over
94  this region. The manuscript is divided into three main sections, with section 2 describing the
95 methods, section 3 presenting the main results, and section 4 discussing some of the

96 implications and limitations of the study.

97 2. Methods

98 2.1 Pseudo global warming simulations over the Great Lakes Region

99 The WRF model (version 4.2.2) with the Advanced Research WRF dynamic core (Skamarock
100 & Klemp, 2008) is used for both historical and future scenarios at a spatial resolution of 4 km
101 (J. Wang et al., 2022). For the historical scenario, WRF uses initial and boundary conditions
102  derived from the 3-hourly 0.25° European Centre for Medium-Range Weather Forecasts
103  atmospheric reanalysis of the global climate, version 5 (ERA5; Hersbach et al., 2020). The
104 lake surface temperature (LST) is derived from the National Oceanic and Atmospheric
105  Administration’s GLSEA satellite estimates (Schwab et al., 1999), which is at a spatial
106  resolution of 1.3 km and has been previously found to be a better source for the lake boundary

107  conditions than ERAS (J. Wang et al., 2022). The WRF model incorporates Thompson



108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137

microphysics (Thompson et al., 2004, 2008), the Rapid Radiative Transfer Model for GCMs
longwave and shortwave schemes (lacono et al., 2008), and the Unified Noah land surface
model by Chen and Dudhia (2001). Multi-layer urban canopy model with building energy and
building environment parameterizations (Martilli et al., 2002; Salamanca et al., 2010) are
coupled with Noah and the Mellor—=Yamada—Janiji¢ scheme (Janji¢, 1994) is used to simulate
the planetary boundary layer. While incorporating the urban canopy model increases
computational costs, this physics configuration has been found to better capture air
temperature, skin temperature, and wind speed diurnal cycles compared to experiments using
Noah LSM alone (J. Wang et al., 2023).

For the future scenario, we use a PGW approach (Kimura, 2007) to estimate near end-of-the-
century climate over GLR for the SSP5 scenario. We use 11 ESMs from CMIPG6 (see Table 1)
to provide future projected changes in near surface and upper-level variables that are needed
to drive the WRF simulations. These variables include 3-dimensional air temperature, specific
humidity, geopotential height, as well as surface pressure, sea-level pressure, and skin
temperature. The changes are calculated between past (1981-2010) and the future (2071-
2100) periods using monthly CMIP6 datasets. These changes are then added to the
corresponding 3 hourly values from ERA5 to generate new boundary conditions for WRF for
the future scenario. The new lower boundary conditions for lakes (that is the LST) is obtained
by adding the changes in skin temperature from ESMs to the GLSEA satellite derived LST.
Perturbations to wind patterns are not explicitly considered from the ESM data as they are
calculated by WRF based on the thermodynamic changes due to the new boundary conditions
of temperature, pressure, and specific humidity. While the lakes may not be accurately
represented in ESMs (with different parameterizations in different ESMs), their subgrid
changes in ESMs are the only available data source. Moreover, we mainly focus on the
changes over land in the present study. All ESMs show increases in air temperature and
specific humidity, with E3SM (Exascale Earth System Model; Golaz et al., 2019) being the
warmest and FGOALS (Flexible Global Ocean-Atmosphere-Land System; Zhou et al., 2014)

being the coolest when looking at the GLR regional temperature changes.

In addition to running the WRF with each individual ESM, an ensemble mean (ENS) is

generated by averaging the WRF outputs from the 11 simulations. We show results from WRF



138  driven by the ENS, E3SM and FGOALS to demonstrate a range of possibilities for the future
139  scenarios. Our main region of interest for most of the analysis is the bounding box around the
140 Great Lakes Basin (Fig. 1a), which we refer to as the GLR. Our model domain extends beyond
141  this region. The smaller region of interest compared to the entire model domain helps minimize

142  the boundary issues at the domain edges.

143  Table 1. Overview of ESMs used to run PGW simulations in the present study.

__ESMname Spatial resolution

ACCESS-CM2 1.25x1.88 Bi et al., 2020
CanESM5 2.79x2.81 Swart et al., 2019
FGOALS-f3-L 2.79 x 2.81 Zhou et al., 2014
MIROCG6 1.40x1.41 Tatebe et al., 2019
CESM-WACCM 1.88x2.5 Marsh et al., 2013
E3SM-1-1 1x1 Golaz et al., 2019
GFDL-CM4 2.00 x 2.50 Held et al., 2019
MPI-ESM1-2-LR 1.86 x 1.88 Jungclaus et al., 2013
CMCC-CM2-SR5 0.75x 0.75 Cherchi et al., 2019
EC-Earth3 1.12x1.13 Ddscher et al., 2022
IPSL-CM6A-LR 1.89x3.75 Boucher et al., 2020
NorESM2-LM 1.89x2.5 Seland et al., 2020

144
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Figure 1. Multiple regions of interest used in the present study. Sub-figure (a) shows the
model domain, the Great Lakes Basin, as well as the bounding box around the basin
representing the Great Lakes Region. Sub-figure (b) shows all urban clusters (in red) within

the region, as well as their normalized rural buffers (in green). Sub-figure (c) shows an
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example of a few urban clusters surrounding and including Detroit and their corresponding

normalized buffers. Basemap Source: Google

2.2 Calculating heat stress indices and their sensitivities to input factors

The human physiological response to heat depends on multiple factors, including air
temperature and relative humidity (Anderson et al., 2013; Chakraborty et al., 2022). To
estimate human-relevant heat stress exposure, here we consider two metrics of heat stress —
namely heat index and the wet bulb globe temperature. The heat index, also known as
apparent temperature, considers both temperature and moisture content of the air, with the
later impacting the body's ability to dissipate heat through sweating. This index is calculated in
multiple steps (Rothfusz, 1990). First, a simple formula (Eq. 1) is applied to calculate an initial

heat index value consistent with the results from Steadman (1979).
HI = 0.5 x [AT + 61 + [(AT-68) x 1.2] + (0.094RH)] (D

where AT is in °F and RH is in percentage. If the average of this value and the air temperature
is less than 80°F, this initial value is used as the final heat index. If the average is equal to or

above 80°F, a more complex formula (Eq. 2), called the Rothfusz regression, is used instead.

HI = -42.379 + 2.04901523 X AT + 10.14333127 x RH — 0.22475541 X AT X RH — 6.83783
X 1073 x AT? — 5.481717 X 1072 X RH? + 1.22874 x 1073 x AT? x RH + 8.5282 (2)

X 107* x AT x RH2 — 1.99 x 107° x AT? x RH?
Additional adjustments are made for low and high values of humidity. The heat index is used

by the U.S. National Weather Service (NWS) in operational heat warning systems.

Wet bulb globe temperature is the second heat index we use to measure heat stress. Itis a
weighted average of air temperature, natural wet-bulb temperature, and black globe
temperature. The black globe temperature considers radiant heat, air temperature, and wind
speed, making this a more comprehensive index that considers the effects of radiation and
wind on heat stress (Heo et al., 2019). In this study, wet bulb globe temperature is calculated
using Eq. 3, where SR and WS are solar insolation (in kW m™) and wind speed (in m s™),
respectively, and AT is in °C.

WBGT = 0.735 x AT + 0.0374 x RH + 0.00292 x AT x RH + 7.619 x SR - 4.557 x SR? -
0.0572 x WS - 4.064 (3)
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The heat indices are calculated for both the historical and future scenarios. In addition to
calculating these indices using all input variables from each scenario, we examine sensitivities
of the indices to their input factors through a perturbation analysis. This is done by keeping all
factors but one the same as the historical values and changing one of them to its future values.
Since air temperature and relative humidity are strongly correlated, to disentangle these
interactions, when we isolate the impact of temperature change on future heat stress, we keep
the specific humidity (not relative humidity) the same as the historical case. Taking the heat
indiex as an example, the difference between the overall change (both temperature and
relative humidity are from future scenarios) and the change due to only the increase in air

temperature represents the humidity feedback.

2.3 Estimating future population-adjusted heat stress extremes over land

While heat stress extremes are important, the regional impacts of extreme heat would depend
on the covariance of these extremes with populations. At coarse ESM resolutions, regional
hotspots cannot be resolved, which is why we need these high spatial and temporal resolution
regional climate simulations. We first subset our simulations to only consider values over land,
where the majority of the population lives. Then, we combine (grid-wise multiplication, see
below) our WRF simulations with downscaled 1 km population projections (Jones et al., 2020)
for the SSP5 scenario. For historical scenarios, the SSP5 population projections for the year
2020 are used, to represent present conditions, and for the future simulations, the average of
the projections for 2070, 2080, 2090, and 2100 to match the years used to generate the future
projected changes in the PGW approach. Although the WRF simulations are for the year 2018,
the Jones et al. (2020) dataset is only available every 10 years, and here we attempt to use
the same population dataset for consistency. Finally, we examine grid-wise population, heat
stress above critical thresholds, and population-adjusted heat extremes (person-hours) by
multiplying the WRF outputs with the spatially corresponding population estimates. All the
geospatial analysis of the model outputs are done on the Google Earth Engine platform
(Gorelick et al., 2017).

2.4 Separating the urban signal from the background climate

Urban areas are important hotspots of human-relevant heat impacts since they have higher

populations than nearby rural areas as well as local-scale warming (urban heat island effect;
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Qian et al., 2022). To estimate this urban signal, we first generate urban clusters based on
groups of contiguous urban grids, as used in the WRF surface dataset (Fig. 1b). For each
cluster, a normalized buffer area is defined such that this buffered area is approximately equal
to the area of the cluster it is associated with. We use an iterative method implemented on
Google Earth Engine (Gorelick et al., 2017) using a step size of 4 km to create these buffers.
Similar methods have often been used to determine the surface urban heat island intensity
using satellite observations (Chakraborty et al., 2021). Urban heat index and wet bulb globe
temperature islands are calculated for the GLR as the difference in the heat stress metrics
over land between the urban clusters and their buffered areas. Since urban clusters may
sometimes be within the buffer of another nearby cluster (see Fig. 1c), all urban grids are

masked out from the rural reference before calculating the background heat stress values.

3. Results

3.1 Heat stress extremes in the present and future

We first examine the distributions of hourly domain-averaged air temperature, heat index, and
wet bulb globe temperature over the entire model domain to provide baselines from these
simulations (Fig. 2). The mean summer air temperature increases from 19.2 °C in HIST to 29.2
°C in E3SM. The ensemble mean domain-averaged air temperature at the end of the century
is 25.9 °C (Fig. 2a). Similarly, the domain-averaged heat index increases from 19.4 °C in HIST
to 33.3 °C in E3SM. The U.S. NWS places heat risk into four main categories based on heat
index, namely “Caution” (>=80 °F and <90 °F or >=26.7 °C and <32.2 °C), “Extreme Caution”
(>=90 °F and <103 °F or >=32.2 °C and <39.4 °C), “Danger” (>=103 °F and <125 °F or >=39.4
°C and <51.7 °C), and “Extreme Danger” (>=51.7 °F). Although there are slight regional
differences in these thresholds, we choose the most common thresholds over the US. Based
on the model simulations, the mean domain-average heat index will cross into the “Danger”
territory in E3SM and into the “Extreme Caution” territory from ENS (Fig. 2b). Similarly, wet
bulb globe temperature can be categorized into “Low” (>=80 °F and <85 °F or >=26.7 °C and
<29.4 °C), “Moderate” (>=85 °F and <88 °F or >=29.4 °C and <31.1 °C), “High” (>=88 °F and
<90 °F or >=31.1 °C and <32.2 °C), and “Extreme” (>=90 °F or >=32..2 °C) (Mullin, 2022).
Although wet bulb globe temperature has not been an operational metric from the NWS, that
changed in June of 2022. The mean wet bulb globe temperature increases from 18.2 °C in
HIST to 26.3 °C for E3SM (23.9 °C for ENS). Although domain-averaged value does not cross

10
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into any of the critical thresholds, even for E3SM, a large fraction of the summer hours fall into

them (Fig. 2c). For instance, although none of the summer hours in HIST are in “High” or
above category, around 12% of the hours are for E3SM by the end-of-century (~0.3% for

ENS).
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Figure 2. Summertime distribution of domain-averaged hourly (a) air temperature, (b) heat

index, and (c) wet bulb globe temperature from the model simulations. The mean and standard

deviation are noted for each simulation. For heat index and wet bulb globe temperature, the
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U.S. National Weather Service thresholds for heat risk categories considered in the present

study are shown.

When we separate the hourly data into daytime and nighttime based on the presence and
absence, respectively, of incoming solar radiation, we expectedly see higher values during
daytime (Fig. 3). The mean daytime heat index touches the “Caution” territory even in the
coolest model (FGOALS; Fig. 3c). Similarly, mean wet bulb globe temperature from E3SM
touches the “Low” territory during daytime (Fig. 3e). For both daytime air temperature and heat
index, the spreads in hourly domain-averaged values are higher in the future compared to the
HIST simulation. This (higher standard deviation for future heat stress and air temperature) is
also seen for all summer hourly distributions (Figs 2a, 2b). On the other hand, for wet bulb
globe temperature, the spread remains either largely unchanged or reduced in the future
projections compared to the historical scenario. This is probably because, unlike heat index,
WBGT also depends on wind speed and solar radiation, which are negative feedbacks on

future wet bulb globe temperature (see Section 3.4).
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Figure 3. Summertime distribution of domain-averaged hourly (a) daytime air temperature, (b)
nighttime air temperature, (c) daytime heat index, (d) nighttime heat index, (e) daytime wet
bulb globe temperature and (f) nighttime wet bulb globe temperature from the model
simulations. The mean and standard deviation are noted for each simulation. For heat index
and wet bulb globe temperature, the U.S. National Weather Service thresholds for heat risk

categories considered in the present study (see Fig. 2) are shown.
3.2 Summertime heat stress exceedance over land

Since there is large spatial variability in climate over land, looking at domain-averaged values
does not provide a full picture of hotspots of heat stress extremes. So, we examine grid-wise
percentage hourly exceedance of the heat stress indices for a typical summer, this time
focusing on the land grids within GLR. Results are shown for the “Danger” category for heat
index (Fig. 4) and the “High” category for wet-bulb globe temperature (Fig. 5). In the HIST
simulation, the percentage of summer hours in the “Danger” category and above varies
between 0 and 2%, with larger values generally in the southwest of the region. In the future,
the percentage of hours rises significantly, varying from 0 to 30% for FGOALS, 0 to 45% for
ENS, and 0 to 80% for E3SM. Therefore, even if the FGOALS projections, representing the
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lower bound for SSP5, materialize, parts of the GLR would have heat indices in the “Danger”

category for close to 30% of the summer (and over half of the daytime hours). Some of these

hotspots are clearly seen, including over Chicago along the south-west shore of Lake Michigan

(Figs 4b 4c, 4d). Sudden changes in exceedances are also seen along the shores of most of

the lakes, which represents the coastal interactions that impact both temperature and humidity

(J. Wang et al., 2023).
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Figure 4. Spatial distribution of percentage of hours with heat index above the “Danger” heat
risk category for (a) HIST, (b) ENS, (c) FGOALS, and (d) E3SM simulations for a typical

summer.
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Similarly, for wet bulb globe temperature, the percentage of hours above the “High” category in

a typical summer is between 0 and 1.4% in HIST (Fig. 5). The upper bound will rise to 25% for

FGOALS, 30% for ENS, and 60% for E3SM. Overall, in the SSP5 scenario, future summer

heat would pose a significant heat risk for outdoor activities regardless of the model used. Like

Fig. 4, sharp gradients are seen along the shores of the Great Lakes and even the Atlantic

coastline visible in the southeast of GLR. In other words, along the Great Lakes coasts, the

lake breeze and other effects are dampening some of the heat risk.
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Figure 5. Spatial distribution of percentage of hours with wet bulb globe temperature above

the “High” heat risk category for (a) HIST, (b) ENS, (c) FGOALS, and (d) E3SM simulations for

a typical summer.

3.3 Present and future population-adjusted heat exposure

To get an estimate of human impacts of extreme heat, we should focus on where people live

(Tuholske et al., 2021). In addition to global warming, populations are projected to change

significantly over GLR under the SSP5 scenario (Pendall et al., 2017). The population-adjusted

heat risk, which we define here as the number of people in a grid multiplied by the number of
summer hours above critical heat stress thresholds, will rise substantially. For instance, for
heat index, the maximum person-hours above “Danger” category will be over an order of
magnitude higher than HIST for the ENS case (Figs 6a, 6b).

a HIST - Heat index L b ENS - Heat index b

50 108 2 50 ‘ E. 107 2

© ©

48 =D 48 10° 9
3

8 s g

346 8 346 103 3

= STLENGE=I b

4441 - E 441 10! ;

L8 2

421 10 c 421 " 1071 ¢

¢ s & 2 . 0 AR % o o

RSB o gl ) e e N % B

-92.5 -90.0 —87.5 -85.0 —82.5 -80.0 —=77.5 -75.0 3_’ -92.5 -90.0 —-87.5 -85.0 —-82.5 -80.0 —=77.5 -75.0 &’

Longitude Longitude

15



314

315

316
317
318
319
320
321
322
323
324

325
326
327
328
329
330
331
332
333
334
335
336

‘0 250 4000 661%

hours

i 0, o, 0,
S 500 [ Caution 497% 492% 503% " 400000~ 736%
= = Extreme S 3000 i
£ Caution 1< 449% S 300000 593%
= 1507 Danger = o 0 493%
c < 2000+ 338% 5
© 1004 Extreme o 3200000-
*é' - Danger é c
S 504 < 1000+ o 100000
o =
& o 0- = 0+
HIST ENS FGOALS E35M HIST ENS FGOALS E35M HIST ENS FGOALS E3SM

f h
B 250 9 o
C — -
£ 200- rov 0w 0% 929% | 3 300000
= [ Moderate 5 <

: c
£ 150-| =8 High 2 2000+ 606% Q 200000 4
c HEEl Extreme c o s
.2 100+ o 439% g
= = 1000 < 100000+
S 50 = o
Q =
g o 0- s 0+
HIST ENS FGOALS E35M HIST ENS FGOALS E35M HIST ENS FGOALS E35M

Figure 6. Population-adjusted heat stress over the Great Lakes Region. Sub-figs (a) and (b)
show person-hours above the “Danger” category for heat index for HIST and ENS,
respectively. The white grids have zero person-hours above the “Danger” category. Sub-fig (c)
shows overall population living in grids with heat index in “Caution” and above category for
more than 25% of summer, while (d) shows the number of cumulative million hours in each
category in the region for all simulations. Sub-fig (e) shows the million person-hours in each
category for all simulations. Sub-figs (f), (g), and (h) are similar to (c), (d), and (e), but for wet
bulb globe temperature. Percentage changes from the baseline are shown when baselines are

non-zero.

We calculate the total population in GLR who, currently or in the future, will live in regions
where the heat index lies in the “Caution” and above territory for 25% or more of the hours in
summer. This amounts to around 38 million for HIST and over 185 million (191.08 million for
E3SM, 188.59 million for ENS, and 186.87 million for FGOALS) for all the future scenarios.
Throughout the GLR, the number of hours above the “Caution” and above category increases
from 536 million in HIST to over 3544 million over E3SM. Similar increases are seen for million
hours above “Low” category for wet bulb globe temperature, with increases of around 929% for
E3SM for the baseline HIST simulation (606% for ENS). One goal of this analysis is to
examine population-level exposure to heat extremes and the role of population growth on
overall heat exposure in the region. To do this, we can compare the percentage change in
million person-hours of heat stress above thresholds to the percentage change in only heat

extremes without accounting for population. In all cases (Figs 6d, 6e, 6g, and 6h), the change
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in cumulative population-adjusted heat exposure is higher than the cumulative heat exposure.
For heat index, population growth increases person-hours of heat index above “Caution”
category by 11.3% for E3SM, 31.9% for ENS, and 45.9% for FGOALS. Results for all

scenarios and heat risk categories are compiled in Table 2.

Table 2: Summary of percentage increases in person-hours above heat stress categories

during summer at the end of the century due to population growth in the Great Lakes Region.

Percentage increase in person-hour exposure due to population growth (%)

Heat Index above Wet bulb globe temperature above
Scenario  Caution Extreme Danger Low Moderate High Extreme
Caution
ENS 31.9 43.4 121.4 62.1 69.3 78 89.4
FGOALS 45.9 60.2 123.2 72.4 78.6 91 95.3
E3SM 11.3 21.1 90.1 48.6 61.3 68.9 79.2

Here we only consider one estimate of future population, which is combined with all model
simulations. Therefore, since the change in person-hours is a function of both the population
growth and the ESM-simulated warming, the population contribution is always lower for the
warmer models (Table 2). Additionally, in all cases, the population growth contribution is larger
for higher heat stress categories. This would mathematically make sense if regions that have
higher heat stress have higher population growth in the future. In the GLR, higher populations
are generally seen in the southern parts, where it is much warmer, while populations are low or
close to zero in the northern parts, mainly in Canada. In the future, while populations will shift
to some of these northern regions according to the population projections (Fig. 6b), relative

population growth will still be higher in the warmer subregions.

An important pattern for examining population-adjusted heat stress is this spatial covariance
between population and mean summer heat indices. In all scenarios and for both heat index
and wet bulb globe temperature, more populated regions within GLR tend to have higher mean
heat stress (Fig. 7). This is seen from positive correlations between the two, even though the
variability in heat stress is not associated with the variability in population. In the future, the

sensitivity of heat index to unit change in population will decrease according to all the models.
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This suggests that population growth will tend to be higher in regions that have lower heat
stress within the GLR. This is seen for both heat index and wet bulb globe temperature.
Overall, regions within GLR with disproportionately stronger heat stress coincide with regions
with higher population in the present and this association is projected to become weaker in the

future.
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Figure 7. Distributions of population and heat indices over the Great Lakes Region. Plots show
grid-wise associations between population and mean summer (a) heat index and (b) wet bulb
globe temperature (against baseline population for HIST and against future population
projections for ENS, FGOALS, and E3SM). The distributions of the variables are shown on the
right and top (for baseline population) panels. Equations for lines of best fit between the

population and the heat indices, along with the coefficients of determination, are also noted.
3.4 Factor contributions to future heat stress

There has been increased discussion about humid heat, its changes in the past, and projected
increases in the future due to its greater relevance to human health (Sherwood & Huber, 2010;
Willett & Sherwood, 2012; Coffel et al., 2017; Pal & Eltahir, 2016; Raymond et al., 2020;

Mishra et al., 2020). Since increases in air temperature also influences moisture capacity, and

the GLR region has several local and regional moisture sources, it is important to understand
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the relative contributions of air temperature and relative humidity on future humid heat stress.
We find that, in all cases, the actual increase in heat stress is higher than what it would have
been had only the air temperature changed. Or, in other words, humidity change is a positive
feedback that amplifies future heat stress over GLR. This makes conceptual sense since an
increase in air temperature without a change in moisture amount (absolute vapor pressure)
would reduce relative humidity by increasing the saturation vapor pressure. However, in
reality, the absolute vapor pressure also increases in a wetter future (W. Wang et al., 2021),
meaning relative humidity will be higher than expected from changes in air temperature alone.
It is this relative humidity that modulates overall cooling ability though sweating, and thus the
physiological response to extreme heat ( Sherwood & Huber, 2010; Anderson et al., 2013;
loannou et al., 2022). However, the increase in air temperature still explains most of the
increase in mean heat stress over GLR (Fig. 8), ranging from 55.7% for wet bulb globe
temperature for FGOALS to over 80.5% for heat index for FGOAL.S. Regionally, more
variations are seen, though the contributions from air temperature still dominate (Fig. 8c). Of
note, the contributions from air temperature are consistently found to be higher for heat index
than for wet bulb globe temperature, which is because heat index is a strong function of air
temperature (Chakraborty et al., 2022; Sherwood, 2018).
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Figure 8. Contribution of factors to future heat stress. The bars show historical (a) heat index

and (b) wet bulb globe temperature, and corresponding future values for different scenarios,
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once by changing all factors to their future estimates, and again by only changing individual

factors to their future estimates and keeping historical values of other factors. The error bars
represent the stand deviation across space for each case. Sub-figures (c) and (d) show grid-
wise contribution of temperature to overall change in summer heat index and wet bulb globe

temperature, respectively, in the future for the ENS scenario.

The positive humidity feedback amplifying future heat stress is also seen when separating the
model results into daytime and nighttime. The air temperature contribution generally stays
between 50 and 80% of the overall change in heat stress metrics, with the humidity feedback
dominating slightly (temperature contribution ~49.6%) for nighttime wet bulb globe temperature
in FGOALS. For wet bulb globe temperature, we also examine the impact of the change in
wind speed and solar radiation (assuming these changes are independent of changes in air
temperature and specific humidity) and find their contributions to be minor in comparison to air
temperature and humidity. The contribution maxes out at -3.7% due to wind speed change on
daytime wet bulb globe temperature increase in FGOALS. Contributions from both wind speed
and solar radiation are negative, as in the changes in wind speed and solar radiation in the

future tends to reduce heat stress in all cases.
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Figure 9. Contribution of factors to future heat stress during day and night. The bars show
historical (a) daytime heat index and (b) daytime wet bulb globe temperature, and

corresponding future values for different scenarios, once by changing all factors to their future

20



420
421
422

423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

439

440
441
442

estimates, and again by only changing individual factors to their future estimates and keeping
historical values of other factors. The error bars represent the stand deviation across space for

each case. Sub-figures (c) and (d) are same as (a) and (b), but for nighttime.
3.5 Present and future urban heat stress signal

Urban areas are notable hotspots of heat risk due to higher population and heat islands. We
separate the heat stress into their urban and rural components and estimate heat stress
islands equivalent to commonly studied urban heat islands (Qian et al., 2022). We see larger
nighttime urban heat stress island compared to daytime values, which is consistent with both
observational and modeling estimates (Sarangi et al., 2021; Chakraborty et al., 2022).This
diurnality is retained in the future, with all models showing higher nighttime values for both
urban heat index and wet bulb globe temperature islands (Fig. 10). Changes in the urban heat
stress islands are minor, but with interesting distinctions. Daytime urban heat index island
generally decreases in the future while the nighttime values increase slightly, which is
consistent with the results in Sarangi et al. (2021). However, urban daytime wet bulb globe
temperature island increases during daytime and decreases during nighttime. This is
potentially related to the role of the other factors that are considered in wet bulb globe
temperature and the different sensitivity of this index to humidity. Note that there are several
simplifications in urban representation in these models that would strongly impact these results

(see Discussion).
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Figure 10. Urban heat stress signals in the present and future. The bar plots show overall,
daytime, and nighttime heat stress islands in the Great Lakes Region for different scenarios

using (a) heat index and (b) wet bulb globe temperature, respectively.
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4. Discussion

A large majority of studies on future warming have focused on air temperature (Poértner et al.,
2022), which ignores the impact of humidity and other factors on heat stress and how these
physical changes covary with demographic shifts. Additionally, many projections of future heat
stress use statistical downscaling techniques that cannot resolve real climate signals beyond
their assumed statistical distributions (Byun & Hamlet, 2018; Jang & Kavvas, 2015). Using
PGW simulations based on multiple ESM projections, we dynamically downscale future
climate projections, isolate the role of humidity on future summertime heat stress, and examine
spatial covariance between the heat hazard and population over GLR. Overall, major
increases in heat stress are projected under SSP5 in GLR towards the end of the century, with
a large percentage of summer hours exceeding critical heat risk thresholds defined by the U.S.
NWS. The role of humidity on overall heat stress is also substantial and can account for up to
half the future increase in heat stress, with regional variations. Of note, we find that the two
heat stress metrics currently used by the NWS have largely different sensitivities to humidity,
which can impact the magnitude of heat risk in future climate assessments. It is however
important to stress that the separation of the contribution of humidity from air temperature is
only done considering the direct effects. We assume that, while the water holding capacity
increases with temperature due to thermodynamic constraints, the specific humidity would not
change as a direct consequence of warming. However, higher temperatures can indirectly
increase specific humidity by modifying the surface energy budget, particularly
evapotranspiration, and strengthening the hydrological cycle. These impacts are harder to
isolate quantitatively, have multiple competing effects, and are strongly dependent on model
parameterizations. As such, our contribution estimates likely represent the upper bound for

humidity and the lower bound for air temperature.

The combined impact of high temperatures and humidity can have significant public health
consequences, particularly for vulnerable populations such as the elderly and those with pre-
existing health conditions (Mora et al., 2017). Positive associations are seen between heat
stress and population, suggesting disproportionate heat impacts when accounting for
population-level risks. This population growth will likely bring both opportunities and challenges
to the region, including the need for increased infrastructure, housing, and public services. It is

important for policy makers and decision makers to consider the potential impacts of
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population growth and take steps to manage and sustainably develop the region. For instance,
population growth and rising temperatures are both expected to increase the demand for air
conditioning (Obringer et al., 2022), which can further exacerbate heat stress events if
increased energy demands are not met. This lack of access to air conditioning was a mortality
factor during the 1999 Chicago heat wave (Naughton et al., 2002). Although urban areas do
not show significant changes in the local urban heat stress signal in the future, they still
support large population densities, leading to disproportionate impacts at the population scale.
As such, urban adaptation strategies, such as increasing access to cooling centers and
improving urban planning, will be important for optimizing adaptation to future heat stress

events in GLR.

It is important to discuss uncertainties in the present study that should be considered when
contextualizing these results. These uncertainties rise from, among other things, the scenarios
chosen, the model biases, and the population projections. Here we only focus on the RCP8.5
scenario, even though it has become less likely based on present pathways (Pielke Jr et al.,
2022). This is designed as a worst-case estimate, and we do not expect the core results and
insights to change for relatively cooler scenarios other than in terms of the numbers. Model
biases are potentially the biggest source of uncertainty. Since ESMs show large variability in
future climate estimates across models, we choose 11 ESMs to provide a range of possibilities
instead of a single estimate. There are similarly large uncertainties in WRF that rise from
representation of land cover, lakes, cloud parameterizations, and the model configuration
chosen (Sharma et al., 2014; Qian et al., 2022; J. Wang et al., 2022), though these
uncertainties are expected to be smaller in magnitude than the differences across ESMs. For
instance, no transient land cover change is considered here, which may influence surface
climate, though it is expected to be less important than the changes in atmospheric forcing in
the future. Moreover, since projected urban expansion is not accounted for in these WRF
simulations (Gao & O’Neill, 2020), we may be underestimating the urban heat stress islands.
While the urban signal was a minor component of the present analysis, future urban heat
stress estimates should consider urban growth. Finally, the population projections are
somewhat dated and statistically downscaled, which may overestimate future population

growth and insufficiently resolve local-scale demographic distributions.
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Conclusions

Uncertainties in regional-scale future climate change projections are prevalent, with coarse-
grained ESMs not resolving spatial variabilities sufficiently. This study uses pseudo global
warming simulations at spatiotemporal resolutions relevant for human heat exposure based on
11 state-of-the-art ESMs to examine changes in summer heat stress extremes in the GLR
using both heat index and wet bulb globe temperature. Combining these downscaled climate
projections with future population estimates reveals the population versus warming
contributions to heat stress in the GLR, with population growth almost doubling population-
weighted outdoor heat stress exposure in the region. Our results show that significant parts of
summer will experience critical outdoor heat stress in the GLR. Humidity change amplifies heat
stress compared to changing air temperature alone, with the humidity control depending on the
heat stress metric used. On the other hand, wind speed and shortwave radiation, which are
required to compute wet bulb globe temperature are negative feedbacks for future heat stress.
Overall, this study provides a range of future heat stress estimates based on multiple ESMs for
the upper end SSP5 scenario and highlights the importance of dynamically resolving heat

stress at population-relevant scales for more accurate regional heat risk assessments.
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