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Abstract 

Biological resuspension of sediments from the seafloor occurs when fish and other marine 

creatures search for food and shelter. In high-energy habitats, waves and currents dominate 

the resuspension of sediments, however, studies suggest that biological resuspension is the 

dominant process in areas below the wave action including the deep sea and in low energy 

zones such as lagoons and other sheltered basins. Biological resuspension is a highly 

punctuated process both in time and space, generating high concentration sediment plumes 

that quickly sink and disperse. It is therefore not surprising that despite its potentially large 

impact, no quantitative data exists regarding its extent and ecological impact in the ocean. 

To resolve the difficulty in monitoring and quantifying these short-live resuspension events, 

we develop a model named the footprint model that converts field measurements of 

horizontal sediment fluxes, into estimates of long-term average fluxes of biological 

resuspension. Measurements of the horizontal fluxes of the suspended sediments by off-

the-shelf instruments serve as an input to the footprint model, which are then analyzed by 

the algebraic equations of the model. Given a horizontal velocity profile, the model 

quantifies the sedimentation of heavy particles as a function of their size, initial distribution 

and advection. Flow measurements are then used to include the effect of dispersion by the 

turbulent flow. The document provides a detailed description of the model derivation and 

proposes techniques that can be used for validation of the model results.    
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1. Introduction 

 

Resuspension of sediments from the sea floor can potentially control key sedimentary 

processes such as remineralization rates, silica dissolution, denitrification and the quality 

and burial rate of organic matter and hence carbon sequestration (Inthorn et al. 2006, Yahel 

et al. 2008, Katz et al. 2009). Resuspension also plays a major role in sediment transport 

which affects sediment erosion, sediment accumulation (Vidal 1994, Stahlberg et al. 2006, 

Teague et al. 2006) and the distribution of organisms such as bacteria and filter feeders 

(Cotner 2000, Snelgrove and Butman 1994). As opposed to the so called “physical 

resuspension” that is generated by strong currents and waves, biological resuspension 

occurs at the bottom of the sea due to the activity of marine creatures such as fish. It has 

been suggested that in biologically rich areas such as coral reefs, biological resuspension 

dominant over physical resuspension. In deep sea regions where currents and waves are 

negligible, biological activity (and to some extent gas bursts) are the most likely mechanisms 

that can generate sediment resuspension, and yet, there are surprisingly few biological 

resuspension studies, but, the ones that exist suggest an impact far greater than was 

previously suspected (Yahel et al., 2002, Yahel at al., 2008, Katz, et al., 2009, Katz et al., 

2016). 

 

The average flux of biological resuspension, 𝐽𝑧(𝑘𝑔 𝑚−2𝑠−1), is defined as the average mass 

of particles, resuspended vertically from the sea floor by biological activity, per unit time 

and unit floor area. It is positive upwards and by multiplying 𝐽𝑧 over a given floor area and a 

given time period, we should be able to provide an estimate of the total mass of particles 

that is biologically resuspended. However, such an estimate is difficult to obtain. Biological 

resuspension is a highly punctuated process, both in time and space, arbitrarily generating 

plumes with high concentration of resuspended sediment that quickly sink and disperse 

(Yahel et al., 2008). It is therefore understood that measurements of concentration and 

velocity near the bottom are not likely to provide a representative estimate of 𝐽𝑧 without an 

appropriate model. Imaging techniques must cover a wide enough floor area and are often 

limited under turbid conditions; Sediment traps at multiple heights may be attractive 

(Bloesch, 1994) but since they provide an integration over prolonged deployment time, it is 

difficult to separate the putative effect of biological resuspension from other factors (Gilboa 

et al., 2018).  

 

As there are multiple sources of particles in the ocean, the only approach that can provide a 

direct estimation of 𝐽𝑧 is a complete mass balance formulation. A mass balance calculation 

can be obtained by computational fluid dynamics (CFD) or by measuring the velocity and 

particle concentration around and inside local control volumes. However, while the former 

is not computationally feasible at ocean scales, the latter needs to fully cover the control 

volume faces and inner space by measurements and it is therefore unrealistic.  

https://drive.google.com/open?id=1WLhe647NJM2WuKRzLUHnzahS0n2knMyq
https://drive.google.com/open?id=1WLhe647NJM2WuKRzLUHnzahS0n2knMyq
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To overcome these limitations, we propose in this document a model for 𝐽𝑧 that is based on 

measurements of concentration and velocity along a vertical profile within the lower section 

of the benthic nepheloid layer (BNL). Specifically, the model is designed to convert the 

measured horizontal flux of particles into an estimate of 𝐽𝑧. The current document focuses 

on describing the derivation of the model and its formulation. 

 

 

2. Model derivation 

 

We aim at estimating 𝐽𝑧 by using a stationary sensor (or sensor array) that is located 

downstream from resuspension events and records simultaneously the particles velocity 

and concentration as a function of height above the seabed. Examples of off-the-shelf 

sensors include Acoustic Doppler Current Profilers (ADCP), vertical array of Acoustic Doppler 

velocimeters (ADVs), and Optical Backscatter Sensors (OBSs). Fig. 1 shows an image taken 

during a recent feasibility test in the Gulf of Aqaba. The release of the particles is 

demonstrated in a side view and a top view video clips that were taken during one of these 

tests. Velocity was measured by the ADCP and ADVs, concentration was obtained from data 

collected by the OBS, the back scattering of the ADVs (Fugate and Friedrichs, 2002) and by a 

submersible particle size analyzer (LISST 200x) which also provides particle size distributions. 

 

 
Fig. 1 An image taken during a feasibility test in the Gulf of Aqaba. The measurement rig consists of 
three ADVs, three OBS, a down looking 2 MHz ADCP, and a submersible laser-diffraction based 
particle size analyzer (LISST 200x). A diver is shown to release a known mass of sediment particles 
from a specially designed resuspension generator. A labelled grid was placed at the bottom to mark 
the location of each plume release. The instruments were cabled to the shore so that data could be 
visualized in real-time. The plume is detected in this image between the release location and the 
instruments. A remote release mechanism is being developed to replace the need for a diver. Two 
videos clips, side view and a top view, were taken during one of these tests. 

https://youtu.be/4Ll6eIGxiIw
https://youtu.be/Jq5IlFEyUrw
https://youtu.be/4Ll6eIGxiIw
https://youtu.be/Jq5IlFEyUrw
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The model, named the footprint model, aims at converting the data collected by 

instruments such as those shown in Fig. 1, into an estimation of 𝐽𝑧. The overbar in  𝐽𝑧̅ states 

that we aim at estimating a long-time average flux and the subscript 𝑧 is to state that 𝐽𝑧 is a 

vertical flux that enters the control volume from its bottom. We assume that the vertical 

velocity of the particles during the resuspension event is significantly larger than the 

horizontal water velocity such that the horizontal advection during the initial resuspension 

event is negligible. Concurrent to the horizontal advection, we consider flow dependent 

turbulent dispersion and size (and potentially concentration) dependent settling. We apply a 

mass balance approach to convert the sensor data into an estimate of 𝐽𝑧. We assume that 

the number of resuspension events, measured during the deployment time, is large enough 

to assume that they represent, on average, the variety of particle clouds that were 

generated upstream from the sensor, i.e., the number of events is large enough to use an 

analogy of a non-point (surface) source to represent, on average, multiple point-source 

events.  

 

We define a control volume (Fig. 2) with dimensions that are defined by the lateral width of 

the sensor measurement volume, Δ𝑦𝑠, the maximum height ℎ at which the resuspended 

particles reach the sensor and a length 𝐿, named the footprint length that is defined in the 

next sections for the case dominated by settling and for the case dominated by turbulent 

mixing. By measuring the concentration, 𝑐(𝑧, 𝑡), and the particle velocity, 𝑢⃗ 𝑝(𝑧, 𝑡) =

(𝑢𝑝, v𝑝, 𝑤𝑝) at the “sensor wall” as a function of height 𝑧 and time 𝑡 (Fig. 2), the flow rate of 

particles that exit the control volume, 𝑚̇𝑚, is obtained by the following double integral, 

 

𝑚̇𝑚 =
1

𝑇′
∫ 𝛥𝑦𝑠 ∫ (𝑐 − 𝑐𝑏)(𝑢⃗ 𝑝 ∙ 𝑖̂)𝑑𝑧

ℎ

0

𝑑𝑡′
𝑡+𝑇′

𝑡

 (1) 

 

where 𝑡′ is an integration time which instead of being continuous, defines the time 

segments of a conditional sampling (Antonia, 1981 and Businger and Oncley, 1990) with an 

accumulated time 𝑇′. 𝑖̂ is a unit vector in the 𝑥 direction. The background concentration, 𝑐𝑏, 

can be identified by measurements taken during times of no resuspension events. 

 

(a) 

 

(b) 

 

Fig. 2 (a) The control volume, and (b) a top view of the control volume aims at demonstrating that 
the control volume is rotating with the flow so that it is always oriented parallel to the flow 
direction with the sampling system located at its most downstream face.  
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In order to estimate 𝐽𝑧 we define the flow rate of resuspended particles that enter the 

control volume from the ocean floor as 𝑚̇𝑟 = 𝐽𝑧Δ𝑦𝑠𝐿 and the ratio between 𝑚̇𝑚 (the flow 

rate of particles that exit the control volume) and 𝑚̇𝑟 as 𝛼 = 𝑚̇𝑚/𝑚̇𝑟 such that, 

 

𝐽𝑧 = (𝑚̇𝑚)/(𝛼Δ𝑦𝑠𝐿) (2) 

 

where Δ𝑦𝑠𝐿 is the floor area of the control volume. Eq. 2 can be used to compute 𝐽𝑧 only if 𝛼 

and the footprint length, 𝐿, are known. The calculation of 𝐿 and 𝛼 is derived by assuming 

that the dominant fluxes that contribute to the mass balance calculation are those that 

cross the sea floor and the ‘sensor wall’. The justifications for this assumption are as follows: 

As illustrated in Fig. 2, the control volume is a narrow box that can rotate around a vertical 

axis such that its long horizontal axis is always aligned with the flow. As a result, particles do 

not cross its side walls by mean advection. The conditional sampling is required, for 

example, to assure that this assumption holds, which is achieved by ignoring data that was 

collected when the velocity magnitude was below a threshold value. The flux of particles 

that sinks from the water column and enter from above can be estimated by a variety of 

methods as described in Appendix A. These may include the use of particle size distribution 

(PSD) measurements, measurements of the mean vertical velocity 𝑤̅𝑝, the use of sediment 

traps and the use of sediments cameras (Appendix A). Note, however, that particles that 

reach the bottom before reaching the ‘sensor wall’ do not contribute to 𝑚̇𝑚 and have no 

impact on the calculation of  𝐽𝑧.  

 

The model assumes that the fluxes that cross the upstream side of the control volume 

contribute nothing to the mass balance calculation. The location of the upstream face is at 

𝑥 = −𝐿, the footprint length, which is also used to calculate the size of the floor area from 

where particles are resuspended and later cross the ‘sensor wall’. We adopted here the 

terminology of the meteorological community by using the terms footprint model and 

footprint length, suggesting that our attempt to trace back the floor region of resuspension 

is similar to using footprint modeling to analyze the signature measured by monitoring 

stations and trace back the flux sources (Schuepp, et al., 1990,  Leclerc and Thurtell, 1990, 

Duman et al., 2015). We propose to model the footprint length by considering particle 

settling and turbulent dispersion, “whoever comes first”, such that particles that cross the 

upstream side of the control volume are not accounted for by the mass balance calculation. 

The description of the footprint length estimates is therefore split into two parts; the 

calculation of 𝐿 by considering particle settling and the calculation of 𝐿 by considering the 

role of turbulence dispersion. 
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2.1 The footprint length due to settling 

When only settling and advection are considered, 𝐿 is calculated as the maximum horizontal 

distance traveled by a particle before reaching the ground. The trajectory of this particle, 

named the defining trajectory (Fig. 3), starts at (𝑥, 𝑧) = (−𝐿, ℎ𝑝) and ends at the base of the 

sensor, at (𝑥, 𝑧) = (0, 0). It is presented here for a given particle size but later calculated 

separately for each size group. The shape of the trajectory is a function of the plumes’ 

height, ℎ𝑝, the particle horizontal mean velocity, 𝑢̅𝑝(𝑧), and the particle settling velocity, 

𝑤𝑠(𝑧). The differential relationships 𝑑𝑧𝑝 = 𝑤𝑠𝑑𝑡 and 𝑑𝑥𝑝 = 𝑢̅𝑝𝑑𝑡 is used to calculate the 

defining trajectory, 𝑧𝑝 = 𝑧𝑝(𝑥𝑝), and the footprint length, 𝐿, 

 

𝑥𝑝 = −𝐿 +
1

𝑤𝑠
∫ 𝑢̅𝑝(𝑧)𝑑𝑧

𝑧𝑝

ℎ𝑝

 (3) 

𝐿 =
1

𝑤𝑠
∫ 𝑢̅𝑝(𝑧)𝑑𝑧

0

ℎ𝑝

 (4) 

 

Eqs. 3 and 4 were derived for a constant 𝑤𝑠 (per particle size group), however both can be 

derived for any known function 𝑤𝑠 = 𝑤𝑠(𝑧). The defining trajectory is illustrated in Fig. 3 for 

the artificial case of a linear velocity profile. It also demonstrates that the value of 𝛼 is equal 

to the ratio between the mass of particles above the defining trajectory (gray area) and the 

mass of particles in the rectangular area 𝐿ℎ. The reason is that only particles that start their 

trajectory from the gray area will be detected by the sensor and particles that start their 

motion from below the defining trajectory will sink before reaching the sensor. Hence, once 

the defining trajectory, 𝑧𝑝 = 𝑧𝑝(𝑥𝑝), is known, 𝛼 is calculated as, 

 

𝛼 =
1

𝐿
∫ ∫ 𝑓(𝑧)𝑑𝑧

𝑧=ℎ𝑝

𝑧=𝑧𝑝(𝑥𝑝)

𝑥=0

𝑥=−𝐿

𝑑𝑥 (5) 

 

where 𝑓(𝑧) is a probability density function of the vertical distribution of resuspended 

particles, when the plume was formed (see Appendix B for a detailed derivation of Eq. 5).  

 

We assume that during the deployment period, several resuspension events take place near 

the sensor wall (𝑥 = 0) such that the distribution of the concentration inside the plume is 

measured by the sensor and their average result can be used to define 𝑓(𝑧) and ℎ𝑝. For the 

case of a uniform probability density function, 𝑓(𝑧) = 1/ℎ𝑝, Eqs. 4 and 5 show that when 

the velocity is uniform (𝑢(𝑧) = 𝑢0), 𝐿 = −ℎ𝑢0/𝑤𝑠 and 𝛼 = 1/2. When the velocity varies 

linearly (𝑢(𝑧) = 𝑢0(𝑧/ℎ), Fig. 3), 𝐿 = −ℎ𝑢0/2𝑤𝑠 and 𝛼 = 1/3. Analytical derivation for 

velocity profiles such as logarithmic profiles and numerical integrations can provide 

solutions to any measured velocity profiles. 
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Fig. 3 The defining trajectory (black line) and the 
area representation of the coefficient 𝛼 for the 
case of a linear velocity profile (𝛼 = 𝑚̇𝑚/𝑚̇𝑟, 
where 𝑚̇𝑚 is represented by the gray area).  

Fig. 4 The defining trajectory and the area 
representation for three particle size groups. 

𝐿𝑖 represents the maximal horizontal distance 
that a particle from size group 𝑖 make.  

 

Eqs. 4 and 5 were derived for the case of a mono size distribution. In order to expand the 

solution to the general case of particle size distribution, Eq. 5 is rewritten for a size group 𝑖, 

of a particle diameter 𝑑𝑖  as, 

 

𝛼𝑖 =
1

𝐿𝑖
∫ ∫ 𝑓𝑖(𝑧)𝑑𝑧

𝑧=ℎ𝑖

𝑧=𝑧𝑝
𝑖 (𝑥𝑝

𝑖 )

𝑥=0

𝑥=−𝐿𝑖

𝑑𝑥 (6) 

 

from which 𝛼 = 𝑚̇𝑚/𝑚̇𝑟 is obtained as follows, 

 

𝛼 = ∑
𝑟𝑖

𝐿
∫ ∫ 𝑓𝑖(𝑧)𝑑𝑧

𝑧=ℎ𝑖

𝑧=𝑧𝑝
𝑖 (𝑥𝑝

𝑖 )

𝑥=0

𝑥=−𝐿𝑖

𝑑𝑥

𝑛

𝑖=1

 (7) 

 

where 𝑟𝑖 (the ratio 𝑚̇𝑟
𝑖 /𝑚̇𝑟) and 𝑓𝑖(𝑧) are measured in the field during events that occur at 

the vicinity of the sensor, and 𝐿 is calculated using Eq. 4 for the smallest size group. The 

effect of the particle diameter of the 𝑖-size group is demonstrated for three size groups in 

Fig. 4, showing the defining trajectories 𝑧 = 𝑧𝑝
𝑖 (𝑥𝑝

𝑖 ) and the corresponding footprint length, 

𝐿𝑖  for each size group. 

 

 

2.2 The footprint length due to turbulent dispersion 

When the effect of turbulent dispersion is considered, the footprint length 𝐿 is defined by 

the distance it takes for the initial plume to disperse and approach the background ambient 

concentration, 𝑐𝑏. Under these conditions, a different formulation of 𝐿 is needed. The 

dispersive flux is described by the correlation, 𝑢𝑝𝑖
′𝑐′̅̅ ̅̅ ̅̅ ̅ , where 𝑢𝑝𝑖

′ is the turbulent velocity in 

the 𝑖-direction and 𝑐′ is the concentration fluctuation obtained by a proper signal filtering. 

We propose to estimate 𝐿 by adopting a diffusion closure model, 𝑢𝑝𝑖
′𝑐′̅̅ ̅̅ ̅̅ ̅ = −𝐸𝑖𝑗(𝜕𝑐̅/𝜕𝑥𝑗), 

where the turbulent diffusion coefficient, 𝐸𝑖𝑗, is estimated by the flow field. When using the 
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𝐸𝑥𝑧 ≅ −𝑢′𝑤′̅̅ ̅̅ ̅̅ /(𝜕𝑢/𝜕𝑧), we assume that the turbulent Schmidt number is ~unity and the 

velocity vertical gradient is main source of turbulence. The calculation of 𝐸𝑥𝑧 is straight 

forward and requires ensemble averaging which can be obtained with sampling rates lower 

than the turbulence frequencies. While longitudinal dispersion is expected to dominant the 

dilution process, 𝐸𝑥𝑧 is used to estimate the vertical mixing. As an alternative we consider 

using the measured turbulent kinetic energy (𝑘 = 0.5𝑢𝑖
′𝑢𝑖

′), an estimation of the dissipation 

rate (𝜀), and the measured Reynolds stress tensor (𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ) to calculate the components of the 

𝐸𝑖𝑗 tensor (e.g., Argyropoulos and Markatos, 2015, Eq. 62), 

 

𝐸𝑖𝑗 ≅ 𝐶𝑠

𝑘

𝜀
𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅  (8) 

 

where 𝐶𝑠 = 0.18 − 0.25 (e.g., Kang and Choi, 2008, Eq. 4, Hanjalic, 1994, Eq. 5) and 𝜀, the 

dissipation rate, is estimated using the inertial subrange dissipation method (Bluteau et al. 

2011). While the implementation of Eq. 8 requires high frequency sampling, it is 

advantageous since it provides anisotropy information. This is an important advantage as 

we expect that 𝐸𝑥𝑥 will be the largest component and 𝑢𝑝𝑥
′ 𝑐′̅̅ ̅̅ ̅̅ ̅ will contribute the most to the 

dilution of the resuspended plumes.  

 

In order to estimate 𝐿 we propose to follow an analytical solution of the advective diffusion 

Eulerian equation derived for the spread of an instantaneous truncated line source in an 

anisotropic turbulent flow (Socolofsky and Jirka, 2005, p. 147). By applying the only-time-

dependent part of the solution, we estimate the footprint length, 𝐿, as, 

 

𝐿 ≅
𝑚′𝑢̅𝑝

4𝜋𝑐𝑏√𝐸𝑥𝑥𝐸𝑦𝑦

 (9) 

 

where 𝐸𝑥𝑥 and 𝐸𝑦𝑦 are obtained, for example, by Eq. 8. The analytical solution is an 

approximation since it was derived for homogeneous turbulence. In addition, the time-

dependent part of the line source solution that was used here (Eq. 9) ignores the dispersion 

in the vertical direction. As an alternative we propose to use a solution of an instantaneous 

point source (Socolofsky and Jirka, 2005, p. 145) from which we obtain the following 

estimate, 

𝐿 ≅
𝑢̅𝑝

4𝜋
(

𝑐𝑚𝑉𝑠

𝑐𝑏√𝐸𝑥𝑥𝐸𝑦𝑦𝐸𝑧𝑧

)

2/3

 (10) 

 

where 𝑐𝑚 represents the initial plume concentration and 𝑉𝑠 is the sensor volume.  

 

These estimates of the footprint length serve as a measure of the dominant process, namely 

gravitational sinking versus turbulent dispersion. When 𝐿 of Eq. 4 is smaller than 𝐿 of Eqs. 9-
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10, the dominant process is sinking and vice versa. When sinking is dominant, Eq. 4 will be 

used and when turbulent dispersion is dominant Eqs. 9 or 10 will be used (with 𝛼 = 1). 

When the time scales of the two processes are of the same order of magnitude, a similar 𝐿 

value is expected to result from the two approaches. In such cases, a weighted value of 𝛼 

will be applied.  

 

 

3. Lagrangian stochastic resuspension simulator 

 

It is proposed to test the footprint model, its assumptions and limitations by generating 

computerized resuspension events using particle tracking simulations. Plumes will be 

generated by assigning 𝑥, 𝑦, 𝑧 random locations of 𝑛𝑝 particles (≈ 100,000) using a Bivariate 

normal distribution in the 𝑥 and 𝑦 directions (Kotz et al., 2000). Each particle will be 

assigned a diameter 𝑑 and a height 𝑧 according to probability density functions, 𝑓(𝑑) and 

𝑓𝑖(𝑧), that are defined for each size group 𝑖 obtained from the sediment particle size 

distribution. Plumes will be released from the virtual ocean floor at random locations and 

random times using uniform distributions, and their individual particles will be advected, 

sink and disperse. The advective horizontal velocity of the particles, 𝑢̅𝑝(𝑧), will be height 

dependent but uniform in the horizontal plane. Sinking (𝑤𝑠) will follow Stokes terminal 

velocity using empirical adjustments proposed by Dietrich (1982) and optionally modified as 

a function of concentration using the empirical formula of Richardson and Zaki (1954) with 

the exponent 𝑛 proposed by Cheng (1997) and by Baldocka et al. (2004). Dispersion will be 

obtained by using a random walk generator determined by the turbulent properties of the 

flow. The simplest approach would be to generate an eddy velocity 𝑢𝑖
′ = 𝑁𝐺𝑢𝑖,𝑟𝑚𝑠

′  (Guha, 

2008) and add it to the mean velocity (𝑢̅𝑝, 0, 𝑤𝑠) while keeping the eddy life-time around 

twice the measured integral time scale. We use 𝑢𝑖,𝑟𝑚𝑠
′  as the root mean square velocity in 

the 𝑖 direction and 𝑁𝐺  as a random number sampled from a Gaussian distribution with zero 

mean and unity standard deviation. An alternative, more complex approach would be to 

follow Thomson (1987) and apply the Langevin equation (see, for example, Duman et al., 

2015).  

 

To relate the computerized simulation to the output of commercially available sensors that 

can be deployed near the ocean floor, the particle tracking code will include acoustical and 

optical modules (see appendix C). This approach will allow us to simulate the expected 

signal that will be obtained by instruments such as ADCP, ADV, LISST and OBS positioned at 

designated heights above the bottom. These modules will translate information from the 

simulated distribution of particles (concentration, size, shape, composition) into the 

expected signal of the simulated instruments. Particle composition and the instrument 

wavelength (or frequency) determine the contrast in the speed of light (or sound) with the 

environment. This contrast along with particle size are the primary determinants of the 

scattering intensity and angular pattern of a given particle (the efficiency factor of a given 
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optical property or target strength for acoustic backscattering). Integrating over the 

suspension at a given point and time (concentration, size, composition) provides the likely 

signal that will be recorded by an instrument measuring the given optical or acoustical 

property there. While assumptions must be made (e.g. spherical shape for particles), this 

problem is well posed and can be used to better link the actual instrument signal and the 

estimate of 𝐽𝑧̅ with the benefit of adding the effect of potential bias and random noise 

sources. 

 

(a) 

 

(b)

 
(c) 

 

(d) 

 
 

Fig. 5 Preliminary results of the Lagrangian stochastic simulation. (a) The locations from where 
plumes were released (blue circles). The sensor location is marked by a black square; (b) Snapshots 
of a plume at seven different times ( 𝑡 = 0 − 150𝑠) while moving in a logarithmic boundary layer 

(𝑢(𝑧) =
𝑢∗

𝜅
log (

𝑧−𝛿

𝑧0
), 𝛿 = 0.2 𝑐𝑚 and 𝑧0 = 0.2 𝑐𝑚), sinking at 𝑤𝑠 = −0.2 𝑐𝑚 𝑠−1, and spread at 𝐸 =

0.4 𝑐𝑚2𝑠−1 (only 1000 particles of the 106 computed are shown); (c) Concentration measured by 
three simulated sensors, located at 𝑧 = 0.5, 25 and 49.5 𝑐𝑚, generated by the release of 100 
plumes; (d) Zoom-in example of the results from Fig. 5c.  
 

An early version of the simulation code was developed using the parallel capabilities of 

MATLAB. It was found that by sophisticated sampling we can run hundreds of complete 

simulations in less than 24 hours on a multi-core workstation. The simulation plan will start 

with code testing and sensitivity analysis of simulation parameters such as time step, 

number of plumes and number of plume particles needed to generate a representative and 

repeatable result. Then, the simulated concentration profile, 𝑐(𝑧, 𝑡), will be obtained by 

counting the number of particles that are in the sensor volume at any given time. The ability 

of the footprint model to calculate 𝐽𝑧 and reconstruct the imposed flux 𝐽𝑖  will be evaluated 

by presenting the error (𝐽𝑧/𝐽𝑖 − 1) as a function a large variety of the problem variables. 
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These will include current velocities, particle size distributions, turbulence, the potential role 

of surface waves, time duration of the deployment, the sensor sampling frequency and 

measurement volume, degree of plumes overlap, level of plume nonuniformities of their 

height, width, shape and length of generation, and instrumentation inaccuracies. The 

simulations results will provide a quantitative assessment of the accuracy and limitations of 

the footprint model and its ability to estimate fluxes of biological resuspension. 

 

 

4. Developing the H2VTool 

 

Once data is collected in the field, an estimation of 𝐽𝑧 can be obtained. It requires first signal 

filtering followed by a set of decisions that involves the use of Eqs. 4, 7, 8 and 9 or 10. The 

input to these equations involves data extracted from resuspension events that took place 

near the sensor, information about particle sizing and a statistical assessment for the 

accuracy of the result. For the future users of the footprint model, a MATLAB tool, named 

H2VTool, will be developed. Data collected by the sensors and inputs provided by the user 

through a graphical user interface (GUI) will generate estimated values of the fluxes of 

biological resuspension. 

 

 

5.  Signal filtering  

 

Prior to applying the footprint model, the signal obtained at the “sensor wall” will be filtered 

in order to isolate the biological events from other sources such as variations in the 

upstream concentration field and instrumentation noise. In addition to spectrum-based 

filters, fast Fourier transform, and orthonormal wavelet transform, we tested a series of 

filters developed by the hydrological scientific community. We found that time series 

collected in monitoring stations of rivers and estuaries are very similar to the signal 

generated by biological resuspension events. We therefore adopt a variety of hydrological 

algorithms derived for the separation of base flows flow from flood events in flow (Lott and 

Stewart, 2016), often named ‘hydrograph separation’. An example of spectral filtering of 

sediment resuspension events at 4,800m depth is presented in Pak (1983). While the author 

did not suspect biological resuspension to take place, and left the cause of these events as 

unknown, the ‘signature’ of the high frequency events filtered with spectral analysis is 

similar to the signal we observe in shallow areas due to fish (e.g., Fig 6a in Yahel et al. 2008). 
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Appendices 
 

Appendix A – Alternative measurement methods 

Alternative measurement methods are needed in order to test the model, validate its 

results and identify its limitation. In addition, identifying the potential contribution of 

particles that sink from above, enter the control volume and leave it through the “sensor 

wall” is required in order to exclude this flux from the mass balance calculation. Four 

potential methods are described.  

  

A1. Particle sizing 

Particle size distributions, that are collected above the BNL by a submersible particle size 

analyzer (e.g., LISST 200X, Sequoia), can be used to estimate the flux of particles that sink 

from above. This is obtained by assuming that the sinking velocity, 𝑤𝑠, is known for given 

particle size and concentrations. Note, that while 𝑤𝑝 (Appendix A1) is the measured vertical 

velocity of the particles, 𝑤𝑠 is calculated using the measured particle size and concentration. 

Stokes terminal velocity is calculated using empirical adjustments proposed by Dietrich 

(1982) and optionally modified as a function of concentration using the empirical formula of 
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Richardson and Zaki (1954) with the exponent 𝑛 proposed by Cheng (1997) and by Baldocka 

et al. (2004). Assume that the size distribution of the particles is given by 𝑁 size groups and 

that the flux of particles that sink from above of each size group, 𝑖, is 𝐽𝑎̅,𝑖 , an estimate of 𝐽𝑎̅ 

is obtained as follows, 

 

𝐽𝑎̅ = ∑ 𝐽𝑎̅,𝑖

𝑁

𝑖=1
= ∑ 𝑐𝑖𝑤𝑠

𝑖
𝑁

𝑖=1
 (A1) 

 

where 𝑐𝑖 is the concentration of the 𝑖𝑡ℎ size group and 𝑤𝑠
𝑖 is its sinking speed.  

 

If a second submersible particle size analyzer is positioned within the BNL, a similar form of 

Eq. A1 can be used to estimate the resuspension fluxes themselves. Since the trajectory of 

each resuspended particle consists of an upward motion followed by a sinking motion, only 

sinking (negative 𝑤) velocities will be included in the calculations. Since all particles will 

eventually sink back to the floor, and since the maximum height where resuspended 

particles can reach is size dependent, an estimate of 𝐽𝑧̅ should be obtained at the lowest 

point that is not contaminated by the floor itself. This is where the downward flux will be 

consisted of almost all the size groups and will, therefore, be the highest. In order to identify 

this vertical location, it is proposed to install the near bottom LISST on a micro profiler that 

will continuously scans the first two meters above the seafloor at a two cm-scale resolution. 

Once the vertical location of the maximum downward flux is identified (𝑧𝑚), the 

resuspension flux will be estimated as follows, 

 

𝐽𝑧̅ = ∑ 𝑐𝑖(𝑧𝑚)𝑤𝑠
𝑖(𝑧𝑚)

𝑁

𝑖=1
− 𝐽𝑎̅ (A2) 

 

 

A2. The defining trajectory method 

The result obtained by Eq. A1 can be validated by using a slight modification of Eq. 1 as 

follows,  

𝑚̇𝑎 =
1

𝑇′′
∫ 𝛥𝑦𝑠 ∫ (𝑐 − 𝑐𝑏)(𝑢⃗ 𝑝 ∙ 𝑖̂)𝑑𝑧

ℎ

0

𝑑𝑡′
𝑡+𝑇′′

𝑡

 (A3) 

 

where 𝑇′ was replaced by 𝑇′′. The justification of using Eq. A3 is demonstrated in Fig. A1 for 

the case of a linear velocity profile. Particles that cross the top boundary are advected 

within the gray area and then exit the control volume through the sensor wall. Once The 𝑚̇𝑎 

is obtained, the flux is calculated by, 

𝐽𝑎̅ =
𝑚̇𝑎

𝐿Δ𝑦𝑠
 (A4) 

where 𝐿 is calculated using Eqs. 4 or B4. 
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A3. Sediments traps 

Direct measurements of the settling flux are obtained by deploying two pairs of sediment 

traps at 0.5 and 1 meter above the seabed and a third trap pair is moored above the benthic 

nepheloid layer, BNL (as suggested by Bloesch 1994). The downward flux, 𝐽𝑎̅, is measured by 

the upper trap and the difference (in 𝑔 𝑚−2𝑑𝑎𝑦−1) between the average rate obtained by 

the near bottom traps and the traps moored above the BNL is a direct estimator of the total 

resuspension rate at the measured height. To prevent contamination with sediments that 

might resuspend during the deployment, the near-bottom traps are deployed with elastic 

caps that are removed remotely by a time-release mechanism (Gilboa et al. 2018), or 

carefully by SCUBA divers.  

 

 

A4. Direct measurement 

The method assumes that the signal analysis tools, developed and tested here, can identify 

the times, 𝑇′′, during which the only flux that enters the control volume is the settling of 

particles from the water column. The measurements published by Yahel et al. (2002) 

indicate that the night hours in a coral reef environment can serve as an example of such 

almost zero biological resuspension. As illustrated in Fig. A1, this settling flux, 𝐽𝑎̅, is assumed 

uniform along the control volume top boundary and can be obtained by directly measuring 

the mean concentration 𝑐̅ and the mean vertical velocity 𝑤̅𝑝 at the highest measurement 

point of the sensor (𝑧 = ℎ), 

 

𝐽𝑎̅ = 𝑐̅(𝑧 = ℎ) 𝑤̅𝑝(𝑧 = ℎ) (A5) 

 

A negative 𝑤̅𝑝(𝑧 = ℎ) value will indicate that indeed 𝐽 ̅is a settling flux.  

 

 
Fig. A1 An illustration of the time periods during which the only flux that enters the control 
volume is settling of particles from the water column for the case of a linear velocity profile. 
Particles that cross the top boundary are advected within the gray area before exit the control 
volume through the sensor wall. 
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Appendix B – The derivation of 𝜶 for the settling dominated regime  

The ratio 𝛼 = 𝑚̇𝑚/𝑚̇𝑟 is needed when estimating the flux 𝐽𝑧 = (𝑚̇𝑚)/(𝛼Δ𝑦𝑠𝐿). Here we 

describe the derivation of 𝛼 for the settling dominated regime while considering a known 

(measured) particle size distribution (PSD). Assume that the size distribution of the particles 

is given by 𝑁 size groups and that the resuspended flow rate of each size group, 𝑖, is 𝑚̇𝑟,𝑖. 

Similarly, the measured flow rate of each size group is 𝑚̇𝑚,𝑖 and we therefore define 𝑚̇𝑚 

and 𝑚̇𝑟 as, 

 

𝑚̇𝑟 = ∑ 𝑚̇𝑟,𝑖
𝑁
𝑖=1      and       𝑚̇𝑚 = ∑ 𝑚̇𝑚,𝑖

𝑁
𝑖=1  (B1) 

 

Using the resuspension flow rate of all size groups combined, 𝑚̇𝑟, the relative contribution 

of group 𝑖 is 𝑟𝑖 = 𝑚̇𝑟,𝑖/𝑚̇𝑟 and 𝛼 can be written as, 

 

𝛼 =
𝑚̇𝑚

𝑚̇𝑟
=

∑ 𝑚̇𝑚,𝑖
𝑁
𝑖=1

𝑚̇𝑟
=

𝑚̇𝑚,1 𝑟1
𝑚̇𝑟,1

+
𝑚̇𝑚,2 𝑟2
𝑚̇𝑟,2

+ ⋯ = ∑
𝑟𝑖𝑚̇𝑚,𝑖

𝑚̇𝑟,𝑖

𝑁

𝑖=1
 (B2) 

 

Since 1/𝑚̇𝑟 = 𝑟𝑖/𝑚̇𝑟,𝑖 for any 𝑖-group. While 𝑚̇𝑚,𝑖 are measured, 𝑟𝑖 and 𝑚̇𝑟,𝑖 are unknowns 

and therefore an expression for 𝛼 must be derived. We start with rewriting Eq. 3 for each 

size group 𝑖, 

 

𝑥𝑝
𝑖 = −𝐿𝑖 +

1

𝑤𝑠
𝑖
∫ 𝑢̅𝑝(𝑧)𝑑𝑧

𝑧𝑝
𝑖

ℎ𝑝
𝑖

 (B3) 

 

from which the defining trajectory, 𝑧𝑝
𝑖 = 𝑧𝑝

𝑖 (𝑥𝑝
𝑖 ), is obtained for each size group. By 

substituting 𝑥𝑝
𝑖 = 0 and 𝑧𝑝

𝑖 = 0, we derive the footprint length, 𝐿𝑖, of each group, 

 

𝐿𝑖 =
1

𝑤𝑠
𝑖
∫ 𝑢̅𝑝(𝑧)𝑑𝑧

0

ℎ𝑝
𝑖

 (B4) 

 

Particles from size group 𝑖 that were resuspended at a distance larger than 𝐿𝑖  upstream 

from the sensor will sink to the floor before reaching the sensor and therefore not 

measured. While the highest starting point ℎ𝑝
𝑖  and the settling velocity 𝑤𝑠

𝑖 are size 

dependent, the horizontal mean velocity 𝑢̅𝑝 is assumed to be the same for all groups. Note 

the important distinction between 𝐿 and 𝐿𝑖; while 𝐿𝑖  represents the footprint length of size 

group 𝑖, 𝐿 is calculated by Eq. B4 for the smallest particle size group. 

 

The initial distribution of the resuspended particles defines the locations from which each 

particle begins its trajectory. This initial distribution of particles, in the space above the sea 



18 
 

floor, is represented by a pseudo source term, 𝑆𝑖(𝑥, 𝑦, 𝑧), that is a function of the 

resuspension rate, 𝑚̇𝑟,𝑖, and the density probability function of the initial distribution along 

the vertical axis for each group size, 𝑓𝑖(𝑧), 

 

𝑆𝑖(𝑥, 𝑦, 𝑧)  =
𝑚̇𝑟,𝑖 

Δ𝑦𝑠𝐿
𝑓𝑖(𝑧) (B5) 

 

The measured mass that crosses the “sensor wall” per time, 𝑚̇𝑚,𝑖, is obtained by integrating 

𝑆𝑖 over the volume confined above the defining trajectory (the gray area in Fig. 3), 

 

𝑚̇𝑚,𝑖 = ∫ ∫ ∫ 𝑆𝑖(𝑥, 𝑦, 𝑧) 𝑑𝑦
Δ𝑦𝑠/2

−Δ𝑦𝑠/2

𝑑𝑧
ℎ𝑝

𝑖

𝑧=𝑧𝑝
𝑖 (𝑥𝑝

𝑖 )

0

𝑥=−𝐿𝑖

𝑑𝑥 (B6) 

 

Note that in B5 we used 𝐿 and in B6 we used 𝐿𝑖. The footprint length, 𝐿, is defined by the 

longest horizontal distance, 𝐿𝑖, such that it accounts for all the particles, from all size 

groups. This is the reason 𝐿 is calculated by Eq. B4 for the smallest particle size group. Since 

particles, even from the smallest size group, that were resuspended from 𝑥 < −𝐿 sink to 

the floor before reaching the sensor, the calculation of the resuspended mass, 𝑚̇𝑟,𝑖, is 

calculated using 𝐿 (Eq. B5). However, the mass of each group size that reach the sensor, 

originates from locations above the individual defining trajectory of that group size, and 

therefore the integration interval in B6 is defined by 𝐿𝑖. Note that except for the smallest 

particles, integrating along 𝑥 from −𝐿 to −𝐿𝑖 has zero contribution.  

 

Plugging Eq. B5 in Eq. B6 results in, 

 

𝑚̇𝑚,𝑖

𝑚̇𝑟,𝑖
=

1 

𝐿
∫ ∫ 𝑓𝑖(𝑧)

ℎ𝑝
𝑖

𝑧=𝑧𝑝
𝑖 (𝑥𝑝

𝑖 )

0

𝑥=−𝐿𝑖

𝑑𝑧𝑑𝑥 (B7) 

 

and finally, plugging Eq. B7 into Eq. B2 result in an estimate for 𝛼, 

 

𝛼 =
𝑚̇𝑚

𝑚̇𝑟
= ∑

𝑟𝑖 

𝐿
∫ ∫ 𝑓𝑖(𝑧)

ℎ𝑝
𝑖

𝑧=𝑧𝑝
𝑖 (𝑥𝑝

𝑖 )

0

𝑥=−𝐿𝑖

𝑑𝑧𝑑𝑥
𝑁

𝑖=1
 (B8) 

 

which is identical to Eq. 7 above. 

 

Finally, it is interesting to note that there is strong link between 𝑓(𝑧) (Eq. 5) and the time 

integral of the concentration at each height 𝑧 of the sensor, 𝑐(𝑧, 𝑡). With some additional 

derivation this linkage can be used to obtain 𝑓(𝑧) in the field. This method can potentially 

replace the suggestion to measure 𝑓(𝑧) during events that occur at the vicinity of the 

sensor. It is based on the understanding that in a pure settling case of a uniform particle size 
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distribution, each settling trajectory (e.g., the defining trajectory) is crossing the sensor at a 

different height. As a result, 𝑓(𝑧) is scaled with the time integral of the mass that crosses 

the sensor wall at each 𝑧 during the time of deployment. The upper most trajectory samples 

the upper water layer while lower trajectories sample an increasing depth of water and the 

integration of 𝑓(𝑧) from any given 𝑧 to ℎ (the top of the control volume) is equal to the time 

integral of 𝑐(𝑧, 𝑡) during the time of deployment 𝑇 at the same height 𝑧. 

 

 

Appendix C – converting particle concentrations to measured optical and 

acoustical properties 

 
C1. Optics 

Given a particle size, index of refraction (that is the ratio of light speed within the particle 

relative to that in the medium), absorption (often described as an imaginary part of the 

index of refraction) and wavelength of light, the optical properties of the said particle (e.g. 

angular scattering, absorption coefficient, attenuation coefficient), if spherical, can be 

computed to the desired accuracy (Bohren and Huffman, 1983). Models also exists for more 

complex shapes (e.g. Mishchenko et al., 2000). Sediment particles in the marine 

environment are dominated by inorganic material and thus have a relatively high index of 

refraction (compared to organic particles) which means that their absorption can be 

ignored, particularly in the red and IR wavelengths used by the proposed submersible 

particle size analyzer (LISST 200X, Sequoia) and Optical Backscatter Sensor (OBS).  

 

For a population of particles (the differential size distribution denoted as N(D), in units of 

number of particles per volume per length, with D as the particle diameter) of uniform 

composition (hence uniform index of refraction, n) the attenuation coefficient of the LISST 

(𝑐𝑝) can be computed from: 

 

𝑐𝑝(𝜆 = 670𝑛𝑚) =
𝜋

6
∫ 𝑁(𝐷)𝑄𝑐(𝐷, 𝑛)𝐷2𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 (C1) 

 

where 𝑄𝑐(𝐷, 𝑛) is the attenuation efficiency factor computed from a Mie code (e.g. Bohren 

and Huffman, 1983). Angular scattering, as measured by the LISST in the forward direction 

and the OBS in the back direction are computed as follows: 

 

𝛽𝑝(𝜆, 𝜃) =
𝜋

6
∫ ∫ 𝑊(𝜃)𝑁(𝐷)𝑆11(𝜃)𝑄𝑏(𝐷, 𝑛)𝐷2𝑑𝐷𝑑𝜃

𝜋

0

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 (C2) 

 

where 𝑊(𝜃) is the instrument angular weighing function (a property of the instrument), 

𝑄𝑏(𝐷, 𝑛) is the scattering efficiency factor and 𝑆11(𝜃) is the first element of the Mueller 
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matrix, both outputs of the Mie code. The same framework can also be extended to model 

aggregates (Boss et al., 2009). 

 

C2. Acoustics 

The mean (root-mean-squared) backscattered pressure (〈𝑃𝑏〉) from a suspension of 

scatterers for a given frequency of sound can be written as (Downing et al., 1995): 

 

〈𝑃𝑏〉 = 𝑘𝑠𝑘𝑡√𝑀𝑒−2𝛼𝑟 (C3) 

 

where 𝑘𝑡 is an instrument constant, 𝑀 is the square root of the particle mass concentration, 

𝑘𝑠 is a parameter describing the acoustical properties of the scatterers (hence sensitive to 

size and composition) and 𝛼 is the mean attenuation coefficient between the sensor and the 

sample volume (their distance is denoted by r). The attenuation can further be decomposed 

to that due to water (𝛼𝑤 , a function of temperature end salinity) and that of the particles 

(𝛼𝑝 = 𝛼∗𝑀, where 𝛼∗ is the specific attenuation of the suspension, which can be 

determined theoretically given the particle size distribution and composition (just like with 

Mie theory for optics). From Thorne et al., (1991): 

 

𝑘𝑠 =
1

√𝜌𝑠

√
〈𝑎𝑠

2|𝑓(𝑎𝑠, 𝜃)|2〉

〈𝑎𝑠
3〉

 (C4) 

 

where 𝜌𝑠 is the particles density, 𝑎𝑠 the particle’s radius, 𝑓(𝑎𝑠, 𝜃) a form function 

(reflectivity factor) which can be computed using a variety of methods, and 〈𝑎𝑠
3〉 is an 

average over the size distribution. The specific attenuation itself can be computed using 

(e.g. Medwin and Clay, 1998): 

 

𝛼∗ =
3𝜎𝑡

4𝜋𝜌𝑠〈𝑎𝑠
3〉

 (C5) 

 

where the acoustic cross section, 𝜎𝑡, is computed from: 

 

𝜎𝑡 =
𝜋〈𝑎𝑠

2〉

2
∫ |𝑓(𝑎𝑠, 𝜃)|2𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0

 (C6) 

 

Since the instruments measure acoustic intensity, we write it in that form (Medwin and 

Clay, 1998): 

 

𝐼 =
〈𝑃𝑏〉

2

𝜌𝑐
 (C7) 
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where 𝜌𝑐 is the product of the water density and the speed of sound. 

Acoustical instruments use logarithmic detectors, hence, to compute intensity from counts 

we need to convert the counts as follows (Russo and Boss, 2012): 

 

𝐼𝑠
𝐼0

= 10𝐴×𝑐𝑜𝑢𝑛𝑡𝑠/10 − 10𝐴×𝑐𝑜𝑢𝑛𝑡𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑/10 (C8) 

 

where 𝐼0 is a reference intensity (constant), 𝐴 is the manufacturer conversion factor 

(dB/counts), 𝑐𝑜𝑢𝑛𝑡𝑠 are the instrument reading, and 𝑐𝑜𝑢𝑛𝑡𝑠𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 are the instrument 

reading in the clearest water (e.g. instrument blank). 

 

From the above we expect that for a given particle size and composition the acoustic 

intensity will be proportional to SPM. However, as this proportionality constant will be size 

and composition dependent and hence will likely to vary with depth for a given sediment 

profile. Using existing theoretical framework to compute 𝑓(𝑎𝑠, 𝜃) (e.g. Thorne and  Manley, 

1993) we will convert the model output to profiles of acoustical properties which are likely 

to be recorded for a given acoustical instrument. 
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