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S1. Illustration of different permutations for Vecchia-Multiscale 
We illustrate the effect of different permutations (Figure S1 and S2) by applying the 
eight permutations to the hypothetical example in Figure 2 (a) comprising three 

datasets: areal datasets 𝑅! (64 green pixels) and 𝑅" (36 purple pixels), and point dataset 

𝑃! (40 blue triangles), making the total number of observations 𝑛	 = 	140. The numbers 

in columns (I) to (III) in Figure (S1) represent the ordering number in 𝒜 = {𝐴!, … , 𝐴!#$}  

assigned to individual data in 𝑃! (I),  𝑅! (II) and 𝑅" (III) for the different permutations. 

Column (IV) denotes the subvector 𝑨𝒎𝒊 (color-filled blue triangles, and color-filled 

green and purple pixels) for a randomly chosen pixel 𝐴& (color-filled red) for 𝑚	 = 	20. 
 
The Joint-Coordinate permutation (Figure S1 (a)-(c)) sorts the data based on the sum of 
coordinate values resulting in the data from the three platforms getting ordered from 

the lower-left to the upper right along the diagonal.  For any pixel 𝐴&, this results in 

𝑨𝟏:𝒊*𝟏  located close to 𝐴&. The subvector 𝑨𝒎𝒊 (selected from elements of 𝑨𝟏:𝒊*𝟏 closest to 

𝐴& in space) is thus located in the immediate neighborhood of 𝐴& (Figure S1 (d)). 
Middleout ordering is based on the same heuristic as Coordinate ordering and orders the 
locations based on increasing distance from the mean location of the study domain 

(Guinness, 2018). Thus, it also has 𝑨𝒎𝒊  located in the neighborhood of 𝐴& (Figure S1 (h)). 

 
The Joint-Maxmin ordering (Figure S1 (i)-(l)) selects the first pixel/point which is closest 
to the mean location of the study domain and then sequentially selects a successive 
pixel/point which maximizes the “minimum distance” to previously selected 
pixels/points (Guinness, 2018). This results in the pixels/points getting permuted such 

that for any 𝐴&, 𝑨𝟏:𝒊*𝟏 now consist of a good mix of both far and near pixels/points 

(Figure S1 (i)-(k)). The subvector 𝑨𝒎𝒊 now consist of both far and near data surrounding 
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𝐴& (Figure S1 (l)). Though Joint-Random (Figure S1 (m)-(p)) is not based on any heuristic, 
it can give similar results to Joint-Maxmin (Guinness, 2018). 
 
The corresponding “Separate-“ orderings for the four “Joint-“ orderings are given in 
Figure S2. The “Separate-“ orderings separate the point and areal data, apply the 
permutations separately to each and then form the final permutation by sorting the 
permuted point data followed by the permuted areal data (Figure 4, main text). Though 
the “Separate-“ orderings retain the heuristic of the corresponding “Joint-“ permutations 
separately for point and areal data, the “Separate-“ permutations introduce a constraint 

that the point data always lie in the beginning of the vector 𝒜. For instance, in Figure S2 

(Column I) since we have 40 point data, {𝐴!, … , 𝐴#$} always represent point data in 

“Separate-“ permutations. Now for any areal pixel 𝐴& (which for “Separate-“ 

permutations in this example represent {𝐴#!, … , 𝐴!#$}), 𝑨𝟏:𝒊*𝟏  will always consist of 

point data. This often leads to the subvector 𝑨𝒎𝒊  consist of point data which are near to 

𝐴& (Figure S2, Column IV).  
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Figure S1. Illustration of the “Joint-“ Permutations applied on the example from Figure 2 (a) in the 
main text consisting of 40 point data 𝑃" and 100 areal pixels in 𝑅" (64 pixels) and 𝑅# (36 pixels) . 
Numbers in columns (I) to (III) represent the ordering number in the vector 𝒜 = {𝐴", … , 𝐴"$%}  
assigned to data in 𝑃" (I),  𝑅" (II) and 𝑅# (III) for the four different “Joint-“ permutations. Column 
(d) denotes the subvector 𝑨𝒎𝒊 (equation 11, main text) comprising color-filled blue triangles, and 
color-filled green and purple pixels, for a randomly chosen pixel 𝐴' (color-filled red) for 𝑚	 = 	20. 
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Figure S2. Illustration of the “Separate-“ Permutations applied on the example from Figure 2 (a) in 
the main text consisting of 40 point data 𝑃" and 100 areal pixels in 𝑅" (64 pixels) and 𝑅# (36 pixels) . 
Numbers in columns (I) to (III) represent the ordering number in the vector 𝒜 = {𝐴", … , 𝐴"$%}  
assigned to data in 𝑃" (I),  𝑅" (II) and 𝑅# (III) for the four different “Separate-“ permutations. 
Column (d) denotes the subvector 𝑨𝒎𝒊 (equation 11, main text) comprising color-filled blue 
triangles, and color-filled green and purple pixels, for a randomly chosen pixel 𝐴' (color-filled red) 
for 𝑚	 = 	20. 
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S2. Simulation 
We use simulations for two (e.g, a variable varying across latitude and longitude) and 
three (e.g., a variable varying across latitude, longitude and time) dimensions in space 

in a region 𝒟 = [0,1] × [0,1] and [0,1] × [0,1] × [0,1]  respectively. We fix each 
dimension between 0 and 1 for generality. The objective of the simulations is to 

investigate that for a given value of 𝑚, which approximation (equation 11) resulting out 
of the eight permutations better approximates the exact likelihood (equation 10). Similar 
to the hypothetical example in Figure 2 (a) in the main text, we assume three data 

sources for each setting—two aggregate datasets (𝑅! and 𝑅") covering the entire region 

𝒟, and point dataset (𝑃!) in 𝒟. The number of pixels in 𝑅! and 𝑅" along with their 

resolutions as well as the number of point data 𝑃! are given in Table S1. The number of 

point data are chosen as 1) 5% of the areal data to represent scenarios where the point 

data is sparse compared to areal data, and 2) 25% of the areal data to represent 
scenarios where point data are considerable in number compared to areal data. We 

assume an equidistant numerical grid 𝒢 consisting of 11000 points for two dimensions 

and 1089 × 11 = 11979 points for three dimensions across  𝒟. 
 
As mentioned in the main text, evaluation of the exact likelihood requires quadratic 

complexity in the number of assumed grid points  𝑛𝒢 and cubic complexity in the 

number of observations 𝑛. Therefore for the simulations, the number of observations of 
each platform and the size of the numerical grid are chosen so that the computation of 

actual likelihood 𝑓(𝑧(𝒜)|𝜃) is feasible. 
 
We use a flexible class of covariance function called the Matern, with a range, 
smoothness and variance parameter, for simulating the covariance matrix. Other widely 
used covariance functions such as the Exponential and the Gaussian are special cases of 

the Matern. We do simulations for range =	 {0.2, 0.4, 0.6}, smoothness (nu) =

	{0.5, 1, 1.5}, variance = 	1 and measurement error variance (in 𝑅! and 𝑅")   =	 {0.05, 0.2}. 
This ensures that the simulations are carried out for a wide range of parameters 

resulting in a total of 72 simulations for each ordering. We perform 72 simulations for 
each of the eight orderings and take m = 5, 10, 20, 40, 60, 100, 120 and 180. 
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To control for simulation error, we use the Kullback-Leibler (KL) divergence, which 

measures how much information we lose using the approximation 𝑓
^
(𝑧(𝒜)|𝜃) (equation 

11, main text) over the exact likelihood 𝑓(𝑧(𝒜)|𝜃) (equation 10, main text), both using 

the true value of the parameters. A lower KL-divergence between 𝑓
^
(𝑧(𝒜)|𝜃) and 

𝑓(𝑧(𝒜)|𝜃) thus denotes a better approximation.  Plots of eight representative 
simulations (out of 72) comparing the (log) KL-Divergence of the approximations over 
the true likelihood are given in Figure S3. For both 2D and 3D, in general, the Separate-
Maxmin and Separate-Random perform the best while the Coordinate-based orderings 
perform the worst. There was no effect of measurement error on the relative 
performance of the orderings. Therefore, in general, we suggest adopting Separate-
Maxmin or Separate-Random when using Vecchia-multiscale. 
 
 

  

Table S1. Data setting for the simulations in Section S2. 
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Figure S3 Representative simulations comparing the (log) KL-Divergence of the approximations over the true 
likelihood for measurement error variance equal to 0.05. A lower KL-Divergence denotes a better approximation. 
For the majority of the simulation settings, the Separate-Maxmin and the Separate-Random lead to better 
approximation of the exact likelihood.   
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S3 Supporting Information for Section 4 in the main text 
 

 
 
 
  Figure S4 Histograms of point soil, SMAP and SMOS soil moisture data for July 06-20, 2017. On the original 

scale soil moisture exhibits considerable skewness but on the logit scale the soil moisture distribution becomes 
less skewed making the Gaussian assumption tenable. 
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  Figure S5 Overlapping SMOS and SMAP pixels for July 06-20, 2017. The SMOS pixels are bilinearly 

interpolated to the overlapping SMAP pixels for this exploratory analysis. The red line denotes the 1:1 line. 
The transformed scale results in a slightly better correlation (R) between the two datasets. On the transformed 
scale, it can also be seen that there is a bias between SMOS and SMAP datasets for the analyzed time period. 
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Figure S6 Covariate plots for July 06, 2020 for Contiguous US (CONUS). All the four covariates exhibit 
considerable heterogeneity across CONUS. 


