https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2047::AID-HYP54>3.0.CO;2-4
Leeder, M. R., & Bridges, P. H. (1975). Flow separation in meander
bends. Nature, 253 (5490), 338-339.https://doi.org/10.1038/253338a0
Leite Ribeiro, M., Blanckaert, K., Roy, A. G., & Schleiss, A. J.
(2012). Flow and sediment dynamics in channel confluences. Journal
of Geophysical Research: Earth Surface, 117 (F1).https://doi.org/10.1029/2011JF002171
Li, H. Q., Yin, Y., Shi, Y., He, C. H., & Liu, X. Y. (2011).
Micro-morphology and contemporary sedimentation rate of tidal flat in
Rudong, Jiangsu Province (in Chinese). Journal of Palaeogeography,
13 (02), 150-160.
Liaghat, A., Mohammadi, K., & Rahmanshahi, M. (2014). 3D investigation
of flow hydraulic in U shape meander bends with constant, decreasing and
increasing width. Journal of river engineering, 2 (3), 12-23.
Liu, Z. X., Huang, Y. C., & Zhang, Q. N. (1989). Tidal current ridges
in the Southwestern Yellow Sea. Journal of Sedimentary Petrology,
Vol. 59 , 432-437.https://doi.org/10.1306/212F8FB7-2B24-11D7-8648000102C1865D
McLachlan, R. L., Ogston, A. S., Asp, N. E., Fricke, A. T., Nittrouer,
C. A., & Gomes, V. J. C. (2020). Impacts of tidal-channel connectivity
on transport asymmetry and sediment exchange with mangrove forests.Estuarine, Coastal and Shelf Science, 233 , 106524.https://doi.org/10.1016/j.ecss.2019.106524
Morales, J. A. (2022). Tide-Dominated Systems II: Tidal Flats and
Wetlands. In J. A. Morales (Ed.), Coastal Geology (pp. 289-307).
Cham: Springer International Publishing.https://doi.org/10.1007/978-3-030-96121-3_20
Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R.,
Lyons, M. B., et al. (2019). The global distribution and trajectory of
tidal flats. Nature, 565 (7738), 222-225.https://doi.org/10.1038/s41586-018-0805-8
Murray, N. J., Worthington, T. A., Bunting, P., Duce, S., Hagger, V.,
Lovelock, C. E., et al. (2022). High-resolution mapping of losses and
gains of Earth’s tidal wetlands. science, 376 (6594), 744-749.https://doi.org/10.1126/science.abm9583
Nidzieko, N. J., Hench, J. L., & Monismith, S. G. (2009). Lateral
Circulation in Well-Mixed and Stratified Estuarine Flows with Curvature.Journal of Physical Oceanography, 39 (4), 831-851.https://doi.org/10.1175/2008JPO4017.1
Parsons, D. R., Ferguson, R. I., Lane, S. N., & Hardy, R. J. (2004).
Flow structures in meander bends with recirculation zones: implications
for bend movements. In C. Greco & D. Morte (Eds.), River Flow(pp. 49-57). London: Taylor & Francis.
Parsons, D. R., Jackson, P. R., Czuba, J. A., Engel, F. L., Rhoads, B.
L., Oberg, K. A., et al. (2013). Velocity Mapping Toolbox (VMT): a
processing and visualization suite for moving-vessel ADCP measurements.Earth Surface Processes and Landforms, 38 (11), 1244-1260.https://doi.org/10.1002/esp.3367
Passarelli, C., Hubas, C., & Paterson, D. M. (2018). Mudflat Ecosystem
Engineers and Services. In P. G. Beninger (Ed.), Mudflat Ecology(pp. 243-269). Cham: Springer International Publishing.https://doi.org/10.1007/978-3-319-99194-8_10
Pein, J., Valle-Levinson, A., & Stanev, E. V. (2018). Secondary
Circulation Asymmetry in a Meandering, Partially Stratified Estuary.Journal of Geophysical Research: Oceans, 123 (3), 1670-1683.https://doi.org/10.1002/2016JC012623
Perillo, G. M. E., Minkoff, D. R., & Piccolo, M. C. (2005). Novel
mechanism of stream formation in coastal wetlands by
crab–fish–groundwater interaction. Geo-Marine Letters, 25 (4),
214-220.https://doi.org/10.1007/s00367-005-0209-2
Pilkey, O. H., & Cooper, J. A. G. (2004). Society and sea level rise.science, 303 (5665), 1781-1782.https://doi.org/10.1126/science.1093515
Prandtl, L. (1926). Bemerkung zu dem Aufsatz von A. Einstein: Die
Ursache der Mäanderbildung und das sogenannte Baersche Gesetz.Naturwissenschaften, 14 (26), 619-620.https://doi.org/10.1007/BF01507352
Ren, M. E., & Shi, Y. L. (1986). Sediment discharge of the Yellow River
(China) and its effect on the sedimentation of the Bohai and the Yellow
Sea. Continental Shelf Research, 6 (6), 785-810.https://doi.org/10.1016/0278-4343(86)90037-3
Rhoads, B. L., & Kenworthy, S. T. (1995). Flow structure at an
asymmetrical stream confluence. Geomorphology, 11 (4), 273-293.https://doi.org/10.1016/0169-555X(94)00069-4
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., & Dietrich, W. E.
(1999a). Tidal networks 2. Watershed delineation and comparative network
morphology. Water Resources Research, 35 (12), 3905-3917.https://doi.org/10.1029/1999WR900237
Rinaldo, A., Fagherazzi, S., Lanzoni, S., Marani, M., & Dietrich, W. E.
(1999b). Tidal networks: 3. Landscape-forming discharges and studies in
empirical geomorphic relationships. Water Resources Research,
35 (12), 3919-3929.https://doi.org/10.1029/1999WR900238
Rogers, K., & Woodroffe, C. D. (2015). Tidal Flats and Salt Marshes. InCoastal Environments and Global Change (pp. 227-250).https://doi.org/10.1002/9781119117261.ch10
Rozovskiĭ, I. L. v. (1957). Flow of water in bends of open
channels (in Russian) : Academy of Sciences of the Ukrainian SSR.
Schindfessel, L., Creëlle, S., & De Mulder, T. (2015). Flow Patterns in
an Open Channel Confluence with Increasingly Dominant Tributary Inflow.Water, 7 (9), 4724-4751.https://doi.org/10.3390/w7094724
Schwarz, C., van Rees, F., Xie, D., Kleinhans, M. G., & van Maanen, B.
(2022). Salt marshes create more extensive channel networks than
mangroves. Nature Communications, 13 (1), 2017.https://doi.org/10.1038/s41467-022-29654-1
Sgarabotto, A., D’Alpaos, A., & Lanzoni, S. (2021). Effects of
Vegetation, Sediment Supply and Sea Level Rise on the Morphodynamic
Evolution of Tidal Channels. Water Resources Research, 57 (7),
e2020WR028577.https://doi.org/10.1029/2020WR028577
Shi, B., Wang, Y. P., Du, X., Cooper, J. R., Li, P., Li, M. L., & Yang,
Y. (2016). Field and theoretical investigation of sediment mass fluxes
on an accretional coastal mudflat. Journal of Hydro-environment
Research, 11 , 75-90.https://doi.org/10.1016/j.jher.2016.01.002
Shi, B., Wang, Y. P., Wang, L. H., Li, P., Gao, J., Xing, F., & Chen,
J. D. (2018). Great differences in the critical erosion threshold
between surface and subsurface sediments: A field investigation of an
intertidal mudflat, Jiangsu, China. Estuarine, Coastal and Shelf
Science, 206 , 76-86.https://doi.org/10.1016/j.ecss.2016.11.008
Sisulak, C. F., & Dashtgard, S. E. (2012). Seasonal Controls On the
Development And Character of Inclined Heterolithic Stratification In A
Tide-Influenced, Fluvially Dominated Channel: Fraser River, Canada.Journal of Sedimentary Research, 82 (4), 244-257.https://doi.org/10.2110/jsr.2012.21
Solari, L., Seminara, G., Lanzoni, S., Marani, M., & Rinaldo, A.
(2002). Sand bars in tidal channels Part 2. Tidal meanders.Journal of Fluid Mechanics, 451 , 203-238.https://doi.org/10.1017/S0022112001006565
Somsook, K., Duka, M. A., Olap, N. A., Casila, J. C. C., & Yokoyama, K.
(2020). Direct measurement of secondary circulation in a meandering
macrotidal estuary. Sci Total Environ, 739 , 139503.https://doi.org/10.1016/j.scitotenv.2020.139503
Somsook, K., Olap, N. A., Duka, M. A., Veerapaga, N., Shintani, T., &
Yokoyama, K. (2022). Analysis of interaction between morphology and flow
structure in a meandering macro-tidal estuary using 3-D hydrodynamic
modeling. Estuarine, Coastal and Shelf Science, 264 .https://doi.org/10.1016/j.ecss.2021.107687
Sullivan, J. C., Torres, R., Garrett, A., Blanton, J., Alexander, C.,
Robinson, M., et al. (2015). Complexity in salt marsh circulation for a
semienclosed basin. Journal of Geophysical Research: Earth
Surface, 120 (10), 1973-1989.https://doi.org/10.1002/2014JF003365
Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M., Ysebaert, T., &
De Vriend, H. J. (2013). Ecosystem-based coastal defence in the face of
global change. Nature, 504 (7478), 79-83.https://doi.org/10.1038/nature12859
Termini, D., & Piraino, M. (2011). Experimental analysis of
cross-sectional flow motion in a large amplitude meandering bend.Earth Surface Processes and Landforms, 36 (2), 244-256.https://doi.org/10.1002/esp.2095
Thorne, C. R., Zevenbergen, L. W., Pitlick, J. C., Rais, S., Bradley, J.
B., & Julien, P. Y. (1985). Direct measurements of secondary currents
in a meandering sand-bed river. Nature, 315 (6022), 746-747.https://doi.org/10.1038/315746a0
Tu, J. B., Fan, D. D., Zhang, Y., & Voulgaris, G. (2019). Turbulence,
Sediment‐Induced Stratification, and Mixing Under Macrotidal Estuarine
Conditions (Qiantang Estuary, China). Journal of Geophysical
Research: Oceans, 124 (6), 4058-4077.https://doi.org/10.1029/2018JC014281
van Maanen, B., Coco, G., & Bryan, K. R. (2015). On the
ecogeomorphological feedbacks that control tidal channel network
evolution in a sandy mangrove setting. Proc Math Phys Eng Sci,
471 (2180), 20150115.https://doi.org/10.1098/rspa.2015.0115
Vandenbruwaene, W., Schwarz, C., Bouma, T. J., Meire, P., & Temmerman,
S. (2015). Landscape-scale flow patterns over a vegetated tidal marsh
and an unvegetated tidal flat: Implications for the landform properties
of the intertidal floodplain. Geomorphology, 231 , 40-52.https://doi.org/10.1016/j.geomorph.2014.11.020
Voulgaris, G., & Meyers, S. T. (2004). Temporal variability of
hydrodynamics, sediment concentration and sediment settling velocity in
a tidal creek. Continental Shelf Research, 24 (15), 1659-1683.https://doi.org/10.1016/j.csr.2004.05.006
Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis, T. A.,
Athanasiou, P., Luijendijk, A., & Feyen, L. (2020). Sandy coastlines
under threat of erosion. Nature Climate Change, 10 (3), 260-263.https://doi.org/10.1038/s41558-020-0697-0
Wang, X. Y., & Ke, X. K. (1997). Grain-size characteristics of the
extant tidal flat sediments along the Jiangsu coast, China.Sedimentary Geology, 112 (1-2), 105-122.https://doi.org/10.1016/S0037-0738(97)00026-2
Wang, Y., & Zhu, D. K. (1990). Tidal flats of China (in Chinsese).Quaternary Sciences, 10 (4), 291-300.
Wang, Y. P., Gao, S., Jia, J. J., Thompson, C. E. L., Gao, J., & Yang,
Y. (2012). Sediment transport over an accretional intertidal flat with
influences of reclamation, Jiangsu coast, China. Marine Geology,
291-294 , 147-161.https://doi.org/10.1016/j.margeo.2011.01.004
Wang, Y. P., Voulgaris, G., Li, Y., Yang, Y., Gao, J. H., Chen, J., &
Gao, S. (2013). Sediment resuspension, flocculation, and settling in a
macrotidal estuary. Journal of Geophysical Research: Oceans,
118 (10), 5591-5608.https://doi.org/10.1002/jgrc.20340
Wang, Y. P., Zhang, R. S., & Gao, S. (1999a). Geomorphic and
hydrodynamic responses in salt marsh-tidal creek systems, Jiangsu,
China. Chinese Science Bulletin, 44 (6), 544-549.https://doi.org/10.1007/BF02885545
Wang, Y. P., Zhang, R. S., & Gao, S. (1999b). Velocity variations in
salt marsh creeks, Jiangsu, China. Journal of Coastal Research,
15 (2), 471-477.http://www.jstor.org/stable/4298958
Wells, J. T., Adams, C. E., Park, Y.-A., & Frankenberg, E. W. (1990).
Morphology, sedimentology and tidal channel processes on a
high-tide-range mudflat, west coast of South Korea. Marine
Geology, 95 (2), 111-130.https://doi.org/10.1016/0025-3227(90)90044-K
Wilson, A. M., & Morris, J. T. (2012). The influence of tidal forcing
on groundwater flow and nutrient exchange in a salt marsh-dominated
estuary. Biogeochemistry, 108 (1/3), 27-38.http://doi.org/10.1007/s10533-010-9570-y
Xin, P., Wilson, A., Shen, C., Ge, Z., Moffett, K. B., Santos, I. R., et
al. (2022). Surface Water and Groundwater Interactions in Salt Marshes
and Their Impact on Plant Ecology and Coastal Biogeochemistry.Reviews of Geophysics, 60 (1), e2021RG000740.