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Summary
The deeper subsurface layers beyond the lunar regolith are not

well-constrained. Using in-situ lunar penetrating radar data (d) from
Change’E-3 Yutu rover, we invert for its subsurface relative
dielectric permittivity (𝜀𝜀𝑟𝑟) model.

We use a physics informed convolutional neural network (CNN)
based deep learning architecture to regress the relationship
between 𝜀𝜀𝑟𝑟 – d. We incorporate a priori physics knowledge such as
known lunar 𝜀𝜀𝑟𝑟 estimates [1-9] and attenuation during the
generation of synthetic training dataset.

In total, we trained 20 (iterations) neural network models and
averaged the predictions to make a final predicted 𝜀𝜀𝑟𝑟 model as well
as calculating the model’s uncertainties.

We validate our physics informed deep learning approach by
comparing the predicted forward data from 𝜀𝜀𝑟𝑟 estimates to the field
data.

Our interpretation suggests multiple layers in the upper 200
meters in the order of regolith, ejectas, Eratosthenian basaltic lava
flows, paleoregolith, and lava flows from Imbrium period.

Our workflow is organized as follows:
1. We simulate 15,000 random synthetic 𝜀𝜀𝑟𝑟 and its

corresponding radargram using reflectivity method by Kennett
(1983) (Fig 1). The synthetic 𝜀𝜀𝑟𝑟 are generated based on
ranges of 1 – 9 (Zhu et al., 2021)

2. We incorporate radar attenuation (Lai et al., 2020) as means
to augment our dataset (Fig 2). The attenuation (𝛼𝛼) equation is
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; where λ is the wavelength
in the medium, 𝑡𝑡𝑡𝑡𝑡𝑡 𝛿𝛿 is the loss tangent (0.006). We apply
attenuation to the radargram by 𝐷𝐷𝑒𝑒𝑘𝑘∗𝛼𝛼∗𝑡𝑡; where 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the
augmented radargram with attenuation, 𝐷𝐷 is original
radargram, k is a scaling coefficient which is randomized
during augmentation, 𝑡𝑡 is the time steps. In total, we
generated 75,000 datasets.

3. Our CNN is based on Leong and Zhu (2021), in which input is
radargram and output is corresponding 𝜀𝜀𝑟𝑟. Here, we add two
more layers at the Atrous Spatial Pyramid Pooling (ASPP)
module to encourage more contextual feature learning (Fig 3).

4. We train the neural network 20 times, each time yielding
different results due to the stochastic randomness from the
convolutional layers within the neural network. From the 20
models, the averaged predictions is taken as the final 𝜀𝜀𝑟𝑟
prediction along with its uncertainties. (Figs 4 – 10).

Fig. 1: (a) example of relative dielectric permittivity, 
𝜀𝜀𝑟𝑟, while (b) is its corresponding radargram.  

Fig. 2: Example of radargram 
with attenuation.

Fig. 3: We added two more layers at the ASPP module, as 
depicted in the orange modules (grey modules are originally from 
Leong and Zhu, 2021). The ASPP uses Atrous convolution instead 
of a vanilla convolution, which allows for an enlarged field of view 
during convolution. This is especially useful in the encoding of the 
input data (LPR data) because a wider convolution window 
enables more neighboring information to be encoded. For 
example, the reflection energy recorded at an interface often 
contains leftover energy around the reflection time depth due to 
nature of the source wavelet and/or energy from multiples.
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Fig. 4: Examples of synthetic 𝜀𝜀𝑟𝑟 predictions  
compared with ground truth. The dark shaded 
area are the uncertainties (standard deviation) 

calculated from the 20 trained models. The 
blue lines represent the 𝜀𝜀𝑟𝑟 predictions, while 

red lines are the corresponding ground truths.

Fig. 5: Preprocessed Chang’E-3 (CE-3) 
lunar penetrating radar (LPR) data from 

Yutu rover. Preprocessing is done by 
closely following the steps taken in Zhu et 

al., 2021.

Fig. 6: Two 
examples of 
𝜀𝜀𝑟𝑟 predictions 
on CE-3 LPR 
Data. 

Fig. 7: Average 𝜀𝜀𝑟𝑟 from the 20 predictions. Fig. 8: Uncertainties (standard deviation) from 
the 20 predictions.

Discussion & Future Work
• Our results seem reasonable considering the fitting match between predicted 

forward data and field data.
• We are currently working on LPR data from Yutu-2 rover from Chang’E-4 

spacecraft.

Fig. 10: Layer a is regolith, b is ejectas with 
Eratosthenian basalt, c is paleoregolith, d is 

ejectas and paleoregolith mix, and layers e and f 
are lava flows from Imbrium period.

Fig. 9: Comparison of predicted forward 
data and original CE-3 LPR data. 
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