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Abstract

Tsunami Squares is a computationally lightweight tsunami and inundation simulator which utilizes
a unique cellular automata technique. We make modifications to the underlying algorithm which result
in increased accuracy and enhanced waveform resolution. These improvements leave Tsunami Squares
well suited for machine learning applications where large pre-computed tsunami simulation databases
are required. Previous implementations relied heavily on a smoothing algorithm which acts as a moving
average applied to the water surface heights and velocities to eliminate anomalies at every time step.
Although this allowed the simulation to function properly, it brings several unwanted effects such as
reduced wave detail and lowered energy. A solution is found by shifting the location at which the water
surface gradient is calculated, reducing the amount of anomalies in the simulation, and thus lowering
the amount of smoothing needed by a factor of ∼ 10. Also introduced is a new method to conserve
energy locally, compared to previous methods which reference a simulation-wide energy calculation. We
make comparison tests were made using the 2011 Tohoku tsunami along with the 2010 Maule tsunami
to demonstrate the improvements made.

1 Introduction

Tsunami simulators are typically faced with a trade-off between accuracy and computational cost. An
increase in the resolution or accuracy in a given tsunami simulation is usually compensated by an increase
in computational cost. This poses several obvious problems for machine learning applications due to the
computational resources needed in the creation of large pre-computed tsunami simulation databases. Recent
machine learning applications include utilizing a convolutional neural network and a multilayer perceptron
to estimate inundation in real time by linking low resolution simulations calculated in real time to pre-
computed high resolution inundation maps (Fauzi & Mizutani, 2020). Other work has utilized a matching
scheme using principal component analysis to link a similar database of low and high resolution simulations
(Mulia, Gusman, & Satake, 2018, 2020). Other authors have used stochastic earthquake source models for
the Nankai-Tonankai earthquake to quantify the uncertainty of a tsunami impact at coastal regions (Goda,
Yasuda, Mai, Maruyama, & Mori, 2018). However, the work mentioned uses a collection of pre-computed
tsunami source models only on the order of hundreds. Adding fault scenarios is essential to improve the
effectiveness of these techniques as problems arise if there is no acceptable match in the database (Mulia
et al., 2018, 2020; Fauzi & Mizutani, 2020). However, when increasing the number of simulations in the
database, scenarios must be unique to maintain a statistical correlation between low resolution and high
resolution simulations (Mulia et al., 2018, 2020).

Presented in this article are improvements made to Tsunami Squares, a computationally lightweight
tsunami simulator which utilizes a cellular automata technique, leaving it well suited for these tsunami
database creation applications. Originally inspired by a landslide simulation technique which simulates
individual particles, or “balls” (Ward & Day, 2006), the method was adapted to water particles and named
“Tsunami Balls” (Ward & Day, 2008, 2010, 2011). To obviate the need for millions of individual water
particles, a new method, “Tsunami Squares”, was created which instead accelerates and transports “squares”
of water to be imparted onto a grid, conserving volume and linear momentum (Xiao, Ward, & Wang, 2015).
Another advantage of Tsunami Squares is that it gives no special treatment for wet and dry cells, allowing
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the free flow of water from sea to land. This method was tested on the 1982 El Picacho landslide in El
Salvador (Wang, Ward, & Xiao, 2015), the 1792 Unzen-Mayuyama mega-slide in Japan (Wang, Ward, &
Xiao, 2019), and the 2011 Tohoku Tsunami (Wilson et al., 2020). Originally written in Fortran, this method
was later ported to C++ and parallelized for reduced computational time (Wilson et al., 2020).

The changes made to the most recent C++ ported version of Tsunami Squares consist of two small changes
to how these individual squares of water are accelerated and transported. In addition, a new technique has
been developed to ensure energy conservation. These changes allow Tsunami Squares to simulate waves
with enhanced accuracy and resolution, whereas before, the simulations did not contain enough detail to be
distinguished between other similar simulations, making it unfit for use in machine learning applications.

2 The Tsunami Squares Technique

Tsunami Squares uses a cellular automata method to equivalently solve nonlinear continuity and mo-
mentum conservation equations to obtain total column height H(r, t) and horizontal velocity v(r, t) at every
specified point for each time step

∂H(r, t)

∂t
= −∇· [v(r, t)H(r, t)] (1)

and

∂H(r, t)v(r, t)

∂t
= −∇· [v(r, t)v(r, t)H(r, t)]− gH(r, t)∇h(r, t) (2)

where g is the strength of gravity and h(r, t) is the surface height relative to sea level.
Instead of solving these differential equations explicitly, each column of water is propagated individually

over ∆t according to its position, velocity, and acceleration. After the final position is computed, the
square’s mass and momentum are split up among the overlapping squares. This process is demonstrated in
the following figure.

Figure 1: The Tsunami Squares technique. Shown is one time step for one square

At the beginning of each time step, the acceleration of each square is calculated. It is caused by any
unevenness on the surface of the water and is therefore expressed by a gradient term

ai(t) = −g∇hi(t) (3)

Once this is determined through a calculation of the slope at that point, the final position can be
calculated. However, the slope and final position can be computed multiple ways. Many experiments
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suggest that new methods to calculate these two quantities yield better performance. This means greater
accuracy, improved energy conservation, and more detail contained in the waveform. We will now discuss
the differences in implementation and how this impacts the resulting wave.

Previous implementations of Tsunami Squares have calculated the slope by using the central difference
approximation. For a 1D wave in the x-direction this is

S =
hi+1 − hi−1

2∆x
(4)

where ∆x is the width of the square and S is the slope. The final distance is then calculated according
to standard kinematics

r̃i(t) = ri + vi(t)dt+ 1
2ai(t)dt

2 (5)

To compare, the current implementation of Tsunami Squares calculates the slope in the following way. It
first considers the direction of the individual square-v (square velocity), then takes the slope by considering
only itself and the square in that direction. For example in 1D, if square v points to the right, the slope is
calculated by only considering the current height hi and the height to right of it hi+1.

Ssquare v>0 =
hi+1 − hi

∆x
(6)

Ssquare v<0 =
hi − hi−1

∆x
(7)

The final distance is then calculated by

r̃i(t) = ri + vi(t)dt+ ai(t)dt
2 (8)

which differs from the previous implementation by a factor of 1
2 in the term containing acceleration. The

new distance formula is equivalent to transporting the square according its final velocity (vi(t) + ai(t)dt)
instead of the average velocity as is used in standard kinematic formulas.

A 1D stationary Gaussian pile of water will be simulated and allowed to propagate left and right to show
the difference between the original implementation and the new implementation. An expected solution is
shown by solving the linear shallow water equations using a finite difference method. We present results using
the original implementation defined by equations 4 and 5 followed by the results using the new implementation
defined by equations 6, 7 and 8.

Figure 2: A 1D example of the original Tsunami Squares implementation using equations 4 and 5 starting from an initial
stationary Gaussian pile of water (left). The wave propagates for a few time steps before experiencing erroneous behavior (right).
Even with smooth initial conditions and small ∆t, the original Tsunami Squares implementation cannot stably propagate waves.
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Figure 3: A 1D example of the modified Tsunami Squares implementation using equations 6,7, and 8 starting from an initial
stationary Gaussian pile of water (left). The wave then propagates in alignment with the expected analytical result for 16,000
timesteps (right).

Results show clearly that the new way of calculating the slope (equations 6 and 7) in combination with
the new way of calculating the final position (equation 8) allows the wave to propagate in exact agreement
with the expected solution. Of course, these results are under ideal conditions (small ∆t and a smooth
waveform). If one is to move on to a simulation with conditions that are not ideal, such as in virtually every
realistic tsunami scenario, one needs a way to smooth out the errors that will eventually arise due to sudden
changes in bathymetry, effects at shore, and non-ideal waveforms. In the original implementation, such a
smoothing algorithm is necessary for the wave to function properly for any condition.

The next section details the algorithm designed to smooth out these errors and explains why if both
implementation choices need smoothing, why does it matter which version is used?

3 Smoothing

No matter how well the algorithm works on its own, sharp changes in bathymetry, effects near land,
and non-smooth waveforms will cause errors that will grow exponentially over time. Therefore after the
Tsunami Squares algorithm has been carried out for each square, a smoothing algorithm is then applied to
even out any anomalies that will give rise to these nonphysical effects. To demonstrate the overall effects the
smoothing algorithm has on a wave that is experiencing erroneous behavior, smoothing has been applied to
the wave produced by the original algorithm in Figure 2.
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Figure 4: The 1D Tsunami Squares simulation from figure 2 with smoothing (left). The waves then propagate left and right
after which the clear effects of smoothing can be seen (right). It results in a wave with a lower amplitude, greater width, and
lower energy (55% of initial).

The wave that is produced by the original simulation has errors, but these are removed or reduced by
the smoothing procedure, allowing the waves to propagate virtually error-free to left and right. However, as
can be seen, the smoothing algorithm gives rise to several unwanted effects. These are listed below.

• Reduced amplitude

• Increased width

• Reduced energy

It is therefore the case that less smoothing is better. This then answers the question of why it is more
beneficial to use the new implementation over the original implementation, when in practice both require
smoothing. It is because the new implementation needs significantly less smoothing, and will therefore
produce fewer of these undesired effects. The original implementation needs smoothing to operate, whereas
the new implementation merely needs it for maintenance as it can function to a good degree on its own.

Even with the little amount of smoothing needed by the new implementation for maintenance, over large
distances these undesirable effects come into play. Most notably, energy is lost. To conserve energy, it must
manually added back in. There are multiple techniques that can be used to accomplish this which will be
discussed in the next section.

As for how the smoothing algorithm is carried out, it in essence takes some water from higher squares and
transfers it to the neighboring lower squares. The following figure depicts a simplified 1D example containing
only two squares for the purpose of demonstration.
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Figure 5: The smoothing algorithm showing the case for two columns of water. This is done by taking water from the right
column (the higher column) and moving it to the left column (the lower column). Left: the columns before smoothing is applied.
Middle: the algorithm in progress. Right: the final result.

The smoothing is done for both the height and velocity of each square. The amount of water transferred
is proportional to the difference in height of the two squares. The factor f determines how much of that
height difference is transferred from one square to the other. In Figure 5, this is depicted by the shaded red
part in the center picture.

htransfered = (h2 − h1) · f (9)

vtransfered = (v2 − v1) · f (10)

where h1 and h2 and the heights relative to sea level and the factor f is the factor chosen by the user.
The higher the value of f , the greater the smoothing.

4 Adding Energy

After changes were made to the Tsunami Squares algorithm detailed in equations 6, 7, and 8, waves can
now propagate on their own with enhanced stability (see figures 2 and 3). However, although the modified
algorithm is now stable under ideal conditions (smooth waveform, small timesteps, flat seafloor), non-ideal
conditions cause the wave to experience errors that grow over time. To remedy this, a smoothing algorithm
as been introduced which acts as a moving average applied across all squares in the simulation. This has
unfortunate side effects of decreasing the amplitude and energy over time. The solution to these undesired
effects is to manually add energy back into the simulation. A new technique used to accomplish this will be
described in this section.

The technique described here has the effect of “sharpening” the wave. This means the amplitude of the
waveform increases over time and width of the wave is decreases over time. The following figure shows the
desired effect.
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Figure 6: Blue: A positive wave showing the effect of sharpening. Gray: Finite difference solution. Over time the wave’s width
decreases and its height increases, increasing the energy substantially as well).

This is ideal because the smoothing algorithm has the exact opposite effect on the waveform. The
combination of these two effects leaves the original waveform unchanged, while smoothing out any anomalies.

The sharpening effect is accomplished by shifting the acceleration towards the opposite direction of wave-v
(wave velocity) by a small amount. This amount is denoted by a, which is defined by the following equation.

a =
(distance moved)

∆x
(11)

where ∆x is the square length. a = 1.0 would therefore shift the acceleration by one full square length
or 1 ∆x. The following figure shows this process.

Figure 7: Diagram showing how a shift in the acceleration curve will cause an increase in the acceleration in the center (red
shaded region) and a decrease in acceleration in the outer regions (orange shaded regions). An increase in acceleration leads to
an increase of velocity which in turns increases the height. This acceleration shift ultimately leads to the a sharpening effect
on the wave, increasing its energy.

By shifting the acceleration curve, acceleration is either raised or lowered from its original value. The
more the acceleration is shifted, the greater this increase or decrease. Regions where the acceleration is
raised cause a rise in height and regions where the acceleration is lowered causes a decrease in height. This
is indicated by the red and orange shaded regions in figure 7. An increase in height follows from an increase
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in acceleration because as the acceleration rises, so do the square velocities, causing the square heights to
increase as well.

The diagram below will be used to describe exactly how the slope is taken with this newly added wave-v
directional dependency.

Figure 8: A 1D example showing positions at which the slope is well defined (S−2, S−1, S+1, S+2). Slopes at all positions in
between these points can calculated by linear interpolation.

Figure 8 shows distance from the current square and the slopes which are defined at certain locations
(S−2, S−1, S+1, S+2). We can further define the slope at every position by a simple linear interpolation.
This gives us the opportunity of shifting the acceleration (or equivalently shifting the slope) at intervals
smaller than ∆x.

Since the acceleration is to be shifted based on the direction of wave-v, one piece of information must
first be made clear. In general for well behaved waves, wave-v points in the same direction as square-v
if h is positive and wave-v points in the opposite direction as square-v if h is negative. So by looking at
square-v and the height, which is well defined for every square, the wave-v direction can be estimated to
good approximation.

To demonstrate the process of determining the slope, an example will be given. Say we want to shift the
acceleration by 0.25∆x (a common and well performing choice) for the wave given in figure 7. The first step
is to consider square-v to determine if S−1 or S+1 will be used. This slope is the fundamental algorithm’s
slope detailed in equations 6 and 7 and acts as the starting point before any shifting has occurred. After
checking that the sign of square-v is positive, S+1 is taken.

To shift the acceleration, the wave-v direction must be known. It can be estimated that for a square with
positive h and positive square-v, wave-v must also be positive. Since we need to shift the slope towards the
opposite direction of wave-v, the slope must be taken that distance towards the direction of wave-v. We now
know we want to take the slope 0.25∆x to the right of S+1. We can therefore interpolate between S−1 and
S−1 to find the desired shifted slope.
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Sshifted = S+1 + 0.25∆x
(S+2 − S+1)

∆x
= S+1 + 0.25S+2 − 0.25S+1

= 0.75S+1 + 0.25S+2

= (1− a)S+1 + (a)S+2

(12)

where written more generally, a is the fraction of ∆x the wave is to be shifted.
The shifted slope can be written for all combinations of h and square-v:

Sshifted = (1− a)S+1 + (a)S+2 (h > 0, square-v > 0) (13)

Sshifted = (1− a)S−1 + (a)S−2 (h > 0, square-v < 0) (14)

Sshifted = (1− a)S+1 + (a)S−1 (h < 0, square-v > 0) (15)

Sshifted = (1− a)S−1 + (a)S+1 (h < 0, square-v < 0) (16)

For a given simulation, choosing a value in the range of 0.1 < a < 0.3 have been tested to perform most
accurately. For each value of a, a specific smoothing factor f (equations 9 and 10) can be calculated to
exactly cancel out the sharpening effects. This factor f was determined empirically and depends on a, ∆x,
∆t and height of water column H:

f = 0.24

√
gH∆t · a

∆x
(17)

By using a value of 0.1 < a < 0.3 and the smoothing factor given above, the wave will now conserve
energy and preserve shape while eliminating any erroneous behavior.

5 Additional Fixes

The methods described thus far operate as they should for waves which contain only positive or only
negative heights. For more complicated waveforms that include both positive components and negative
components, problems arise. With the great reduction of smoothing due to the introduction of the new
modifications and methods, errors that were previously smoothed over have now surfaced. These errors are
shown in the following two figures.

Figure 9: Errors at the boundary between a negative and positive wave, showing the case for a positive slope traveling to the
right. This contains the case where there are two squares with square-v pointing away from each other.
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Figure 10: Errors at the boundary between a negative and positive wave, showing the case for a negative slope traveling to the
right. This contains the case where there are two squares with square-v pointing towards each other.

The two types of errors shown are due to a change in the direction of square-v from one square to
another. The error in the first image is caused by two squares at h = 0 which have square velocities pointing
away from each other. The error in the second image is caused by two squares which have square velocities
pointing inwards towards each other. In well behaved waves, water is exchanged uniformly from left to right
or visa versa (indicated by the direction of square-v). If this direction changes there is a discontinuity in this
exchange of water, leading to erroneous behavior as shown in the previous two images.

The solution to this problem involves modifying the acceleration and velocity of the two squares which
have opposing square-v directions. Not only do these modifications depend on the square-v direction, but
also the slope of h at that point (whether it is positive or negative). Therefore there are four total scenarios
which must be treated with their own modifications. The four scenarios can be categorized as the cases of
figure 9 and 10 plus the cases where the waves are traveling in the opposite direction. These rules are shown
below.

Figure 11: The changes to acceleration and velocity that must be applied to remedy the problems experienced at the boundary
between positive and negative square-v shown in figures 9 and 10. There are four scenarios relating to the four unique
combinations of positive and negative height and square-v slopes present at the square-v = 0 boundary. It is only specified
what is changed. If acceleration or velocity is not mentioned, it is left unchanged.
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The rules for each pair of squares are also given in the following table. For consistency’s sake, case 1
corresponds to the upper left portion of the table, case 2 corresponds to the upper right and so on.

Height Slope
Positive Negative

V
el

o
ci

ty
S

lo
p

e Positive

Left

vi,new = (vi−1+vi+1)
2

Right

vi,new = (vi−1+vi+1)
2

Left

vi,new = (vi−1+vi+1)
2

Right

vi,new = (vi−1+vi+1)
2

Negative
Left

no change

Right

anew = 0
Left

anew = 0

Right

no change

Table 1: Rules to remedy problems located where a pair of squares crosses square-v = 0. It is only specified what is changed. If
acceleration or velocity is not mentioned, it is left unchanged. These rules are applied separately for both the x and y direction,
where left and right correspond to bottom and top squares.

It can be seen that the rules involve setting the acceleration to zero for some squares and setting the
velocity to the average velocity for others. With these rules implemented, the simulation can now run stably
and reliably, free of the errors observed in figures 9 and 10.

6 Full Simulation Results

The following result compares a simulation using the original implementation compared to several sim-
ulations using the new implementation (each with different levels of smoothing). The event used in this
comparison is the 2011 Tohoku event with an initial condition obtained by inverting wave gauge data (Song,
Fukumori, Shum, & Yi, 2012; Song, 2007).

Figure 12: Far left: Results of the 2011 Tohoku event using the original implementation. Right three: Results using the
new implementation, showing increasing amounts of sharpening (indicated by the value “a”) which corresponding increasing
amounts of smoothing.

The value a used in each simulation in figure 12 is proportional to how much smoothing is used (equation
17). It follows from this equation that as the value a increases, in turn so does the amount of smoothing
used.

Compared to the original algorithm, the modified algorithm produces a simulation with enhanced detail.
This is possible because of the significant reduction in the amount of smoothing necessary. To quantify, the
smoothing factor (equations 9 and 10) used in the new implementation is 5-15 times less than the original
implementation.

For a more detailed comparison, buoy data from the 2011 Tohoku event and the 2010 Maule event were
used to compare the original implementation, new implementation, and the Regional Ocean Modeling System
(ROMS). ROMS is a verified wave simulator which solves three dimensional Reynolds-averaged Navier-Stokes
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equations using a finite difference method and has been applied to several tsunami studies (Haidvogel et al.,
2008; Song, Mohtat, & Yim, 2017). It is used in the comparison to give Tsunami Squares a reference to
an accurate tsunami simulator which uses the same initial conditions derived by inverting wave gauge data
(Song et al., 2012; Song, 2007).

Figure 13: Buoy comparison plots for the 2011 Tohoku Tsunami. The simulation using the new implementation uses an a value
of 0.4. Results show better alignment and more detail for the new implementation in nearly all cases.
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Figure 14: Buoy comparison plots for the 2010 Maule Tsunami. The simulation using the new implementation uses an a value
of 0.25. Results show better alignment in nearly all cases.

The most important features in comparison plots such as these are the arrival time, wave height, and
width. Arrival time information is important for early warning purposes, and the height and width of the
initial peak are an indication overall wave energy. It would also affect the complicated dynamics of water
flow onto land.

In the plots shown show overall greater alignment in the aspects of wave height, width, and arrival
time. Sources of error in the comparison between Tsunami Squares and ROMS include lower resolution
bathymetry near coast which is known to affect wave dynamics (Tang et al., 2008), higher timestep, and
using instantaneous seafloor uplift instead of a time-dependent one.

Errors for root mean square error, initial peak height, and following trough height are shown below for
the 2011 Tsunami event. Expected values were calculated from buoy measurements.
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Figure 15: Error analysis for the 2011 Tohoku event. Left: Root mean square error using data from the start of the wave to
the first trough. Middle: Ratio of the initial peak height to the height measuremed by the buoy. Right: Ratio of the initial
trough to the expected height measured by the buoy. Black line indicates expected result for the middle and right plots.

7 Conclusion

Several modifications were made to the Tsunami Squares algorithm which yield higher accuracy sim-
ulations and greater detailed waveforms. Before the changes, Tsunami Squares could not provide enough
uniqueness between simulations with similar initial conditions, affecting the effectiveness of a searching al-
gorithm in a given pre-computed tsunami database (Mulia et al., 2018, 2020). The modifications now leave
Tsunami Squares well suited for applications which require the creation of such a database.

The changes made to the algorithm involve a simple change to how the slope and distance traveled are
calculated for a given square, resulting in a more stable wave which requires significantly less smoothing to
function. Smoothing is a added function to Tsunami Squares which takes a given waveform and eliminates
any sharp features, allowing the wave to propagate with more stability. However, the more smoothing that
is used, the more detail that is lost. So a reduction in the amount of smoothing is something that is highly
beneficial for overall performance.

A new method is introduced to conserve energy. It works by shifting the acceleration a small distance
towards the opposite direction of wave travel. In doing so, it produces a sharpening effect on the wave
which increases the height, decreases the width, and ultimately increases the energy. Since the smoothing
decreases height, increases width, and decreases energy, these two effects cancel each other out leaving behind
the original wave while smoothing over all of the small anomalies. The advantages of this method is that it
doesn’t rely on a global calculation of wave energy, meaning it conserves energy locally and allows for energy
fluctuation due to complex interactions near shorelines.

Lastly, changes were made to the square-v and acceleration of squares which have opposing square-v
directions. The significant reduction of smoothing uncovered errors at these locations that were previously
smoothed over in the original algorithm. These errors affected the overall waveform and were detrimental to
the overall accuracy of the simulation. The empirically derived fixes have since eliminated these problems.
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Table 2: Variable Definitions

Variable Definition

h height of water surface relative to sea level
H full height of column of water from surface to floor
d depth, measured from sea floor to sea level

square-v velocity of an individual water column
wave-v wave velocity (

√
gd)

∆x width of a given square
∆t length of the timestep

timesteps the total number of iterations in time
t the in-simulation time (timesteps ·∆t)

Height, σ The height and standard deviation of a Gaussian initial condition
cells the number of bins in the simulation

a value from 0 to 1.0 which sharpens wave, resulting in an increase in wave energy
f smoothing factor, determines how smooth the wave is and results in decreased total wave energy
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