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Abstract18

Although the humidity of the tropical free-troposphere plays a key role in controlling the19

Earth’s energy budget, it is poorly simulated by conventional climate models. Recently20

developed global storm-resolving models (GSRMs) are expected to better represent the21

relevant processes, but it is unclear to what extent humidity biases are reduced. In this22

study we quantify inter-model differences in tropical free-tropospheric humidity and their23

impact on the clear-sky radiation budget in an ensemble of nine GSRMs called DYA-24

MOND. We find that throughout most of the free troposphere the inter-model spread25

in relative humidity (RH) is approximately halved compared to conventional climate mod-26

els. Nevertheless, the remaining differences cause a considerable spread of 1.2 Wm−2 in27

tropical mean clear-sky outgoing longwave radiation (OLR). This spread is mainly caused28

by RH differences in the lower and mid free troposphere, whereas RH differences in the29

upper troposphere have a minor impact. By examining model differences in moisture space30

we identify two regimes with a particularly large contribution to the spread in tropical31

mean OLR: rather moist regions at the transition from deep convective to subsidence32

regimes and very dry subsidence regimes. In the regions identified as most critical we33

do not find a direct relation between the RH differences and differences in the RH trans-34

port by the resolved circulation, suggesting that inter-model differences are mainly re-35

lated to unresolved processes like microphysics and turbulence. Hence, a more detailed36

understanding of how these processes affect RH is needed to further constrain the hu-37

midity distribution in GSRMs.38

Plain Language Summary39

The humidity of the atmosphere affects radiation and hence the Earth’s energy bud-40

get, but it is poorly simulated by conventional climate models. In this study we inves-41

tigate whether recently developed high-resolution models simulate humidity more accu-42

rately. We find that humidity biases in the tropics are approximately halved compared43

to conventional climate models. Nevertheless, the humidity biases still have a consider-44

able effect on the radiation budget. We also investigate in which regions of the tropics45

a further reduction of biases would be most beneficial. In the vertical, it is the altitude46

region between about 1 km and 10 km. In the horizontal, we find two tropical regimes47

that are particularly important: Dry regimes with very strong subsidence and moister48

regimes at the edge of deep convective regimes. In the regions we identify as most im-49

portant the humidity biases are most likely related to processes that are still unresolved50

in high-resolution models. Therefore, a better understanding of how these processes af-51

fect humidity is needed.52

1 Introduction53

The humidity distribution in the tropical free troposphere plays an important role54

in controlling the Earth’s radiation budget. However, it is poorly simulated by conven-55

tional climate models (e.g. Jiang et al., 2012). A major uncertainty arises from param-56

eterizations of unresolved processes, particularly the convective parameterization. Global57

storm-resolving models (GSRMs) forgo the parameterization of deep convection for the58

first time on a global scale and therefore raise hopes for an improvement of the simu-59

lated humidity distribution, but it is unclear to what extent these hopes are justified.60

In this study we quantify differences in the distribution of tropical free-tropospheric hu-61

midity as well as the resulting spread in clear-sky outgoing longwave radiation (OLR)62

in GSRMs based on the DYAMOND multi-model ensemble. Moreover, we identify the63

regions of the tropical atmosphere, which would most benefit from a reduction in humid-64

ity biases.65

66
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Water vapour is the most important absorber of infrared radiation in the atmo-67

sphere and hence strongly impacts the Earth’s OLR (e.g. Harries, 1997). Furthermore,68

it is associated with a feedback that amplifies the climate system’s response to forcings69

such as an increase in anthropogenic greenhouse gasses (e.g. Held & Soden, 2000). A re-70

gion that has received particular attention in this context is the free troposphere, because71

OLR is particularly sensitive to humidity changes there (Spencer & Braswell, 1997; Held72

& Soden, 2000; Soden et al., 2005). Hence, for the energy budget it is crucial that the73

distribution of free-tropospheric humidity is well reproduced by climate models.74

75

However, there are substantial errors in the simulation of the present-day distri-76

bution of free-tropospheric humidity by General Circulation Models (GCMs). Several77

studies revealed significant inter-model spreads in ensembles of GCMs, both in models78

forced by observed sea surface temperatures (e.g. Brogniez et al., 2005) and fully cou-79

pled atmosphere ocean models (e.g. Pierce et al., 2006; John & Soden, 2007; Jiang et80

al., 2012). These studies also consistently found a moist bias in the tropical free tropo-81

sphere with respect to satellite observations. To date it is not clear which physical pro-82

cesses control the inter-model differences and biases.83

84

Processes affecting the tropical free-tropospheric humidity distribution act on a va-85

riety of scales, not all of which are well represented in GCMs (Sherwood et al., 2010).86

While transport of humidity by the large-scale circulation is explicitly resolved, sub-grid-87

scale processes, like convective and turbulent mixing as well as microphysical processes88

are only crudely represented in the form of parameterizations. The relative importance89

of these processes in setting the free-tropospheric humidity distribution has been stud-90

ied extensively. Diagnostic studies indicate that the observed humidity distribution can91

be reproduced reasonably well only considering advection of convectively-saturated air92

on scales resolved by GCMs (e.g. Sherwood, 1996; Pierrehumbert & Roca, 1998; Dessler93

& Sherwood, 2000). This suggests that after the air is saturated in deep convection, sources94

and sinks of water vapour from phase changes or mixing are modest. On the other hand,95

since these are the most poorly constrained processes in the models, it is likely that dif-96

ferences in their parameterizations play a major role in controlling inter-model differ-97

ences in the humidity distribution.98

99

A promising step towards reducing the uncertainty in the humidity distribution has100

been made with the development of GSRMs (Satoh et al., 2019). These models solve the101

non-hydrostatic equations on global grids with kilometre-scale resolution. At such res-102

olutions the models begin to resolve precipitating convective systems and therefore forgo103

the need to parameterize deep convection. It is hoped that this eradicates some long-104

standing biases associated with this parameterization (e.g. Stevens & Bony, 2013; Stevens105

et al., 2020). It certainly also eliminates an important source of uncertainty for the dis-106

tribution of free-tropospheric humidity. However, uncertainty remains since deep con-107

vection is imperfectly resolved at kilometre-scale resolution (e.g. Bryan et al., 2003; Miyamoto108

et al., 2013), and because other relevant processes like shallow convection, turbulent mix-109

ing and microphysical processes remain unresolved or poorly resolved in GSRMs.110

111

In this study we investigate whether and by how much the spread in free-tropospheric112

humidity is reduced in GSRMs compared to GCMs. To do so, we quantify the spread113

in a multi-model ensemble consisting of nine GSRMs, which took part in a first inter-114

comparison called DYnamics of the Atmospheric general circulation Modeled On Non-115

hydrostatic Domains (DYAMOND) (Stevens et al., 2019). As a first step towards nar-116

rowing down the processes responsible for the remaining humidity differences, we inves-117

tigate whether they are related to differences in the resolved humidity transport.118

119
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From the magnitude of the humidity differences alone it is hard to assess how rel-120

evant they are for the radiation budget, since the sensitivity of OLR to a given humid-121

ity perturbation varies both with the altitude at which the perturbation is applied and122

with the humidity of the base state (e.g. Spencer & Braswell, 1997). Therefore, we trans-123

late the humidity differences into differences in clear-sky OLR using a radiative trans-124

fer model. Furthermore, we identify those regions in the tropical atmosphere, in which125

a future reduction of humidity differences is most effective in reducing differences in clear-126

sky OLR.127

128

We perform the comparison of the DYAMOND models in moisture space, i.e. we129

sort the atmospheric state from dry to moist. This allows us, on the one hand, to dis-130

tinguish between different dynamic regimes of the tropics, which is useful for identify-131

ing the sources of inter-model differences as well as for understanding differences in OLR.132

On the other hand, humidity fields in moisture space are highly aggregated, which en-133

sures robust statistics. The representation of the atmosphere in moisture space is inspired134

by Bretherton et al. (2005), who used it to study the energy balance of convective self-135

aggregation in radiative-convective equilibrium simulations. Later, the depiction in mois-136

ture space has also proven useful for analysing observational data (Schulz & Stevens, 2018)137

and to bypass the issue of co-location when comparing observations and model simula-138

tions (Naumann & Kiemle, 2020).139

140

This paper is organized as follows: In Section 2 we introduce the DYAMOND sim-141

ulations and describe our post-processing of the model output. In Section 3 we quan-142

tify inter-model humidity differences in the tropical mean and in moisture space. More-143

over, we investigate whether humidity anomalies in the models are related to anomalies144

in the humidity transport by the resolved circulation. The impact of the humidity dif-145

ferences on the clear-sky radiation budget is examined in Section 4.146

2 DYAMOND simulations147

2.1 Models and experimental protocol148

DYAMOND is the first intercomparison project for GSRMs, comparing 40-day sim-149

ulations of nine models (only acronyms are given here): ICON, NICAM, ARPEGE-NH,150

FV3, GEOS, MPAS, UM, SAM and IFS. In the following we provide a brief overview151

of the models and the experimental protocol of DYAMOND. A more detailed descrip-152

tion is given by Stevens et al. (2019).153

154

Most of the DYAMOND models solve the fully compressible non-hydrostatic Navier-155

Stokes equations. Two exceptions are SAM, which uses the anelastic form of the non-156

hydrostatic equations, and IFS, which solves the primitive equations and is hence a hy-157

drostatic model. The models solve their governing equations on a variety of different nu-158

merical grids. The horizontal grid spacing is between 2.5 km and 5 km in eight of the nine159

models. The only exception is UM, which uses a latitude-longitude grid with a some-160

what coarser resolution at low latitudes (7.8 km at the equator). The number of verti-161

cal levels and the vertical extent of the model grid also vary between the models. None162

of the models are tuned at such high resolution.163

164

The models also differ in the parameterizations used to represent unresolved pro-165

cesses. In particular, there are different approaches to handle convection, reflecting some166

disagreement about which motions are adequately resolved at kilometre-resolution. While167

in some models convection is not parameterized at all, in others shallow convection is168

parameterized. GEOS and MPAS even employ scale-aware parameterizations for deep169
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convection. There is also diversity in the parameterizations for boundary layer turbu-170

lence and microphysics.171

172

The DYAMOND simulations were run for 40 days from 1 August to 10 Septem-173

ber 2016. They were initialized with common atmospheric fields from the ECMWF global174

(9 km) meteorological analysis. Daily sea surface temperatures (SSTs) and sea ice con-175

centrations from the ECMWF analysis were used as boundary conditions. The initial-176

ization of the land surface was left to the practices of the individual modelling groups.177

After the initialization each simulation was allowed to evolve freely without further forc-178

ing.179

2.2 Post-processing and profile selection180

We use the 3-hourly output of atmospheric pressure p, temperature T , specific hu-181

midity q as well as the three components of the wind field U , V and W . Following Stevens182

et al. (2019) we exclude the first ten days of the simulations and only use the last 30 days183

to minimize the effects of biases from differences in the model spin-up as well as constraints184

from the common initialization. For each model the fields are horizontally interpolated185

from the native model grid to a common regular latitude-longitude grid covering the trop-186

ics (30◦ S to 30◦ N) with a resolution of 0.1◦. This is done using a conservative remap-187

ping via the remap function of the Climate Data Operators (CDO) version 1.9.5 (Schulzweida,188

2019).189

190

The size of the model output represents a challenge for the analysis. 30 days (cor-191

responding to 240 timesteps) of one 3-hourly 3D field, interpolated to the 0.1◦ latitude-192

longitude grid covering only the tropics, have a size of about 150 Gigabytes. For 9 mod-193

els and six variables this adds up to more than 8 TB. To reduce the amount of data we194

randomly sample a subset of grid points from each output timestep and only use the cor-195

responding vertical profiles of each quantity for further analysis. Only grid points located196

over ocean are sampled. About 42,000 profiles are selected for each of the 240 timesteps,197

resulting in a total of 10 million profiles for each model. This roughly corresponds to 1%198

of the total number of tropical profiles over ocean. By repeating the random sampling199

several times for the same model we estimated the sampling uncertainty for the quan-200

tities analysed in this study to be negligibly small compared the inter-model differences201

we identify. Thus, the thinning of the data does not affect the results of this study.202

203

The fifth generation of the ECMWF atmospheric reanalysis (ERA5) (Hersbach et204

al., 2020) serves as an observationally constrained reference data set in our comparison.205

It should be pointed out that potential biases with respect to observations exist in the206

ERA5 humidity fields. Xue et al. (2020) found a wet bias with respect to satellite ob-207

servations in the free troposphere, which is most pronounced in regions of large-scale sub-208

sidence. Nevertheless, the dataset provides a valuable constraint of the humidity distri-209

bution and can be used to estimate its natural variability. Gridded atmospheric variables210

are provided at a spatial resolution of 31 km. We use 3-hourly output corresponding to211

the output times of the DYAMOND models and post-process it in the same way as the212

model output.213

214

3 Humidity differences in DYAMOND models215

In this section we quantify the differences in free-tropospheric humidity in the DYA-216

MOND models, first in the tropical mean and subsequently in moisture space. Further-217
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more, we investigate whether the models’ humidity anomalies are connected to anoma-218

lies in the resolved humidity transport.219

3.1 Tropical mean220

We focus on inter-model differences in relative humidity (RH) rather than abso-221

lute humidity, because they are a more direct measure of the radiative impact. The rea-222

son behind this is that differences in absolute humidity and temperature are positively223

correlated at constant RH, but their radiative impacts are counteractive and hence com-224

pensate to a large degree. This will be discussed in more detail in the second part of this225

paper.226

227

RH is calculated for each of the randomly selected profiles and their associated val-228

ues of q, p and T as RH = e
es(T ) , where e is the water vapour pressure and es(T ) is its229

saturation value at temperature T . For es(T ) we take the value over water for T above230

the triple point Tt, the value over ice for T below Tt−23 K. For intermediate T a a com-231

bination of both is used following the IFS documentation (ECMWF, 2018).232

233

Overall, the models all capture the typical C-shape of the tropical mean RH pro-234

file with two maxima, one atop the boundary layer and one at the tropopause, and a min-235

imum in the mid troposphere (Figure 1). The models’ RH distributions also agree re-236

markably well with the ERA5 distribution. In fact, the multi-model mean RH (not shown)237

differs from ERA5 by less than 2% RH throughout the troposphere, except from the al-238

titude region above 15 km.239

240

Nevertheless, there are considerable differences among the models. The inter-model241

standard deviation σ(RH) (Figure 1c) has a distinct maximum around the top of the bound-242

ary layer (BL). The transition from the BL to the free troposphere is marked by a steep243

gradient in RH. Therefore, differences in the depth of the BL cause a large inter-model244

spread in RH. In IFS the humidity gradient at the top of the BL is particularly steep245

and the lower free troposphere is significantly dryer than in other models. Generally, in246

most models the BL is deeper than in ERA5. The inter-model spread is smallest in the247

mid troposphere between 4 and 10 km altitude. In that region σ(RH) is 2–3% RH and248

approximately constant with height. RH is lower than in ERA5 in the majority of mod-249

els, except ICON and NICAM. Above 10 km σ(RH) increases with altitude and exceeds250

8% RH at 100 hPa.251

252

Anomalies in RH can either be caused by anomalies in absolute humidity (mea-253

sured by q) or temperature T . In the DYAMOND models, T anomalies are small close254

to the surface, where they are constrained by identical SSTs, and increase with height255

throughout the free troposphere, where the temperature profile is set by convection and256

radiation (Figure 2a,b). In the lower and mid troposphere RH anomalies primarily re-257

flect anomalies in q (Figure 1b, Figure 2d) and the impact of T anomalies on RH is small.258

In the upper troposphere, however, T anomalies gain influence. There, RH anomalies259

reflect both anomalies in T and q. Anomalies in T and q are highly correlated in the up-260

per troposphere (Figure 2b,d), i.e. q is small in cold models and large in warm models.261

There, T differences are so large that differences in RH play a minor role in determin-262

ing whether one model’s absolute humidity is small or large as compared to another model’s.263

264

That the DYAMOND simulations were run just over one month (August/ Septem-265

ber 2016) represents a potential limitation for the intercomparison, especially for vari-266

ables that are subject to high internal variability on longer time scales. To estimate the267
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internal variability of RH, we calculate the interannual variability in the mean August/268

September RH distribution based on five years (2014-2019) of the ERA5 reanalysis, shown269

as the dotted line in Figure 1c. Given that interannual variations in free-tropospheric270

humidity are primarily driven by SST variations (Chuang et al., 2010) and the five years271

include a strong El Niño event in 2015/2016, the interannual variability rather represents272

an upper bound for the internal variability one could expect in the DYAMOND runs with273

fixed SST. Despite this, the inter-model standard deviation is significantly larger than274

the ERA5 interannual variability throughout the troposphere, suggesting that the inter-275

model differences are systematic model biases rather than a result of poorly sampled in-276

ternal variability.277

278

To put the inter-model spread in DYAMOND into perspective, we compare it to279

the inter-model spread in 29 GCMs that participated in the AMIP experiment of the Cou-280

pled Model Intercomparison Project phase five (CMIP5) (Taylor et al., 2012). Like the281

DYAMOND simulations the AMIP simulations were run with prescribed SSTs. To make282

the comparison with the 30-day DYAMOND simulations as fair as possible only one Au-283

gust is selected from the AMIP simulations and tropical mean vertical profiles of RH are284

calculated for ocean regions only. Throughout most of the free troposphere σ(RH) in the285

DYAMOND ensemble is smaller by a factor of two and more compared to the CMIP5286

AMIP ensemble (Figure 1c), indicating that the tropical mean free-tropospheric humid-287

ity distribution is better constrained in GSRMs. An exception is the lower free tropo-288

sphere: the peak in σ(RH) at the top of the BL is less pronounced in CMIP5 than in DYA-289

MOND, indicating that variations in the depth of the BL may be smaller in the CMIP5290

models. However, part of the smaller spread in the CMIP5 models is also explained by291

the fact that the hydrolapse in these models is generally less steep, which is evident from292

the CMIP5 multi-model mean RH profile (Figure 1a). RH differences caused by a shift293

in the height of the hydrolapse are therefore smaller, but dispersed over a broader layer.294

295

The reduced spread in free-tropopsheric RH in the DYAMOND ensemble is even296

more remarkable considering that the DYAMOND models were not tuned for this ex-297

periment. Many of them were even run in the storm-resolving configuration for the first298

time. However, as we will show in Section 4, the remaining humidity differences still have299

a significant impact on the clear-sky radiation budget.300

301

3.2 Moisture space302

To distinguish between different dynamic regimes of the tropics, which are not nec-303

essarily co-located in different models, we compare humidity statistics in moisture space304

(Bretherton et al., 2005; Schulz & Stevens, 2018; Naumann & Kiemle, 2020). To span305

the moisture space, the randomly selected atmospheric profiles (Section 2.2) are ranked306

by their vertically integrated water vapour (IWV). The integration is performed from307

the surface to an altitude of 20 km for all models.308

309

Inter-model differences in the distribution of IWV are most pronounced at high IWV310

values (Figure 3). This is apparent when comparing different percentiles of IWV. While311

the 25th percentiles of all models lie within a range of 2.2 kg m−2, the 75th percentiles312

differ by more than 10 kg m−2 between the two most extreme models IFS and NICAM.313

The overall shape of the IWV distribution differs among models. For IFS and NICAM314

distributions are approximately uniform over a large range of IWV values, whereas the315

distribution of ARPEGE-NH has a pronounced peak at IWV values of about 50 kg m−2.316

For the remaining models (including ERA5) distributions are more bimodal with a first317

peak at 25–30 kg m−2 and a second peak at 50-55 kg m−2. The exact position and the318
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Figure 1. Tropical mean RH profiles and inter-model spread in the DYAMOND ensemble. (a)

Tropical mean vertical profiles of RH over ocean regions from all DYAMOND models (colours),

the ERA5 reanalysis (black solid) and the CMIP5 AMIP multi-model mean (black dashed).

(b) Vertical RH profiles for the DYAMOND models shown as deviation from the ERA5 profile.

(c) Inter-model standard deviation of tropical mean RH (solid line). For comparison the inter-

annual spread in five years (2014-2019) of ERA5 (dotted line) as well as the inter-model spread

in the CMIP5 AMIP ensemble (dashed line) are shown. For a representative comparison with

DYAMOND only one August was selected from the CMIP5 AMIP runs.

relative strengths of the two peaks differ among the models. In SAM the first peak is319

particularly pronounced, whereas in ICON the second peak is comparably strong. Bi-320

modality is a known feature of the IWV distribution over tropical oceans, which is not321

reliably reproduced by GCMs (Mapes et al., 2018). Our results indicate that this prob-322

lem is similarly pronounced in GSRMs.323

324

To display quantities in moisture space IWV-ranked profiles from each model are325

split into 50 blocks, each containing an equal amount of profiles corresponding to two326

percentiles of IWV. Quantities are then averaged over each block. Note that this block-327

averaging results in an x-axis that is linear in the percentile of IWV rather than in IWV328

itself. This also means that the comparison of different models in moisture space is made329

at a certain IWV percentile rather than a certain IWV value. In the multi-model mean330

the non-linear distribution of IWV values in moisture space is noticeable in the driest331

and moistest percentiles, respectively, where the increase in IWV is steeper than in the332

intermediate percentiles (Figure 4d). Again, it is apparent that the inter-model spread333

in IWV, which is indicated by the shading around the multi-model mean, increases from334

low to high percentiles.335

336

SST increases from about 292 K in low IWV percentiles to about 302 K in high per-337

centiles (Figure 4d). The SST gradient weakens from dry to moist regimes, similar to338

how the meridional SST gradient weakens from the subtropics towards the inner trop-339

ics. The inter-model standard deviation in block-averaged SSTs is around 0.15 K, im-340

plying that the the distribution of SST in moisture space is very similar among models.341

The underlying PDF of SSTs is identical in all models, which, compared to other quan-342

tities like IWV, puts an additional constraint on the SST distribution in moisture space.343

344

Block-averaged vertical velocities (Figure 4c) indicate that the large-scale circu-345

lation is directed upward in the highest 5–10 IWV percentiles and downward in drier re-346

gions. The blocks with positive vertical velocities correspond to the regions of intense347
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Figure 2. Tropical mean vertical profiles of specific humidity q and temperature T over ocean

regions from all DYAMOND models. Vertical profiles of q (a, b) and T (c, d) shown as absolute

values together with the ERA5 profiles (a, c) and as deviation from the ERA5 profiles (b, c).

Deviations in q are in fractional units, i.e. normalized by the ERA5 value (qERA5).

rainfall in the Intertropical Convergenze Zone (ITCZ) in the deep tropics, where deep348

convection is concentrated. The drier blocks correspond to trade wind regimes. There,349

the free troposphere is characterized by large-scale subsidence, which increases in strength350

with decreasing IWV. At the transition from deep convective to subsidence regimes near351

the 90th IWV percentile vertical velocities are negative in the lower free troposphere and352

positive aloft. These blocks represent an advanced state in the life cycle of deep convec-353

tion associated with upper-level anvil clouds. This state is characterized by ascent above354

the freezing level (which is located around 5 km) and descent below, driven by conden-355

sation and freezing above the freezing level, and melting and evaporation of precipita-356

tion below (Betts, 1990). The amount of high-level clouds increases from dry to moist357

regimes, as reflected by a sharp decrease in all-sky OLR in the moist blocks (Figure 4d).358

359

The largest RH values are found in the BL (4a), where moisture is provided by evap-360

oration from the surface. The RH in the BL is relatively constant throughout moisture361

space. Where air rises from the BL to the free troposphere in deep convective plumes362

it cools and its RH increases until saturation is reached. Therefore, the highest RH val-363

ues in the free troposphere are found in deep convective regions. Saturated air detrain-364

ing from deep convection moistens the surrounding regions corresponding to the lower-365

IWV blocks in moisture space. As detrainment from deep convection preferably takes366

place in the upper troposphere, a second maximum in RH is found there, losing in strength367

towards drier blocks. As the air subsides it warms and dries. The lowest RH values there-368

fore occur in the free troposphere of the subsidence regions. Particularly in the high IWV369

percentiles a plateau in RH is apparent near the freezing level at around 5 km. Latent370

heat release from ice formation enhances the stability at this level, which causes deep371

convection to preferably detrain there (Stevens et al., 2017).372

373
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Displaying inter-model differences in moisture space reveals how they are distributed374

over the different regimes of the tropics. RH anomalies for individual models are shown375

in Figure A1 in Appendix A. Here we focus on the inter-model standard deviation σ(RH),376

shown in Figure 4b. First, it is apparent that the large inter-model spread in the upper377

troposphere (Figure 1) prevails throughout the entire tropics. In the tropopause region378

σ(RH) exceeds 10% RH everywhere except from the driest part of the subsidence regions.379

Second, the local maximum in σ(RH) at the top of the BL is most pronounced in the380

driest regimes, where the RH gradient between the BL and the free troposphere is steep-381

est (Figure 4a). In moister regions, where the RH gradient is less steep, the maximum382

in σ(RH) is weaker but broader. Third, in the mid troposphere σ(RH) increases from383

less than 1% RH in the lowest IWV percentiles to more than 5% RH near the 90th per-384

centile. The largest part of the spread in tropical mean mid-tropospheric RH stems from385

the region representing the transition from subsidence to deep convective regimes (cf.386

Figure 4c). In the moistest 5 percentiles of IWV the inter-model spread decreases again.387

In these regimes deep convection keeps the RH close to 100% in all models.388

389
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Figure 3. Probability density function of integrated water vapour (IWV) over tropical ocean

regions in the DYAMOND models and ERA5. Percentiles of each model’s are shown below the

curves: Coloured circles indicate the medians of the distributions, horizontal bars range from the

25th to the 75th percentile.

3.3 Humidity transport by the resolved circulation390

At this point an open question is which physical processes control the humidity dif-391

ferences in the DYAMOND ensemble. Besides the sub-grid-scale processes (i.e., phase392

change, turbulent mixing and radiation), that we cannot diagnose from the limited model393

output, transport by the resolved circulation has been suggested to play a major role (e.g394

Sherwood, 1996; Pierrehumbert & Roca, 1998; Dessler & Sherwood, 2000). As a step to-395

wards better understanding the physical causes behind the humidity differences, we in-396

vestigate whether models with an anomalously high RH are associated with an anoma-397

lously high RH transport.398

399

The tendency of RH due to resolved transport can be diagnosed from the model400

output:401

(
∂RH

∂t
)transport =

RH

p

dp

dt
− RH

1

es

des
dT

dT

dp

dp

dt
− ~v · ∇RH, (1)

where ~v denotes the three-dimensional velocity. The first two terms on the right hand402

side describe the change in RH caused by a pressure change following an air parcel. A403
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Figure 4. Distributions of different quantities in moisture space: (a) multi-model mean RH,

(b) multi-model standard deviation of RH, (c) multi-model mean vertical velocity (d) multi-

model mean IWV (black), SST (blue) and all-sky OLR (red). In (d) the inter-model standard

deviation is denoted by shaded areas around the multi-model mean values.

change in pressure affects both the water vapour pressure e (first term) and the temper-404

ature T , which determines the saturation water vapour pressure es according to Clausius-405

Clapeyron (second term). We assume that dp
dt = ~v · ∇p, so the pressure of an air par-406

cel follows the environmental pressure, and that temperature changes adiabatically with407

pressure. Note that the second term generally dominates over the first one, so that a de-408

crease in pressure in a rising air parcel causes its RH to increase. The third term on the409

right hand side denotes the advection of RH. For vertical transport it is the second term410

on the right hand side of Equation 1 that dominates the RH tendency, because pressure411

changes are large for a vertical motion. For horizontal transport, however, pressure changes412

are small and the third term (the advection term) is the dominant one.413

414

We calculate the transport tendencies individually for each of the randomly selected415

profiles (Section 2.2) and then block-average them in moisture space. Horizontal gradi-416

ents are calculated based on the selected profiles and their neighbouring profiles in phys-417

ical space using central finite differences.418

419

Figure 5 shows the RH transport tendencies for the multi-model mean in moisture420

space. The total tendency is shown in panel (c), the contributions from vertical and hor-421

izontal circulation are shown in (a) and (b), respectively. The vertical transport results422

in a strong moistening tendency in the highest IWV percentiles, which are characterized423

by positive vertical velocities (see also Figure 4), and in overall drying tendencies in the424

subsidence regions. Horizontal transport dries the moistest percentiles in the lower and425

mid troposphere. This drying is associated with the entrainment of dryer air from the426

surroundings in deep convective regimes. In the rest of the free troposphere the horizon-427

tal transport moistens the air, particularly in the upper troposphere, where the detrain-428

ment from deep convection takes place preferentially. From the total transport tendency429

it is clear that vertical and horizontal transport generally do not balance each other. As-430

suming that the RH distribution in moisture space is in a steady state, other (sub-grid-431

scale) processes must act to balance the transport. These include microphysical processes,432

turbulent mixing and radiation. We would expect RH tendencies due to microphysical433
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processes to be most active in moist regimes, where condensation certainly acts to com-434

pensate a part of the moistening by the transport. An estimation of the RH tendency435

due to clear-sky radiative cooling indicates that this term is small (not shown) and plays436

a minor role in compensating the transport tendency.437

438

To examine whether model anomalies in the transport tendencies are related to model439

anomalies in RH, we correlate them at each point in moisture space. A positive corre-440

lation indicates that models with high RH values are associated with an anomalously441

large transport tendency and vice versa at the respective point in moisture space. In that442

case, the transport anomalies would act to reinforce the RH anomalies. Where the cor-443

relation is negative, models with high RH are associated with a weak transport tendency.444

Our interpretation of this is that the unresolved processes act to reinforce the humid-445

ity anomaly, and the resolved transport, which balances those terms, has to compensate.446

A weak correlation indicates that the resolved transport is a process of minor importance447

and the actual balance is between other processes.448

449

Positive correlations between anomalies in RH and anomalies in total transport mainly450

occur in the upper troposphere in the altitude region above 10 km (Figure 6). The to-451

tal transport anomalies in this region are partly caused by anomalies in the vertical trans-452

port, which are associated with different representations of the Brewer-Dobson circula-453

tion in the models, and partly by anomalies in the horizontal transport (not shown). Pos-454

itive correlations are also found at the edge of deep convective regimes in the altitude455

region between 7 and 10 km altitude, which is associated with anvil clouds (Section 3.2).456

Total transport anomalies there are mainly due to anomalies in vertical transport (not457

shown). Thus, in the anvil regions models with stronger vertical transport are moister.458

A small area of positive correlations also occurs in the lower free troposphere in the dri-459

est IWV percentiles. There, anomalies in the horizontal transport are the dominant ones.460

Throughout the rest of the free troposphere correlations are weak or negative, so trans-461

port anomalies do not act to reinforce the RH anomalies. A broad region of negative cor-462

relation is found in the mid troposphere in the anvil regions. A possible explanation could463

be that models with anomalously high RH in these regions are those with anomalously464

strong evaporation of precipitation (and vice versa). A stronger evaporative cooling causes465

stronger downdrafts and thereby also enhances the drying by vertical transport. Hence,466

the RH anomalies might be caused by differences in the microphysics, but the transport467

reacts to it, which can result in the negative correlation.468

469

In summary, anomalies in the resolved transport can only explain RH anomalies470

in some regions, mostly in the upper troposphere above 10 km. Anomalies in the remain-471

ing parts of the free troposphere must be mainly related to other, unresolved processes.472

The most likely candidates are microphysical processes and turbulent/ shallow convec-473

tive mixing.474

475

4 Impact of RH anomalies on clear-sky OLR476

To quantify the effect of the inter-model differences on the radiation balance, we477

translate them into differences in clear-sky OLR using a radiative transfer model. OLR478

differences are analysed in moisture space to determine how much different tropical mois-479

ture regimes contribute to the inter-model spread in tropical mean OLR. Furthermore,480

we investigate in which altitude regions humidity differences have the strongest impact481

on OLR. This allows us to identify the regions of the tropical troposphere in which a fur-482

ther reduction of humidity differences would be most beneficial.483

484
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Figure 5. Multi-model mean RH tendencies due to (a) vertical, (b) horizontal and (c) total

transport by the resolved circulation in moisture space.
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Figure 6. Correlation between model anomalies in RH and model anomalies in RH trans-

port tendencies in moisture space. Positive correlations (red) indicate that models with high RH

values are associated with an anomalously strong humidity transport and vice versa.

Fundamentally, clear-sky OLR is determined by the temperature of the surface and485

the temperature profile of the atmosphere as well as the concentration of greenhouse gasses486

in the atmosphere. The surface temperature plays a role in the window regions of the487

spectrum (between 800 to 1200 cm−1), where the absorption by greenhouse gasses is weak488

and the radiation emitted from the surface can penetrate the atmosphere and directly489

escape to space. In the remaining parts of the spectrum the absorption of radiation by490

greenhouse gasses makes the atmosphere opaque, so that the radiation escaping at the491

TOA originates from the atmosphere rather than the surface.492

493

For the OLR anomalies in the DYAMOND models we expect that anomalies in the494

surface temperature play a minor role, since SSTs are prescribed and their distributions495

in moisture space are very similar among models (Figure 4). Furthermore, in our OLR496

calculations we only consider the effect of model anomalies in water vapour. We expect497

the effect of differences in other greenhouse gasses to be small and therefore fix their con-498

centrations in our radiative transfer simulations. Thus, in the DYAMOND models anoma-499

lies in clear-sky OLR are primarily caused by anomalies in atmospheric temperature and500

absolute humidity.501

502

4.1 Radiative transfer simulations503

The radiative transfer simulations to obtain clear-sky OLR are performed with the504

Rapid Radiative Transfer Model for GCMs (RRTMG Mlawer et al., 1997). RRTMG is505

is a well validated fast radiative transfer code used in various weather and climate mod-506

els, also in several of the DYAMOND models. For this study we use RRTMG through507

the Python package konrad (DOI: 10.5281/zenodo.3899702), which in turn uses the CliMT508
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Python interface for RRTMG (Monteiro et al. 2018).509

510

OLR is calculated based on the block-averaged profiles of pressure, temperature,511

and specific humidity in moisture space (Section 3.2). Calculating OLR from block-averaged512

profiles rather than from individual profiles induces an error, since radiation is non-linear513

in temperature and humidity. We found that OLR calculated from block-averaged pro-514

files is generally lower than OLR calculated based on individual profiles. This is in line515

with the idea that fluctuations in humidity increase OLR (Pierrehumbert et al., 2007),516

so averaging out these fluctuations leads to a reduction of OLR. However, the resulting517

bias is very similar in all models, so that the effect on inter-model differences in OLR518

is negligible.519

520

To characterize the surface we additionally select surface pressure and SST from521

the model output, in the same way as for the other variables (Section 2.2). The surface522

emissivity is assumed to be 1. For other gasses than water vapour we use fixed vertical523

profiles in accordance with those in Wing et al. (2017): The ozone volume mixing ra-524

tio follows a gamma distribution in pressure and vertically constant volume mixing ra-525

tios are assumed for O2, CO2, CH4 and N2O.526

527

For the radiative transfer simulations we interpolate profiles from all models on a528

uniform vertical grid ranging from the surface to an altitude of 20 km with a resolution529

of 100 m. The top at 20 km corresponds to the maximum altitude for which output is530

available from all models. For our purpose OLR is defined as the longwave upward ra-531

diative flux at this level. Due to this definition the inter-model differences in OLR only532

reflect temperature and humidity differences in the troposphere, potential differences in533

the stratosphere are ignored. Note that due to the missing stratosphere the absolute value534

of the OLR defined at 20 km has a positive offset compared to the ”true” OLR defined535

at a higher TOA. However, this is not relevant for our results since we are only inter-536

ested in the effect of differences in the troposphere.537

538

We focus only on the clear-sky case here, so any cloud condensate contained in the539

profiles is ignored. Clouds, particularly those at high altitudes, have a strong impact on540

OLR. Hence, model differences in cloud properties can cause significant differences in all-541

sky OLR, which are not considered here.542

4.2 Model differences in clear-sky OLR543

Tropical mean clear-sky OLR differs by more than 4 Wm−2 between the two most544

extreme models IFS and ICON (Figure 7a). The multi-model standard deviation in trop-545

ical mean clear-sky OLR is 1.2 Wm−2. This is a substantial spread given the fact that546

the climate forcing due to a doubling of CO2 is about 3.7 Wm−2 (Collins et al., 2013).547

In some models, e.g. UM and ARPEGE-NH, both positive and negative OLR anoma-548

lies occur across moisture space, which partly cancel in the tropical mean.549

550

Two moisture regimes stand out due to a particularly large spread in clear-sky OLR551

(Figure 7b): One local maximum in σ(OLR) occurs in rather moist regimes around the552

80th percentile of IWV. This corresponds to the region at the transition from deep con-553

vective to subsidence regimes, where the inter-model RH spread in the mid troposphere554

maximizes (Figure 4b). A second, slightly weaker maximum in σ(OLR) is located at the555

dry end of moisture space. In the next section we aim to better understand why the OLR556

spread maximizes in these two regimes and which altitude regions in the troposphere con-557
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tribute most.558
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Figure 7. Inter-model differences in clear-sky OLR in moisture space. (a) Anomalies in clear-

sky OLR for each model, defined as the deviation from the ERA5 value and (b) inter-model

standard deviation of clear-sky OLR.

4.3 Radiative kernels560

To examine how different regions in moisture space contribute to the spread in trop-561

ical mean clear-sky OLR, for each of the 50 blocks in moisture space we decompose each562

model’s OLR anomaly into contributions from individual atmospheric layers using the563

radiative kernel method (Soden et al., 2008).564

565

Dividing the atmosphere into N vertical layers and linearising around the ERA5566

state that we use as reference state, a model’s OLR anomaly ∆OLR can be written as:567

∆OLR ≈
N∑
i=1

(
Ke

i ∆ei +KT
i ∆Ti

)
≈

N∑
i=1

KRH
i ∆RHi. (2)

Here, the index i denotes the vertical layer. The vectors Kx are radiative kernels that568

describe the sensitivity of OLR to changes in a variable x in each layer:569

Kx
i =

∂OLR

∂xi
. (3)

The first approximation in Equation 2 assumes that OLR anomalies are primarily caused570

by anomalies in atmospheric T and e, the effect of anomalies in surface temperature is571

assumed to be negligible. Moreover, it is assumed that contributions from each layer to572

the OLR response are independent, neglecting potential masking effects. For example,573

when a model has a strong positive e anomaly in the upper troposphere, this would in-574

crease the optical thickness of the atmosphere there and thereby weaken the effect of anoma-575

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

lies below. Despite these assumptions the kernels Ke and KT can be used to approx-576

imate the OLR anomalies of the DYAMOND models with good accuracy, which is shown577

in Figure B1 in Appendix B. In Appendix B we also describe the calculation of the ker-578

nels.579

580

Perturbations in e and T have opposite effects on OLR, which is evident from the581

different signs of the respective kernels (Figure B1). Increasing temperature in a given582

atmospheric layer increases the emission from that layer and hence increases OLR. Con-583

versely, increasing absolute humidity in a given layer reduces OLR both by shifting the584

effective emission layer upwards to colder temperatures in the water vapour bands, and585

by closing the atmospheric window. At constant RH perturbations in e and T are pos-586

itively correlated, so their effects on OLR compensate to some degree. It is well known587

that in the water vapour bands, the spectral regions in which the water vapour optical588

depth is larger than 1, modulo foreign broadening the emission from a layer to space de-589

pends only on RH (Nakajima et al., 1992; Ingram, 2010). This behaviour is often referred590

to as ”Simpsonian”, as it has been recognized since the early work of Simpson (1928).591

Therefore, we can assume that OLR anomalies in the DYAMOND models are primar-592

ily determined by RH anomalies. This corresponds to the second approximation in Equa-593

tion 2.594

595

A perturbation in RH can be produced isothermally, i.e. by varying e and keep-596

ing T constant, or isobarically, i.e. by varying T and keeping e constant. Therefore, there597

are two ways to define a RH kernel, which we refer to as KRH,e and KRH,T, respectively:598

KRH,e
i = ∂OLR

∂RHi

∣∣∣
T=const.

= esK
e
i

KRH,T
i = ∂OLR

∂RHi

∣∣∣
e=const.

= − es
RH

(
des
dT

)−1KT
i . (4)

To translate Ke and KT into RH kernels they have to be weighted by a factor describ-599

ing the change of RH for a change in e or T , respectively. For KRH,e this factor is equal600

to the saturation water vapour pressure es. For KRH,T the dependence of es on T given601

by the Clausius Clapeyron relation has to be taken into account. KRH,e and KRH,T are602

identical to the extent that the OLR response to a given change in RH is independent603

of whether this change is produced by a change in e or in T .604

605

Differences between KRH,e (Figure 8a) and KRH,T (Figure B2) indicate that to a606

certain degree it does matter whether a RH perturbation is caused by a perturbation in607

e or in T . We elaborate a bit more on these differences in Appendix B. As evident from608

comparing Figure 8c and Figure B2c, OLR anomalies approximated using KRH,e are more609

accurate than those approximated using KRH,T. This implies that RH anomalies in the610

DYAMOND models are primarily caused by anomalies in absolute humidity rather than611

temperature (at least in the altitude regions that are most relevant for OLR). Therefore,612

for the further analysis we concentrate on KRH,e.613

614

Overall, there is good agreement between true (directly calculated) OLR anoma-615

lies and those approximated with Equation 2 using KRH,e (Figure 8c). The largest de-616

viations occur for ICON, for SAM in the lowest IWV percentiles and for ARPEGE-NH617

in moist percentiles. The inter-model standard deviation σ(OLR) is well reproduced with618

the approximated OLR (Figure 8d), except from the lowest IWV percentiles, where it619

is slightly underestimated. This is mainly caused by the deviations in SAM and ICON.620

For most models the approximation from RH anomalies is slightly less accurate than the621

one from e and T anomalies (cf. Figure B1). An exception is NICAM, for which the OLR622
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approximated from RH anomalies matches the true OLR much better than the one ap-623

proximated from e and T anomalies. Overall, we conclude that inter-model differences624

in RH indeed explain a major part of the differences in clear-sky OLR in the DYAMOND625

models.626

4.4 Relative importance of different altitude regions627

The impact of RH anomalies for the radiation budget is determined by the mag-628

nitude of the anomalies and the sensitivity of OLR to a given perturbation in RH, which629

is described by the radiative kernel KRH,e (Equation 2). KRH,e is negative throughout630

the tropical troposphere (Figure 8a), indicating that an increase in RH leads to a decrease631

in OLR. Its absolute value is largest in the mid troposphere in the dry subsidence regimes.632

The reason for this can be understood from Equation 4, which states that KRH,e is equal633

to the product of Ke and es. Ke generally increases with height and from moist to dry634

regimes (Figure B1). This is due to changes in the degree of saturation in the water vapour635

bands. In regions with low absolute humidity, i.e. in the upper troposphere and in dry636

regimes, absorption bands are radiatively less saturated, so the sensitivity to humidity637

changes is larger than for regions with high absolute humidity. At the same time es de-638

creases with altitude. Hence, the product of Ke and es maximizes in the mid troposphere639

of the dry regimes.640

641

In low IWV percentiles there is a pronounced peak in KRH,e at an altitude of around642

6 km. The peak weakens from dry to moist regimes as the absorption bands become more643

saturated. A very similar behaviour was found by Spencer and Braswell (1997) for base644

states with RH values roughly corresponding to those in the dry half of moisture space.645

For the moist half of moisture space we find that lower atmospheric layers (below 5 km)646

become relatively more important. A possible explanation for this could be the contin-647

uum absorption in the major atmospheric window region (approximately 800 to 1200 cm−1),648

which acts to decrease the surface component of OLR as humidity increases in the lower649

troposphere. In contrast to the water vapour bands, saturation effects do not play a role650

for the continuum absorption (Allan et al., 1999). As a consequence, humidity pertur-651

bations in the lower troposphere become relatively more important for base states with652

high RH.653

654

The product of the RH response kernel KRH,e and the RH inter-model standard655

deviation σ(RH) (Figure 8b) indicates where the actual inter-model differences have the656

strongest effect on clear-sky OLR. First, the top of the BL stands out as a narrow re-657

gion of strong impact. OLR is not particularly sensitive to RH perturbations there (Fig-658

ure 8a), but the inter-model differences in RH are large (Figure 4b) because the mod-659

els differ in the depth of the BL. RH differences in a broad layer in the mid troposphere660

also significantly affect OLR. Integrated over its full width, the contribution from this661

layer is larger than that from the BL top. The mid troposphere is characterized by an662

increasing RH spread from dry to moist regimes with a pronounced maximum near the663

80th IWV percentile (Figure 4b) and a decreasing OLR sensitivity from dry to moist regimes664

(Figure 8a). The combination of both results in a relatively uniform importance of RH665

differences across moisture space, with two local maxima occurring near the 30th and666

near the 80th IWV percentile. The layer over which RH differences have a considerable667

impact on OLR generally extends to higher altitudes in the dry regimes than in the moist668

regimes, which is a consequence of the more saturated water vapour bands in the moist669

regimes. Due to the low OLR sensitivity in the upper troposphere (above about 10–12 km)670

the large inter-model RH differences there (Figure 4b) have virtually no effect on OLR.671

672
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Not considering clouds has an effect on the response kernels. Particularly high clouds673

are important, because they mask some of the effect of temperature and humidity in lower674

atmospheric levels (Soden et al., 2008). They are mainly present in moist regimes, start-675

ing around the 60th IWV percentile in most models (not shown). Therefore, in these regimes676

we would expect the OLR sensitivity to RH perturbations to become stronger in the lev-677

els in which clouds are most abundant (roughly 8-12 km height) and weaker at lower lev-678

els. This could dampen some of the effect of the large RH differences in the lower and679

mid free troposphere in the moist regimes.680

681

An important point to note is that the vertical integration of the product of KRH,e
682

and σ(RH), shown as the grey line in Figure 8d, does not yield the inter-model standard683

deviation in OLR, but a higher value, which is more uniform throughout moisture space.684

In many models RH anomalies have different signs in different altitude regions (Figure685

1 and Figure A1). This information is not contained in σ(RH). The effects of such op-686

posite RH anomalies on OLR compensate to some degree. Interestingly, such compen-687

sating errors play a bigger role in the dry regimes, as indicated by the larger difference688

between the grey and the black line in Figure 8d and evident from Figure A1. In fact,689

it is only due to these effects that dry regimes contribute less to tropical mean differences690

in clear-sky OLR than moist regimes.691
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Figure 8. Impact of RH differences on clear-sky OLR in moisture space. (a) RH response ker-

nel KRH,e showing the sensitivity of clear-sky OLR to a 1% change in RH in a 1 km layer under

constant temperature for 50 blocks in moisture space, (b) inter-model standard deviation σ(RH)

weighted with KRH,e, (c) OLR anomalies approximated from KRH,e and the RH anomalies of

each model and (d) inter-model standard deviation in the approximated OLR. Thin dashed lines

in (c) and (d) correspond to OLR calculated directly from temperature and humidity profiles

(same as in Figure 7). The vertical integral of (b) is shown as the grey line in (c).

5 Summary and conclusions692

In this study we quantified inter-model differences in tropical free-tropospheric hu-693

midity in an ensemble of nine different GSRMs that took part in DYAMOND, the first694

intercomparison project for models of this type. We focused on the effect of the humid-695

ity differences on the radiation budget and therefore concentrated on differences in RH696

rather than absolute humidity. The RH is most informative because in a large part of697

the spectrum the emission from a layer to space depends primarily on RH (Nakajima698

et al., 1992; Ingram, 2010).699

700

We find that the inter-model spread in tropical RH in DYAMOND is reduced by701

about a factor of two compared to the CMIP5 AMIP ensemble, confirming that the RH702

distribution and hence the clear-sky OLR are better constrained at storm-resolving res-703

olutions. A question that cannot be answered from the relatively short DYAMOND sim-704

ulations is whether the spread in the water vapour feedback is also reduced in GSRMs.705

However, there are some reasons to be optimistic about this. On the one hand, to the706

extent that the water vapour feedback depends on the base-state RH, reducing the inter-707
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model spread in present-day RH should also reduce the spread in the feedback. Evidence708

for the existence of such a state-dependence was recently found by Bourdin et al. (2021).709

On the other hand, the water vapour feedback depends on how much RH changes un-710

der warming. For the CMIP5 models it is differences in the RH response that contribute711

most to the spread in the water vapour feedback (Vial et al., 2013). However, given that712

the present-day RH is better constrained in GSRMs, it seems unlikely that the spread713

in the RH response increases.714

715

Although humidity differences are reduced in the DYAMOND ensemble, they still716

cause a considerable spread of 1.2 Wm−2 in tropical mean clear-sky OLR. To better un-717

derstand how different tropical moisture regimes contribute to this spread, it has proven718

useful to compare model fields in moisture space, i.e. sorted from low to high IWV. Com-719

bining the inter-model standard deviation σ(RH) with radiative kernels (the sensitiv-720

ity of OLR to RH perturbations) in moisture space allowed us to examine the radiative721

impact of the RH differences in a given dynamic regime and altitude region and hence722

to assess in which regions a further reduction would be most beneficial. Based on the723

results we can split the tropical free troposphere into four main regions:724

1. The transition between the BL and the free troposphere. Throughout the trop-725

ics this altitude region (around 2 to 3 km) is characterized by a local maximum726

in the inter-model RH spread, with σ(RH) exceeding 6% RH. These differences are727

associated with differences in the depth of the BL. Due to their large magnitude728

they contribute considerably to the spread in clear-sky OLR, although the sen-729

sitivity of OLR to a given RH perturbation is rather small in this altitude region.730

2. The mid troposphere of moist regimes. This region ranges from about 3 km to 10 km731

in altitude and roughly covers the highest 50 percentiles of IWV in moisture space.732

With σ(RH) up to 6% RH the inter-model spread in these moist regimes is sub-733

stantially larger than in the same altitude region of dry regimes. The spread max-734

imizes at the transition from deep convective to subsidence regimes near the 90th735

percentile of IWV. Although the OLR sensitivity to RH perturbations is moder-736

ate, the large RH differences cause the inter-model OLR spread to maximize in737

this region.738

3. The mid troposphere of dry regimes. In this region the model agreement in RH739

is remarkably good. The inter-model standard deviation σ(RH) is 1–3% RH and740

hence less than half of the standard deviation in moist regimes. However, the sen-741

sitivity of OLR to RH perturbations is considerably larger. Therefore, the small742

RH differences in the dry regimes have a comparable effect on clear-sky OLR as743

the larger differences in the moist regimes. This is why the inter-model OLR spread744

has a second, albeit slightly weaker local maximum in the dry regimes. The max-745

imum is weaker than the one in the moist regimes because compensating effects746

due to opposite RH anomalies at different altitude regions occur more frequently747

in the dry regimes. The reason for this is not obvious and needs further investi-748

gation.749

4. The upper troposphere. In the altitude region above 10 km the inter-model spread750

is generally large, with σ(RH) exceeding 8% near the tropopause. However, the751

OLR sensitivity to RH perturbations is so small that the impact of these differ-752

ences on the clear-sky OLR is negligible.753

Our results are limited to the clear-sky case. High clouds, which are most abun-754

dant in the moist regimes, potentially mask some of the clear-sky effect (e.g. Soden et755

al., 2008) and hence reduce the radiative impact of the humidity differences in the mid756

troposphere. This highlights even more the importance of the dry regimes, where high757

clouds are rare.758

759
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As a step towards better understanding the physical causes behind the RH differ-760

ences, we investigated whether RH anomalies are related to anomalies in transport by761

the resolved circulation. We find that anomalies in the resolved transport can only ex-762

plain parts of the RH anomalies in the upper troposphere but not in the regions below,763

which are more relevant for the radiation budget. This suggests that sub-scale processes764

like microphysics and turbulence as well as their interaction with the large-scale circu-765

lation play a major role in controlling the differences in the most critical regions. This766

result does not contradict earlier studies, which emphasize the important role of the large-767

scale transport in setting the humidity distribution of the free troposphere (e.g. Sher-768

wood, 1996; Pierrehumbert & Roca, 1998; Dessler & Sherwood, 2000). After all, the DYA-769

MOND models all reproduce the basic shape of the RH distribution. Nevertheless, dif-770

ferences in the representation of sub-scale processes can cause subtle modifications in the771

RH distribution that manifest as inter-model differences.772

773

We conclude that to further constrain the radiation budget in GSRMs it is most774

crucial to reduce the RH differences at the top of the BL and in the mid troposphere.775

Reducing the former by adjusting the depth of the BL seems possible with the current776

level of knowledge. Also, one would expect clear benefits from increased vertical reso-777

lution when it comes to representing the BL depth. On the other hand, observational778

reference data are sparse because satellite capacities to probe the BL region are still lim-779

ited. Reducing the differences in the mid troposphere seems more challenging and re-780

quires a detailed understanding of how sub-scale processes affect the RH in these regions781

remote from deeper convection. An advantage is that this altitude region of the trop-782

ical atmosphere is extensively observed by satellites.783

Appendix A RH anomalies in individual models784

In Section 3.2 we focused on the inter-model spread in RH expressed by the inter-785

model standard deviation σ(RH). Here we show how the RH deviates from ERA5 in mois-786

ture space for individual models (Figure A1). It is evident that for many models, par-787

ticularly for ICON, NICAM and IFS, the largest part of the RH anomalies in the mid788

troposphere that are apparent in the tropical mean (Figure 1) stems from rather moist789

regimes. Furthermore, in all models RH anomalies of opposite sign exist at different al-790

titude regions and across moisture space. As mentioned in Sections 4.2 and 4.4 their ef-791

fects on tropical mean clear-sky OLR partly compensate. For example, the GEOS5 model792

has both an anomalously moist lower free troposphere (due to an anomalously deep BL)793

and an anomalously dry mid free troposphere in regions of intermediate IWV (Figure794

A1d). Due to the compensation of these opposite effects the OLR anomaly in these re-795

gions is rather small (Figure 7). In the UM model the lower and mid free troposphere796

are anomalously moist in dry regimes and anomalously dry in moist regimes (Figure A1j).797

The resulting OLR anomalies almost fully compensate in the tropical mean (Figure 7).798

Appendix B Radiative kernels for water vapour pressure, tempera-799

ture and relative humidity800

To obtain the radiative kernels Ke and KT for a given block in moisture space, OLR801

is calculated for the averaged ERA5 profiles in this block using the setup described in802

Section 4.1. The calculation is repeated with a small perturbation applied to e or T in803

one atmospheric layer, yielding the element of Ke of KT, respectively, for that layer. This804

is done successively for all layers. We perturb e by 5% of its absolute value and T by 1 K.805

The results are not sensitive to the exact size of the perturbation.806

807

The kernels Ke and KT can be used together with anomalies in e and T to approx-808

imate anomalies in clear-sky OLR (Equation 2) in the DYAMOND models with good809

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

accuracy (Figure B1e). The approximation is least accurate for the NICAM model. NICAM810

is the model with the largest anomalies in absolute humidity (Figure 2), so the assump-811

tion of linearity around the reference state starts to lose validity. In other models some812

smaller inaccuracies occur particularly in the dry half of moisture space. Most of them813

can be explained by SST anomalies that are not considered in Equation 2. Such SST anoma-814

lies have a stronger impact in the dry regions because the surface component of OLR815

is larger there than in moist regions. The largest deviations between true and approx-816

imated OLR anomalies in dry regimes arise for SAM and ARPEGE-NH. These are only817

partly explained by SST anomalies, so non-linearity or masking effects might play a role.818

819

As explained in Section 4.3, OLR anomalies can also be approximated from RH820

anomalies and a RH kernel (Equation 2). There are two ways to define a RH kernel by821

varying either e or T (Equation 4), which we refer to as KRH,e and KRH,T, respectively.822

Our main analysis above is based on KRH,e because it approximates the OLR anoma-823

lies more accurately. For completeness Figure B2 shows KRH,T and the OLR anoma-824

lies approximated using this version of the RH kernel. Compared to KRH,e (Figure 8a),825

KRH,T (Figure B2a) takes on larger absolute values (note the different colour scales in826

Figures 8 and B2), i.e. a 1% increase in RH causes a larger decrease in OLR if it is pro-827

duced by decreasing T rather than increasing e. Furthermore, the peak altitude in KRH,T
828

is lower than in KRH,e. These differences indicate that for OLR it does matter to a cer-829

tain degree whether a RH perturbation is caused by a perturbation in e or in T . Nev-830

ertheless, considering that the physical mechanisms behind a change in OLR are very831

different for changes in e and T , the two kernels agree remarkably well, again demon-832

strating that the atmosphere behaves partly ”Simpsonian” (see Section 4.3).833
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Figure A1. RH anomalies of DYAMOND models in moisture space. The upper left panel

shows the ERA5 RH distribution in moisture space, remaining panels show the deviation from

the ERA5 RH for each model.
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Figure B1. Clear-sky OLR anomalies in the DYAMOND models approximated with the ker-

nel method. (a) Water vapour response kernel Ke showing the sensitivity of clear-sky OLR to

a change of 1 Pa in water vapour pressure e in a 1 km layer. Note the logarithmic colour scale.

(b) Temperature response kernel KT showing the sensitivity of clear-sky OLR to a tempera-

ture change of 1 K in a 1 km layer. Also shown are OLR anomalies calculated (c) solely from

anomalies in e and the respective kernel Ke and (d) solely from anomalies in T and KT. (e)

shows OLR anomalies calculated from both kernels. True (directly calculated) OLR anomalies

are shown as thin dashed lines for comparison.
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Figure B2. As Figure 8 but based on KRH,T. Note that the colour scale in (a) and (b) is

different from Figure 8 since KRH,T takes on more negative values than KRH,e.
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